參考文獻 |
[1] Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for machine learning. Machine learning, 50, 5-43.
[2] Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063.
[3] Asudani, D. S., Nagwani, N. K., & Singh, P. (2023). Impact of word embedding models on text analytics in deep learning environment: a review. Artificial Intelligence Review, 1-81.
[4] Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63-93.
[5] Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American statistical Association, 112(518), 859-877.
[6] Branch, B., Wang, J., & Yang, T. (2008). A note on takeover success prediction. International Review of Financial Analysis, 17(5), 1186-1193.
[7] Calipha, R., Tarba, S., & Brock, D. (2010). Mergers and acquisitions: A review of phases, motives, and success factors. Advances in mergers and acquisitions, 9, 1-24.
[8] Cartwright, S., & Schoenberg, R. (2006). Thirty years of mergers and acquisitions research: Recent advances and future opportunities. British journal of management, 17(S1), S1-S5.
[9] Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Making words work: Using financial text as a predictor of financial events. Decision Support Systems, 50(1), 164-175.
[10] Cohen, L., Malloy, C., & Nguyen, Q. (2020). Lazy prices. The Journal of finance, 75(3), 1371-1415.
[11] Craja, P., Kim, A., & Lessmann, S. (2020). Deep learning for detecting financial statement fraud. Decision Support Systems, 139, 113421.
[12] Der Kiureghian, A., & Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural safety, 31(2), 105-112.
[13] Fang, R., Fang, D., Guo, P., Li, Y., & Lu, Z. (2011). Motivation to Mergers and Acquisitions of High Technology Firms: Grounded in Integration Theory of Resources and Capabilities. 2011 International Conference of Information Technology, Computer Engineering and Management Sciences, 286-289.
[14] Ghosh, S., & Naskar, S. K. (2022). Detecting context-based in-claim numerals in Financial Earnings Conference Calls. International Journal of Information Technology, 14(5), 2559-2566.
[15] Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610.
[16] Guo, L., Shi, F., & Tu, J. (2016). Textual analysis and machine leaning: Crack unstructured data in finance and accounting. The Journal of Finance and Data Science, 2(3), 153-170.
[17] Hoberg, G., & Phillips, G. (2010). Product market synergies and competition in mergers and acquisitions: A text-based analysis. The Review of Financial Studies, 23(10), 3773-3811.
[18] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[19] Homburg, C., & Bucerius, M. (2006). Is speed of integration really a success factor of mergers and acquisitions? An analysis of the role of internal and external relatedness. Strategic management journal, 27(4), 347-367.
[20] Huang, A. H., Wang, H., & Yang, Y. (2023). FinBERT: A large language model for extracting information from financial text. Contemporary Accounting Research, 40(2), 806-841.
[21] Kang, T., Park, D.-H., & Han, I. (2018). Beyond the numbers: The effect of 10-K tone on firms’ performance predictions using text analytics. Telematics and Informatics, 35(2), 370-381.
[22] Leepsa, N., & Mishra, C. S. (2017). Predicting the success of mergers and acquisitions in manufacturing sector in India: A logistic analysis. Singapore Management Journal, 6(2), 44-73.
[23] Levine, P., & Aaronovitch, S. (1981). The financial characteristics of firms and theories of merger activity. The Journal of Industrial Economics, 149-172.
[24] Liu, R., Mai, F., Shan, Z., & Wu, Y. (2020). Predicting shareholder litigation on insider trading from financial text: An interpretable deep learning approach. Information & Management, 57(8), 103387.
[25] Liu, Z., Huang, D., Huang, K., Li, Z., & Zhao, J. (2021). Finbert: A pre-trained financial language representation model for financial text mining. Proceedings of the twenty-ninth international conference on international joint conferences on artificial intelligence, 4513-4519.
[26] Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10‐Ks. The Journal of finance, 66(1), 35-65.
[27] MacKay, D. J. (1992). A practical Bayesian framework for backpropagation networks. Neural computation, 4(3), 448-472.
[28] Mitros, J., & Mac Namee, B. (2019). On the validity of Bayesian neural networks for uncertainty estimation. arXiv preprint arXiv:1912.01530.
[29] Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.
[30] Palepu, K. G. (1986). Predicting takeover targets: A methodological and empirical analysis. Journal of accounting and economics, 8(1), 3-35.
[31] Porter, M. E. (1985). Technology and competitive advantage. Journal of business strategy, 5(3), 60-78.
[32] Renneboog, L., & Vansteenkiste, C. (2019). Failure and success in mergers and acquisitions. Journal of Corporate Finance, 58, 650-699.
[33] Risberg, A. (2003). The merger and acquisition process. Journal of international business studies, 34(1), 1-34.
[34] Roztocki, N., & Needy, K. (1999). EVA for small manufacturing companies. Proceedings from the 1999 SAM International Management Conference, 461-469.
[35] Selva Birunda, S., & Kanniga Devi, R. (2021). A review on word embedding techniques for text classification. Innovative Data Communication Technologies and Application: Proceedings of ICIDCA 2020, 267-281.
[36] Sirower, M. L., & O′Byrne, S. F. (1998). The measurement of post‐acquisition performance: toward a value‐based benchmarking methodology. Journal of applied corporate finance, 11(2), 107-121.
[37] Wang, K., Du, H., Jia, R., & Jia, H. (2022). Performance Comparison of Bayesian Deep Learning Model and Traditional Bayesian Neural Network in Short-Term PV Interval Prediction. Sustainability, 14(19), 12683.
[38] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention networks for document classification. Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies, 1480-1489.
[39] Yao, L. J., Sutton, S. G., & Chan, S. H. (2009). Wealth creation from information technology investments using the EVA®. Journal of Computer Information Systems, 50(2), 42-48.
[40] 張晉嘉. (2008). 以類神經網路預測企業併購成敗 |