博碩士論文 110324028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.147.104.248
姓名 黃志揚(Chih-Yang Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 多孔材料的BET表面積測定:限制和改進
(BET Surface Area Determination for Porous Materials: Limitations and Improvements)
相關論文
★ 使用機器學習決定不鏽鋼耐腐蝕性的關鍵因素★ 二維凡德瓦材料和異質結構中熱傳輸的計算研究
★ 利用密度泛函理論探討鐵合金中間隙元素的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-30以後開放)
摘要(中) 金屬有機框架(metal-organic frameworks)等孔洞材料因其在氣體儲存、分離和催化等能源相關應用中的巨大潛力而引起了廣泛關注。 在金屬有機框架的各種特性中,其表面積對於評估該材料在這些應用(尤其是氣體儲存)中的能力至關重要。 Brunauer-Emmmett-Teller(BET)方法是測定多孔材料表面積的常用方法。 然而,近期文獻表示該方法會嚴重高估孔洞材料的表面積。為此開發替代方案來更準確地確定MOF的表面積仍然是此領域中的一個關鍵方向。在此研究中,通過系統地研究263種不同有機金屬框架的BET表面積,發現在等溫吸附曲線中的吸附量大幅上升與有機金屬框架之表面積高估相關。在選擇吸附量大幅上升後的吸附曲線所對應的線性區間來計算BET表面積,會使BET方法錯估材料的單層吸附量,從而導致高估表面積的情況。通過設置上限以避免BET方法選擇等溫吸附曲線中吸附量大幅上升後的線性區間,藉此來使BET方法能更準確地預測材料的表面積。
摘要(英) Porous materials such as metal-organic frameworks (MOFs) have drawn considerable attention owing to their great potential in energy-related applications such as gas storage, separations, and catalysis, etc. Among various properties of MOFs, their surface area is essential for evaluating their capability in those applications, especially gas storage. The Brunauer-Emmmett-Teller (BET) method is a commonly adopted approach to determining the surface area of porous materials. However, the method has been reported to result in largely overestimated surface areas. To this end, developing alternatives to more accurately determine the surface area of MOFs remains a critical direction in the community.
In this study, through systematically studying the BET surface areas of 263 diverse MOFs, a large loading jump in the adsorption uptake is found to correlate with the overestimation in the area prediction for MOFs, by selecting a linear region that is after the loading gap to calculate the BET surface area can lead to an overestimation of the monolayer capacity and, consequently, an overestimation of the surface area. To improve the accuracy of the BET method, an upper limit can be set to avoid selecting the linear region after the significant uptake of adsorption in the adsorption isotherm. By setting this upper limit, the accuracy of BET method can be enhanced.
關鍵字(中) ★ 孔洞材料
★ 有機金屬框架
★ BET方法
★ 表面積
關鍵字(英) ★ Porous material
★ Metal-organic framework
★ BET method
★ Surface area
論文目次 摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables ix
1 Introduction 1
1.1 Porous materials................................................................ 1
1.2 Metal-organic framework....................................................... 2
1.3 Surface area of porous materials ................................................ 3
1.4 BET method.................................................................... 4
1.5 Modification of BET methods for porous materials ............................. 5
1.6 Motivation ..................................................................... 6
2 Methods and Simulation Setting 8
2.1 Simulation methodology........................................................ 8
2.1.1 Grand Canonical Monte Carlo Simulation and RASPA .................. 8
2.1.2 Structures of metal-organic framework.................................. 9
2.1.3 Simulation settings...................................................... 9
2.2 BET method.................................................................... 10
2.2.1 SESAMI................................................................ 12
2.3 True monolayer area............................................................ 12
3 Results and Discussions 14
3.1 Examinations for BET surface area of porous materials ......................... 14
3.1.1 R2 of BET linear region................................................. 14
3.1.2 Length of BET linear region ............................................ 20
3.2 OverestimationofBET......................................................... 25
3.2.1 Loading gap ............................................................ 40
3.2.2 Combination of original BET area and new BET area ................... 49
4 Conclusions 52
5 Future work 54
Bibliography 55
參考文獻 1. Van Donk, S., Janssen, A. H., Bitter, J. H. & de Jong, K. P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews 45, 297–319 (2003).
2. Bhatia, S. Zeolite catalysts: principles and applications (CRC press, 2020).
3. Kuppler, R. J. et al. Potential applications of metal-organic frameworks. Coordination Chemistry Reviews 253, 3042–3066 (2009).
4. Wilmer, C. E. et al. Large-scale screening of hypothetical metal-organic frameworks. Nature Chemistry 4, 83–89 (2012).
5. Martin, R. L., Lin, L.-C., Jariwala, K., Smit, B. & Haranczyk, M. Mail-order metal-organic frame- works (MOFs): Designing isoreticular MOF-5 analogues comprising commercially available organic molecules. The Journal of Physical Chemistry C 117, 12159–12167 (2013).
6. Lin, R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. Exploration of porous metal-organic frame- works for gas separation and purification. Coordination Chemistry Reviews 378, 87–103 (2019).
7. Lin, R.-B., Xiang, S., Zhou, W. & Chen, B. Microporous metal-organic framework materials for gas separation. Chem 6, 337–363 (2020).
8. Reza, M. S. et al. Preparation of activated carbon from biomass and its’applications in water and gas purification, a review. Arab Journal of Basic and Applied Sciences 27, 208–238 (2020).
9. Marsh, H. & Reinoso, F. R. Activated carbon (Elsevier, 2006).
10. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).
11. Van Der Voort, P., Leus, K. & De Canck, E. Introduction to Porous Materials (John Wiley & Sons, 2019).
12. Ishizaki, K., Komarneni, S. & Nanko, M. Porous Materials: Process technology and applications (Springer science & business media, 2013).
13. Perego, C. & Millini, R. Porous materials in catalysis: challenges for mesoporous materials. Chem- ical Society Reviews 42, 3956–3976 (2013).
14. Choi, G.-G., Kurisingal, J. F., Chung, Y. G. & Park, D.-W. Two dimensional Zn-stilbenedicarboxylic acid (SDC) metal-organic frameworks for cyclic carbonate synthesis from CO2 and epoxides. Ko- rean Journal of Chemical Engineering 35, 1373–1379 (2018).
15. Alkordi, M. H., Liu, Y., Larsen, R. W., Eubank, J. F. & Eddaoudi, M. Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. Journal of the Amer- ican Chemical Society 130, 12639–12641 (2008).
16. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).
17. Bae, Y.-S. & Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angewandte Chemie International Edition 50, 11586–11596 (2011).
18. Kang, D. W. et al. Emerging porous materials and their composites for NH3 gas removal. Advanced Science 7, 2002142 (2020).
19. Khabazipour, M. & Anbia, M. Removal of hydrogen sulfide from gas streams using porous mate- rials: A review. Industrial & Engineering Chemistry Research 58, 22133–22164 (2019).
20. Zhou, J. & Wang, B. Emerging crystalline porous materials as a multifunctional platform for elec- trochemical energy storage. Chemical Society Reviews 46, 6927–6945 (2017).
21. Sun, M.-H. et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews 45, 3479–3563 (2016).
22. Wu, L., Li, Y., Fu, Z. & Su, B.-L. Hierarchically structured porous materials: Synthesis strategies and applications in energy storage. National sSience Review 7, 1667–1701 (2020).
23. Wu, Y. & Weckhuysen, B. M. Separation and purification of hydrocarbons with porous materials. Angewandte Chemie International Edition 60, 18930–18949 (2021).
24. Liu, X. et al. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. The Innovation 2, 100076 (2021).
25. Ren, H. et al. Synthesis of a porous aromatic framework for adsorbing organic pollutants applica- tion. Journal of Materials Chemistry 21, 10348–10353 (2011).
26. Samanta, P., Desai, A. V., Let, S. & Ghosh, S. K. Advanced porous materials for sensing, capture and detoxification of organic pollutants toward water remediation. ACS Sustainable Chemistry & Engineering 7, 7456–7478 (2019).
27. Morris, R. E. Grown into shape. Nature Chemistry 3, 347–348 (2011).
28. James, S. L. Metal-organic frameworks. Chemical Society Reviews 32, 276–288 (2003).
29. Karimi, M. et al. in Interface Science and Technology 279–387 (Elsevier, 2021).
30. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).
31. He, Y., Zhou, W., Qian, G. & Chen, B. Methane storage in metal-organic frameworks. Chemical Society Reviews 43, 5657–5678 (2014).
32. Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews 38, 1294–1314 (2009).
33. Glover, T. G., Peterson, G. W., Schindler, B. J., Britt, D. & Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chemical Engineering Science 66, 163–170 (2011).
34. Ding, L. & Yazaydin, A. O. Hydrogen and methane storage in ultrahigh surface area metal-organic frameworks. Microporous and Mesoporous Materials 182, 185–190 (2013).
35. Lyu, Q., Deng, X., Hu, S., Lin, L.-C. & Ho, W. W. Exploring the potential of defective UiO-66 as reverse osmosis membranes for desalination. The Journal of Physical Chemistry C 123, 16118– 16126 (2019).
36. Kim, R. et al. Surface-enhanced infrared detection of benzene in air using a porous metal-organic- frameworks film. Korean Journal of Chemical Engineering 36, 975–980 (2019).
37. Wu, M.-X. & Yang, Y.-W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Advanced Materials 29, 1606134 (2017).
38. Horcajada, P. et al. Metal-organic frameworks in biomedicine. Chemical Reviews 112, 1232–1268 (2012).
39. Goldsmith, J., Wong-Foy, A. G., Cafarella, M. J. & Siegel, D. J. Theoretical limits of hydrogen stor- age in metal-organic frameworks: opportunities and trade-offs. Chemistry of Materials 25, 3373– 3382 (2013).
40. Thomas, K. M. Hydrogen adsorption and storage on porous materials. Catalysis Today 120, 389– 398 (2007).
41. Qin, J., Chen, Q., Yang, C. & Huang, Y. Research process on property and application of metal porous materials. Journal of Alloys and Compounds 654, 39–44 (2016).
42. Sun, S., Li, H. & Xu, Z. J. Impact of surface area in evaluation of catalyst activity. Joule 2, 1024– 1027 (2018).
43. Leofanti, G., Padovan, M., Tozzola, G. & Venturelli, B. Surface area and pore texture of catalysts. Catalysis Today 41, 207–219 (1998).
44. Trickett, C. A. et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials 2, 1–16 (2017).
45. Domun, N. et al. Improving the fracture toughness and the strength of epoxy using nanomaterials-a review of the current status. Nanoscale 7, 10294–10329 (2015).
46. Osterrieth, J. W. et al. How reproducible are surface areas calculated from the BET equation? Advanced Materials 34, 2201502 (2022).
47. Cid, R., Arriagada, R. & Orellana, F. Zeolites surface area calculation from nitrogen adsorption data. Journal of Catalysis 80, 228–230 (1983).
48. Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87, 1051–1069 (2015).
49. Walton, K. S. & Snurr, R. Q. Applicability of the BET method for determining surface areas of microporous metal- organic frameworks. Journal of the American Chemical Society 129, 8552– 8556 (2007).
50. Parra, J., Sousa, J. D., Bansal, R. C., Pis, J. & Pajares, J. Characterization of activated carbons by the BET equation—an alternative approach. Adsorption Science & Technology 12, 51–66 (1995).
51. Adamson, A. W., Gast, A. P., et al. Physical chemistry of surfaces (Interscience publishers New York, 1967).
52. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. & Sing, K. S. Adsorption by powders and porous solids: principles, methodology and applications (Academic press, 2013).
53. Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60, 309–319 (1938).
54. Ambroz, F., Macdonald, T. J., Martis, V. & Parkin, I. P. Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods 2, 1800173 (2018).
55. Rouquerol, J., Llewellyn, P., Rouquerol, F., et al. Is the BET equation applicable to microporous adsorbents. Stud. Surf. Sci. Catal 160, 49–56 (2007).
56. Keii, T., Takagi, T. & Kanetaka, S. A new plotting of the BET method. Analytical Chemistry 33, 1965–1965 (1961).
57. Alinaghipour, B. & Falamaki, C. Modified BET theory for actual surfaces: implementation of sur- face curvature. Physical Chemistry Chemical Physics 25, 8424–8438 (2023).
58. Anderson, R. B. Modifications of the Brunauer, Emmett and Teller equation1. Journal of the Amer- ican Chemical Society 68, 686–691 (1946).
59. Pickett, G. Modification of the Brunauer—Emmett—Teller theory of multimolecular adsorption. Journal of the American Chemical Society 67, 1958–1962 (1945).
60. Zhang, D. & Luo, R. Modifying the BET model for accurately determining specific surface area and surface energy components of aggregates. Construction and Building Materials 175, 653–663 (2018).
61. Gómez-Gualdrón, D. A., Moghadam, P. Z., Hupp, J. T., Farha, O. K. & Snurr, R. Q. Application of consistency criteria to calculate BET areas of micro-and mesoporous metal-organic frameworks. Journal of the American Chemical Society 138, 215–224 (2016).
62. Bae, Y.-S., Yazaydın, A. Ö. & Snurr, R. Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. Langmuir 26, 5475–5483 (2010).
63. Chung, Y. G. et al. Computation-ready, experimental metal-organic frameworks: A tool to enable high-throughput screening of nanoporous crystals. Chemistry of Materials 26, 6185–6192 (2014).
64. Sinha, P. et al. Surface area determination of porous materials using the Brunauer-Emmett-Teller (BET) method: limitations and improvements. The Journal of Physical Chemistry C 123, 20195– 20209 (2019).
65. Frenkel, D. & Smit, B. Understanding molecular simulation: from algorithms to applications (El- sevier, 2001).
66. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21, 1087–1092 (1953).
67. Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications (1970).
68. Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation 42, 81–101 (2016).
69. Rappé, A. K., Casewit, C. J., Colwell, K., Goddard III, W. A. & Skiff, W. M. UFF, a full peri- odic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society 114, 10024–10035 (1992).
70. Poling, B. E., Prausnitz, J. M. & O’connell, J. P. Properties of gases and liquids (McGraw-Hill Education, 2001).
71. Fagerlund, G. Determination of specific surface by the BET method. Matériaux et Construction 6, 239–245 (1973).
指導教授 簡思佳(Szu-Chia Chien) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明