參考文獻 |
[1] Almeida, F., & Xexéo, G. (2019). Word embeddings: A survey. arXiv preprint arXiv:1901.09069.
[2] Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of finance, 23(4), 589-609.
[3] Arno, H., Mulier, K., Baeck, J., & Demeester, T. (2022). Next-year bankruptcy prediction from textual data: Benchmark and baselines. arXiv preprint arXiv:2208.11334.
[4] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
[5] Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 238-247.
[6] Beaver, W. H., Correia, M., & McNichols, M. F. (2012). Do differences in financial reporting attributes impair the predictive ability of financial ratios for bankruptcy? Review of Accounting Studies, 17, 969-1010.
[7] Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural network. International conference on machine learning, 1613-1622.
[8] Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Making words work: Using financial text as a predictor of financial events. Decision support systems, 50(1), 164-175.
[9] Demoulin, N. T., & Coussement, K. (2020). Acceptance of text-mining systems: The signaling role of information quality. Information & Management, 57(1), 103120.
[10] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[11] Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610.
[12] Gulcehre, C., Chandar, S., & Bengio, Y. (2017). Memory augmented neural networks with wormhole connections. arXiv preprint arXiv:1701.08718.
[13] Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build explainable AI systems for the medical domain? arXiv preprint arXiv:1712.09923.
[14] Huang, A. H., Wang, H., & Yang, Y. (2023). FinBERT: A large language model for extracting information from financial text. Contemporary Accounting Research, 40(2), 806-841.
[15] Jang, B., Kim, M., Harerimana, G., Kang, S.-u., & Kim, J. W. (2020). Bi-LSTM model to increase accuracy in text classification: Combining Word2vec CNN and attention mechanism. Applied Sciences, 10(17), 5841.
[16] Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695.
[17] Kim, A., & Yoon, S. (2021). Corporate bankruptcy prediction with domain-adapted BERT. EMNLP 2021, 3rd Workshop on ECONLP.
[18] Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques–A review. European Journal of Operational Research, 180(1), 1-28.
[19] Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015). From word embeddings to document distances. International conference on machine learning, 957-966.
[20] Li, C., Zhan, G., & Li, Z. (2018). News text classification based on improved Bi-LSTM-CNN. 2018 9th International Conference on Information Technology in Medicine and Education (ITME), 890-893.
[21] Liu, R., Mai, F., Shan, Z., & Wu, Y. (2020). Predicting shareholder litigation on insider trading from financial text: An interpretable deep learning approach. Information & Management, 57(8), 103387.
[22] Liwicki, M., Graves, A., Fernàndez, S., Bunke, H., & Schmidhuber, J. (2007). A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks. Proceedings of the 9th International Conference on Document Analysis and Recognition, ICDAR 2007.
[23] Lombardo, G., Pellegrino, M., Adosoglou, G., Cagnoni, S., Pardalos, P. M., & Poggi, A. (2022). Machine Learning for Bankruptcy Prediction in the American Stock Market: Dataset and Benchmarks. Future Internet, 14(8), 244.
[24] Mai, F., Tian, S., Lee, C., & Ma, L. (2019). Deep learning models for bankruptcy prediction using textual disclosures. European Journal of Operational Research, 274(2), 743-758.
[25] Mayew, W. J., Sethuraman, M., & Venkatachalam, M. (2015). MD&A disclosure and the firm′s ability to continue as a going concern. The Accounting Review, 90(4), 1621-1651.
[26] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
[27] Peris, A., & Casacuberta, F. (2015). A bidirectional recurrent neural language model for machine translation. Procesamiento del Lenguaje Natural(55), 109-116.
[28] Shridhar, K., Laumann, F., & Liwicki, M. (2019). A comprehensive guide to bayesian convolutional neural network with variational inference. arXiv preprint arXiv:1901.02731.
[29] Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The journal of business, 74(1), 101-124.
[30] Xia, Y., Chen, H., & Zimmermann, R. (2023). A Random Effect Bayesian Neural Network (RE-BNN) for travel mode choice analysis across multiple regions. Travel Behaviour and Society, 30, 118-134.
[31] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention networks for document classification. Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies, 1480-1489. |