博碩士論文 110426016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.118.33.239
姓名 郭逸涵(Yi-Han Kuo)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱
(An extended batch-oblivious approach for flexible Job shop with batching and material consumption when minimizing the total weighted material consumed and makespan)
相關論文
★ 以類神經網路探討晶圓測試良率預測與重測指標值之建立★ 六標準突破性策略—企業管理議題
★ 限制驅導式在製罐產業生產管理之應用研究★ 應用倒傳遞類神經網路於TFT-LCD G4.5代Cell廠不良問題與解決方法之研究
★ 限制驅導式生產排程在PCBA製程的運用★ 平衡計分卡規劃與設計之研究-以海軍後勤支援指揮部修護工廠為例
★ 木製框式車身銷售數量之組合預測研究★ 導入符合綠色產品RoHS之供應商管理-以光通訊產業L公司為例
★ 不同產品及供應商屬性對採購要求之相關性探討-以平面式觸控面板產業為例★ 中長期產銷規劃之個案探討 -以抽絲產業為例
★ 消耗性部品存貨管理改善研究-以某邏輯測試公司之Socket Pin為例★ 封裝廠之機台當機修復順序即時判別機制探討
★ 客戶危害限用物質規範研究-以TFT-LCD產業個案公司為例★ PCB壓合代工業導入ISO/TS16949品質管理系統之研究-以K公司為例
★ 報價流程與價格議價之研究–以機殼產業為例★ 產品量產前工程變更的分類機制與其可控制性探討-以某一手機產品家族為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 我們在彈性零工式排程問題(flexible job shop scheduling problem)下考慮材料分配(material assignment)與批次處理(batching)的問題。決定哪些組合的化學材料要裝載在哪個機器上就是材料分配。而彈性零工式排程問題裡特有的機台可行性(Machine eligibility)在我們的環境中不是預先決定好、不變的,會隨著材料分配而變化。我們使用一種extended batch oblivious conjunctive graph來同時在分離圖(conjunctive graph)上同時呈現材料分配與批次處理。並且多加了第二個弧屬性(arc attribute)來表示消耗的加權材料總和(sum of total weighted material consumed)、第三個弧屬性表示材料分配。通過這樣的處理,我們除了可以得到常見的以時間為基礎的關鍵路徑(critical path)外,還可以有另一種基於消耗的加權材料總和的關鍵路徑。並基於這兩種關鍵路徑來定義鄰域結構(neighborhood structure),以及引入重疊值(overlapping value)來幫助我們的搜索過程。我們還透過對移動(move)的估計函數(estimation function)將所以候選的移動(candidate moves)分類。還提出可以在兩條關鍵路徑與兩個目標中切換的搜索策略(search strategy)。實驗結果表明,我們可以通過搜索策略有效的使用兩種關鍵路徑,並配合有效的移動分類(move classification)來解決這種考慮材料分配的彈性零工式排程問題。
摘要(英) The studied problem considers material assignment and operation assignment simultaneously in a flexible job shop scheduling problem. The determination of a subset of materials loaded on a machine is the material assignment. Machine eligibility will change depending on the material
assignment, different from conventional constant machine eligibility. An extended batch oblivious conjunctive graph is used to simultaneously represent the decision on the operation sequencing,batching and the decision on the material assignment. On each arc of the conjunctive graph, we attach the second arc attribute to represent the sum of weighted material consumed and the third arc attribute to represent material assignment. By using the conjunctive graph proposed, besides the critical path we commonly see on the literature which is time-based, we can have another type of critical path which is based on the sum of weighted material consumed. We propose an integrated move for our bi-objective problem, based on the two types of critical path to define the neighborhood structure. An overlapping value is introduced for sorting out the sequence of operations which will steer our improvement procedure. A move classification based on estimation function under two
objectives is proposed to help select moves from candidates. A strategy alternately switching between objectives is proposed to provide a better diversification in the local search and give a better chance to find a good solution. The experimental results show that we can effectively use two types of critical paths by search strategy, and cooperate with effective move classification to solve this flexible job shop problem with material assignment.
關鍵字(中) ★ 彈性零工式排程問題
★ 材料分配
★ 區域搜尋法
關鍵字(英) ★ flexible job shop
★ material assignment
★ local search
論文目次 摘要 2
Abstract 3
1. Introduction 1
1.1. Research motivation and background 1
1.2. Problem description 4
1.3. Research objectives 5
1.4. Research methodology 5
2. Literature review 7
2.1. Flexible job shop scheduling problem 7
2.2. Neighborhood structure 9
2.3. Search strategy 10
3. An extended batch oblivious approach 12
3.1. Conjunctive graph representation for operation and material consumption 12
3.2. Initial solution 16
3.3. Integrated move 18
3.4. Lower bound 23
3.5. Search strategy 31
4. Computational result 33
4.1. Advantage of using two types of critical path 33
4.2. Analysis of the number of move classification 34
4.3. Analysis of steepest descent and lower bound 35
5. Conclusion 37
References 38
參考文獻 Aguirre A. M., Méndez C. A., Castro P. M., 2011. “A novel optimization method to automated wet-etch station scheduling in semiconductor manufacturing systems.” Computers & Chemical Engineering 35(12), 2960-2972.
Akhbari M., 2022. “Integration of multi-mode resource-constrained project scheduling under bonus-penalty policies with material ordering under quantity discount scheme for minimizing project cost.”. Scientia Iranica E 29(1), 427-446.
Bagheri A., Zandieh M., 2011. “Bi-criteria flexible job-shop scheduling with sequence-dependent setup times - Variable neighborhood search approach.”Journal of Manufacturing Systems 30, 8-15.
Bierwirth C., Kuhpfah J., 2017. “Extended GRASP for the Job Shop Scheduling Problem with Total Weighted Tardiness Objective.”. European Journal of Operational Research 261, 1-23.
Dauzère-Pérès S., Paulli J., 1997. “An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search.” Annals of Operations Research 70, 281-306.
De Giovanni L., Pezzella F., 2010. “An improved genetic algorithm for the distributed and flexible job-shop scheduling problem.” European journal of operational research 200(2), 395-408.
Deb K., Pratap A., Agarwal S, Meyarivan T, 2002. “A fast and elitist multiobjective genetic algorithm: NSGA-II.”, IEEE Transactions on Evolutionary Computation 6 (2), 182–197.
Garcia-Leon A. A., Dauzere-Peres S., Mati Y., 2019. “An efficient Pareto approach for solving the multi-objective flexible job-shop scheduling problem with regular criteria”. Computers and operations research 108, 187-200.
Geiger C. D., Kempf K. G., Uzsoy R., 1997. “A tabu search approach to scheduling an automated wet etch station.” Journal of Manufacturing Systems 16(2), 102-116.
González M. A., Vela C. R., Varela R., 2015. “Scatter search with path relinking for the flexible job shop scheduling problem.” European Journal of Operational Research 245(1), 35-45.
Ho N. B., Tay J. C., Lai E. M. K., 2007. “An effective architecture for learning and evolving flexible job-shop schedules.” European Journal of Operational Research 179(2), 316-333.
Knopp S., Dauzère-Pérès S., Yugma C., 2017. “A batch-oblivious approach for complex job-shop scheduling problems”. European Journal of Operational Research 263 (1), 50–61.
Kuhpfahl J., Bierwirth C., 2016. “A study on local search neighborhoods for the job shop scheduling problem with total weighted tardiness objective.” Computers & Operations Research 66, 44-57.
Mati Y., Dauzère-Pérès S., Lahlou C., 2011. “A general approach for optimizing regular criteria in the job-shop scheduling problem.” European Journal of Operational Research 212(1), 33-42.
Mönch L., Fowler J. W., Dauzère-Pérès S., Mason S. J., Rose O., 2011. “A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations.” Journal of scheduling 14(6), 583-599.
Mousakhani M., 2013. “Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness.” International Journal of Production Research 51.12, 3476-3487.
Niaki S. T. A., Najafi A. A., Zoraghi N., Abbasi B., 2015. “Resource constrained project scheduling with material ordering: Two hybridized meta-heuristic approaches.” International Journal of Engineering 28(6), 896-902.
Nowicki E., Smutnicki C., 1996. “A fast taboo search algorithm for the job shop problem.”, Management Science 42, 797–813.
Shen L., Buscher U., 2012. “Solving the serial batching problem in job shop manufacturing systems”. European journal of operational research 221, 14-26.
Shen L., Dauzère-Pérès S., Neufeld J. S., 2017. “Solving the Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times.” European journal of operational research 265, 503-516.
Tamssaouet K., Dauzère-Pérès S., Knopp S. et al., 2021. “Multiobjective Optimization for Complex Flexible Job-Shop Scheduling Problems”. European Journal of Operational Research 296, 1-30.
Uzsoy R., 1995. “Scheduling Batch Processing Machines with Incompatible Job Families.” International Journal of Production Research 33(10), 2685–2708.
Van Laarhoven PJM., 1988. “Theoretical and computational aspects of simulated annealing.” PhD thesis, Erasmus University Rotterdam.
Vilcot G., Billaut J. C., 2008. “A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem”. European journal of operational research 190, 389-411.
Yugma C., Dauzère-Pérès S., Artigues C., Derreumaux A., Sibille O., 2012. “A batching and scheduling algorithm for the diffusion area in semiconductor manufacturing.” International Journal of Production Research 50 (8), 2118–2132.
Zeballos L. J., Castro P. M., Méndez C. A., 2011. “Integrated Constraint Programming Scheduling Approach for Automated Wet-Etch Stations in Semiconductor Manufacturing.” Industrial & Engineering Chemistry Research Vol. 50, No. 3, 1705-1715.
Zoraghi N., Najafi A. A., AKHAVAN N. S. T., 2012. “An integrated model of project scheduling and material ordering: a hybrid simulated annealing and genetic algorithm.” Journal of Optimization in Industrial Engineering 10, 19-27.
Zoraghi N., Shahsavar A., Abbasi B., Peteghem V. V., 2017. “Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty policies.” TOP 25, 49-79.
指導教授 沈國基(Gwo-Ji Sheen) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明