博碩士論文 110223070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.226.177.25
姓名 藍尚文(Shang-Wen Lan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 一般式鉛鈣鈦礦太陽能電池之高分子電洞傳遞層之研究
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-25以後開放)
摘要(中) 鈣鈦礦太陽能電池(Perovskite Solar Cells, 簡稱PSCs)常用的電洞傳遞材料(HTM)有金屬氧化物、有機小分子、及有機高分子,其中有機高分子HTM具有高耐熱性、高疏水性、易製備成連續且高品質的薄膜等特性,可以提高PSC元件的光伏表現。本研究以實驗室自行合成的高分子P15做為電洞傳遞層(HTL)。P15是疏水性材料,鈣鈦礦是親水性材料,所以將P15旋塗至鈣鈦礦時會有界面不相容的問題,導致光電轉換效率(PCE)僅有15.08%,因此在P15及鈣鈦礦之間沉積一層兩性的高分子PDTON;或著將P15與PDTON混合後作為電洞傳遞層(HTL)。與純P15作為HTL時相比,PDTON做為界面層時P15的電洞遷移率為原本的1.5倍,PDTON與P15混合做為HTL時,電洞遷移率為原本的2.5倍;對應到PL及TRPL,PDTON做為界面層或與P15混合時皆有較低的螢光強度及載子壽命(1.79 ns減少至1.24及0.92 ns)。GIWAXS中顯示PDTON做為界面層或與P15混合時,接有較高的結晶度,代表高分子薄膜的品質較好。同時PDTON親水端的氧及氮也可與鈣鈦礦膜中配位未飽和的Pb2+作用,從FTIR中觀察到PDTON與PbI2混合後,其C-N及C-O鍵往低波數位移,從XPS中觀察到鈣鈦礦膜中鉛的4f電子的binding energy有往低能量位移0.2 eV,其缺陷密度也從5.56*10^15 cm^-3降低至1.54*10^15 cm^-3。以P15做為HTL並經由PDTON做界面修飾後所組裝的元件的最高光電轉換效率達15.92%,PDTON與P15混合做為HTL所組裝的元件的最高光電轉換效率達18.82%。P15做為HTL所組裝的元件未封裝放置於相對溼度20%、溫度30℃的環境下在經過22個小時後維持原效率的47%,而PDTON與P15混合做為HTL所組裝的元件經過22小時後維持原效率的59%, PDTON做為界面層並以P15做為HTL所組裝的元件經過22小時後維持原效率的59% 
摘要(英) Metal oxides, organic small molecules, and organic polymers are commonly used as hole transport materials (HTMs) for perovskite solar cells (PSCs). Among them, organic polymer HTMs have high thermal stability, hydrophobicity, and a continuous thin films can be easily formed, which can enhance the photovoltaic performance of PSCs. In this study, a D-A type conjugated polymer P15, developed by our laboratory, was used as the hole transport material (HTM) for regular PSCs.P15 is a hydrophobic material, while perovskite is a hydrophilic material.When P15 is spin-coated onto perovskite, there has an interface incompatibility issue, resulting in a low power conversion efficiency (PCE) of 15.08%. To solve this problem, a dual-function polymer called PDTON is deposited between P15 and perovskite to be an interface modification layer, or a mixture of P15 and PDTON was used as the HTL. Compared to using pure P15 as the HTL, the hole mobility of P15 was increased by 1.5 times when PDTON was used as the interface layer, and it increased by 2.5 times when P15 was mixed with PDTON as the HTL. Regarding photoluminescence (PL) and time-resolved photoluminescence (TRPL), both PDTON as the interface layer and the PDTON-P15 mixture exhibited lower fluorescence intensity and carrier lifetimes (reduced from 1.79 ns to 1.24 ns and 0.92 ns). GIWAXS analysis indicated higher crystallinity for the polymer films when PDTON was used as the interface layer or mixed with P15, suggesting improved film quality. However, the oxygen and nitrogen at the hydrophilic end of PDTON can coordinate with the unsaturated Pb2+ in the perovskite film. FTIR shows that after mixing with PbI2, the C-N and C-O bonds in PDTON shift to lower wavenumbers, and XPS shows that the binding energy of the Pb2+ 4f electrons in the perovskite film shifts to lower energy by 0.2 eV. As a result the defect density of perovskite film decreases from 5.56*10^15 cm^-3 to 3.11*10^15 cm^-3. Devices assembled with P15 as the HTL, modified with PDTON as the interface layer, achieved a maximum PCE of 15.92%, while devices assembled with a PDTON-P15 mixture as the HTL reached 18.82%. When exposed to an environment with 20% relative humidity and a temperature of 30°C for 22 hours, devices with P15 as the HTL maintained 47% of original efficiency, whereas devices with a PDTON-P15 mixture as the HTL maintained 59% of original efficiency, and those with PDTON as the interface layer and P15 as the HTL also maintained 59% of original efficiency. 
關鍵字(中) ★ 鈣鈦礦
★ 高分子
★ 電洞傳遞層
★ 混摻高分子
★ 界面修飾劑
關鍵字(英) ★ Perovskite
★ Polymer
★ Hole Transport Layer
★ Polymer Alloy
★ Interface Modifier
論文目次 摘要...i
Abstract...iii
Graphical Abstract...v
致謝...vi
目錄...vii
圖目錄...xv
表目錄...xxii
第一章、序論...1
1-1 前言...1
1-2 鈣鈦礦太陽能電池簡介...4
1-2-1 鈣鈦礦太陽能電池架構...4
1-2-2 一般式鈣鈦礦太陽能電池之工作原理...5
1-2-3 第一個將鈣鈦礦材料應用於太陽能電池的研究...6
1-2-4 最高效率的鈣鈦礦太陽能電池之研究...8
1-3 鈣鈦礦活性層的製備方法...9
1-3-1 一步驟合成法...9
1-3-2 兩步驟合成法製備鈣鈦礦膜...10
1-3-3 一步驟反溶劑法製備鈣鈦礦膜...12
1-4 一般式鈣鈦礦太陽能電池中的高分子電洞傳遞層...13
1-4-1 以高分子材料作為鈣鈦礦太陽能電池之電洞傳遞層...14
1-4-2 D-A type 共軛高分子電洞傳遞材料應用於PSC中最高效率之研究...16
1-4-3 作為一般式鈣鈦礦太陽能電池之高分子電洞傳遞層所須之性質...18
1-5 添加劑提高高分子膜之物理性質...19
1-5-1 以含DPI摻雜之高分子膜作為鈣鈦礦太陽能電池之電洞傳遞層...19
1-5-2 分子橋連接鈣鈦礦與電洞傳遞層...21
1-6 以界面修飾膜來提高所組裝元件之效率與穩定性...25
1-6-1 兼具電洞傳遞能力與修飾鈣鈦礦膜的小分子...25
1-6-2 用於電極緩衝層的兩性聚合物材料PDTON...27
1-7 研究動機...29
第二章、實驗部分...30
2-1 實驗藥品及儀器設備...30
2-1-1 藥品...30
2-1-2 高分子之結構與簡稱...32
2-1-3 儀器設備...35
2-2 一般式鈣鈦礦太陽能電池組裝步驟...36
2-2-1 藥品配製...36
2-2-2 元件組裝步驟...38
2-3 儀器原理、樣品製備及量測...42
2-3-1 熱蒸鍍系統(thermal evaporation system)...42
2-3-2 太陽光模擬器及光電轉換效率量測(Solar Simulator, DENSOKXL-500F及Keithley2400)...43
2-3-3.太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficiency (IPCE), Enlitech PVCS-I)...44
2-3-4.接觸角量測儀(Contact angle, Grandhand Ctag01)...45
2-3-5.超高解析場發射掃描式電子顯微鏡 (Ultra-High Resolution FE-SEM,Nova NanoSEM-230)...45
2-3-6.X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover)...47
2-3-7. XPS光電子能譜儀 (X-ray photoelectron spectroscopy)...48
2-3-8.光激發螢光光譜儀(Photoluminescence Spectrometer, Uni think Uni-RAM)...48
2-3-8-1.光激發光螢光光譜(PL)...48
2-3-8-2.時間解析光激發光螢光光譜(TRPL)...49
2-3-9.空間電荷限制電流量測...50
2-3-10.傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer, Jasco 4100)...51
2-3-11. 恆電位儀(Potentiostat, Metrohm Autolab PGSTAT30 )...52
第三章 結果與討論...53
3-1 P15高分子材料製備成電洞傳遞層的條件篩選...53
3-1-1 在鈣鈦礦膜上沉積不同高分子界面修飾劑再沉積上P15高分子膜,所組裝之元件的光伏參數...53
3-1-2 配製不同濃度DPI-TPFB摻雜的P15(簡稱DPI-TPFB@ P15)溶液來製備高分子膜做為電洞傳遞層所組裝之元件的光伏參數...55
3-1-3 不同轉速旋塗P15溶液,製備高分子膜做為電洞傳遞層組裝成元件測量元件的光伏參數...57
3-1-4 以不同旋轉時間塗佈 P15 高分子膜做為電洞傳遞層所組裝之元件的光伏參數...58
3-1-5 摻雜不同濃度DPI-TPFB配製P15溶液,製備成膜做為HTL,所組裝之元件的光伏參數...60
3-1-6 以不同時間曝氣 P15 高分子膜,做為電洞傳遞層,組裝成元件測量元件的光伏參數...61
3-1-7 添加不同重量PDTON至DPI-TPFB@P15中塗佈成膜,做為HTL所組裝之元件的光伏參數...63
3-1-8 P15、P15+PDTON、DPI@P15、PDTON/DPI@P15、DPI @P15+PDTON、 LiTFSi@P15、LiTFSi@Spiro-OMeTAD、PDTON/LiTFSi@Spiro-OMeTA、DPI@P3HT、PDTON/DPI@ P3HT作為HTL所組裝之元件的的光伏參數...65
3-2 DPI@P15、PDTON/DPI@P15、DPI@P15+PDTON、PDTON/ LiTFSi@Spiro-OMeTA、PDTON/DPI@P3HT做為電洞傳遞層所組裝之元件的IPCE...69
3-3 DPI@P15、PDTON/DPI@P15、DPI@P15+PDTON、PDTON/ LiTFSi@Spiro-OMeTA、PDTON/DPI@P3HT做為電洞傳遞層所組裝之元件的遲滯現象...71
3-4 以DPI@P15、PDTON/DPI@P15、DPI@P15+PDTON、PDTON/ LiTFSi@Spiro-OMeTA、PDTON/DPI@P3HT做為電洞傳遞層所組裝之元件的最大功率點輸出...72
3-5 以DPI@P15、PDTON/DPI@P15、DPI@P15+PDTON、PDTON/ LiTFSi@Spiro-OMeTA、PDTON/DPI@P3HT做為電洞傳遞層所組裝之元件在黑暗條件下的電阻及暗電流...75
3-6以DPI@P15、PDTON/DPI@P15、DPI@P15+PDTON、PDTON/ LiTFSi@Spiro-OMeTA、PDTON/DPI@P3HT做為電洞傳遞層所組裝之元件的大氣下長時間穩定性...77
3-7 鈣鈦礦膜上塗佈P15+PDTON或塗佈PDTON再沉積上P15、Spiro-OMeTAD或P3HT的光致螢光光譜(PL)及時間解析螢光光譜(TRPL)...79
3-8 鈣鈦礦膜上塗佈P15+PDTON或塗佈PDTON再沉積上P15、Spiro-OMeTAD的SEM剖面圖...81
3-9 DPI@P15、PDTON/DPI@P15、DPI@P15+PDTON、PDTON/Spiro-OMeTAD的電洞遷移率...83
3-10 PDTON與鈣鈦礦膜及P15相互作用的研究...86
3-10-1 在鈣鈦礦膜上有無塗佈PDTON的XPS能譜圖...86
3-10-2 PDTON及PbI2+PDTON的FTIR穿透光譜圖...86
3-10-3 在鈣鈦礦膜上有無塗佈PDTON的缺陷密度...88
3-10-4 高分子膜的光學性質探討...90
3-10-5 PDTON對高分子膜的結晶度及分子排列的影響...92
3-10-6 PSK、PDTON、DPI@P15、PDTON/DPI@P15、DPI@P15+PDTON的前置軌域能階圖...97
第四章 結論...102
參考資料...104
附錄...108
P15、PDTON及P15+PDTON的FTIR穿透光譜圖...108
參考文獻 1. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050.
2. Min, H., et al., Perovskite Solar Cells With Atomically Coherent Interlayers on SnO2 Electrodes. Nature, 2021. 598(7881): p. 444-450.
3. Chiang, C.-H., J.-W. Lin, and C.-G. Wu, One-Step Fabrication of A Mixed-Halide Perovskite Film for A High-Efficiency Inverted Solar Cell and Module. Journal of Materials Chemistry A, 2016. 4(35): p. 13525-13533.
4. Chiang, C.-H., Z.-L. Tseng, and C.-G. Wu, Planar Heterojunction Perovskite/PC71BM Solar Cells with Enhanced Open-Circuit Voltage via a (2/1)-Step Spin-Coating Process. Journal of Materials Chemistry A, 2014. 2(38): p. 15897-15903.
5. Chiang, C.-H., et al., The Synergistic Effect of H2O and DMF Towards Stable and 20% Efficiency Inverted Perovskite Solar Cells. Energy & Environmental Science, 2017. 10(3): p. 808-817.
6. Wu, C.-G., et al., High Efficiency Stable Inverted Perovskite Solar Cells Without Current Hysteresis. Energy & Environmental Science, 2015. 8(9): p. 2725-2733.
7. Chiang, C.-H. and C.-G. Wu, A Method for The Preparation of Highly Oriented MAPbI3 Crystallites for High-Efficiency Perovskite Solar Cells to Achieve an 86% Fill Factor. ACS nano, 2018. 12(10): p. 10355-10364.
8. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific reports, 2012. 2(1): p. 591.
9. Schulz, P., et al., Interface Energetics in Organo-Metal Halide Perovskite-Based Photovoltaic Cells. Energy & Environmental Science, 2014. 7(4): p. 1377-1381.
10. Hawash, Z., L.K. Ono, and Y. Qi, Moisture and Oxygen Enhance Conductivity of LiTFSI‐Doped Spiro‐MeOTAD Hole Transport Layer in Perovskite Solar Cells. Advanced Materials Interfaces, 2016. 3(13): p. 1600117.
11. Kasparavicius, E., et al., Long‐Term Stability of the Oxidized Hole‐Transporting Materials Used in Perovskite Solar Cells. Chemistry–A European Journal, 2018. 24(39): p. 9910-9918.
12. Yang, J., et al., Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ techniques. ACS nano, 2015. 9(2): p. 1955-1963.
13. Juarez-Perez, E.J., et al., Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer. Chemistry of Materials, 2016. 28(16): p. 5702-5709.
14. Wang, T., et al., Efficient Inverted Planar Perovskite Solar Cells Using Ultraviolet/Ozone‐Treated NiOx as the Hole Transport Layer. Solar RRL, 2019. 3(6): p. 1900045.
15. Rao, H., et al., A 19.0% Efficiency Achieved in CuOx-Based Inverted CH3NH3PbI3−xClx Solar Cells by an Effective Cl Doping Method. Nano Energy, 2016. 27: p. 51-57.
16. Sun, W., et al., Room-Temperature and Solution-Processed Copper Iodide as the Hole Transport Layer for Inverted Planar Perovskite Solar Cells. Nanoscale, 2016. 8(35): p. 15954-15960.
17. Arora, N., et al., Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%. Science, 2017. 358(6364): p. 768-771.
18. Gowri Manohari, A., et al., Inorganic Hole Transport Layers in Inverted Perovskite Solar Cells: A Review. Nano select, 2021. 2(6): p. 1081-1116.
19. Heo, J.H., et al., Efficient Inorganic–Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors. Nature Photonics, 2013. 7(6): p. 486-491.
20. Fu, Q., et al., Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2022. 144(21): p. 9500-9509.
21. Rombach, F.M., S.A. Haque, and T.J. Macdonald, Lessons Learned from Spiro-OMeTAD and PTAA in Perovskite Solar Cells. Energy & Environmental Science, 2021. 14(10): p. 5161-5190.
22. Zhang, H., et al., Ultraviolet-light induced H+ doping in polymer hole transport material for highly efficient perovskite solar cells. Materials Today Energy, 2022. 30: p. 101159.
23. Zheng, X., et al., Photoactivated p-doping of organic interlayer enables efficient perovskite/silicon tandem solar cells. ACS Energy Letters, 2022. 7(6): p. 1987-1993.
24. Xu, D., et al., Constructing Molecular Bridge for High-Efficiency and Stable Perovskite Solar Cells Based on P3HT. Nature Communications, 2022. 13(1): p. 7020.
25. Tan, Y., et al., Indolocarbazole-Core Linked Triphenylamine as an Interfacial Passivation Layer for Perovskite Solar Cells. Journal of materials chemistry. A, Materials for energy and sustainability, 2022. 1(13): p. 7173-7185.
26. Zhang, Q., et al., Toward a Universal Polymeric Material for Electrode Buffer Layers in Organic and Perovskite Solar Cells and Organic Light-Emitting Diodes. Energy & environmental science, 2018. 11(3): p. 682-691.
27. 楊庭菽, 合成應用於高分子太陽能電池的含苯並[1,2-b:4,5-b′]二噻吩為骨架之D-π-A共聚物, in 化學學系. 2017, 國立中央大學: 桃園縣. p. 178.
28. 張稟琛, 開發作為一般式鈣鈦礦太陽能電池電洞傳遞材料之D-A type高分子, in 化學學系. 2021, 國立中央大學: 桃園縣. p. 139.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2023-9-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明