參考文獻 |
[1] Chella M.A., Bihs H., Myrhaug D., Muskulus M., (2017) Breaking solitary waves and breaking wave forces on a vertically mounted slender cylinder over an impermeable sloping seabed, Journal of Ocean Engineering and Marine Energy 3, 1–19 (2017), doi.org/10.1007/s40722-016-0055-5
[2] Chu C-R, Chung C-H, Wu T-R, Wang C-Y. Numerical analysis of free surface flow over a submerged rectangular bridge deck. J. of Hydraulic Eng. ASCE. 2016; 142(12): doi.10.1061/(ASCE)HY.1943-7900.0001177.
[3] Chu C-R, Wu Y-R, Wang C-Y, Wu T-R. Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng. 2018; 167: 282-292. doi.org/10.1016/j.oceaneng. 2018.08.049.
[4] Chu C-R, Lin Y-A, Wu T-R, and Wang C-Y. Hydrodynamic force of circular cylinder close to the water surface. Computers and Fluids 2018; 171:154-165. doi.org/10.1016/ compfluid.2018.05.032.
[5] Chu C-R, Huynh L-E, Wu T-R. Large Eddy Simulation of the wave loads on submerged rectangular decks. Applied Ocean Research. 2022; 120:103051. doi.org/10.1016/j.apor. 2022.103051.
[6] Dong J, Xue L, Cheng K, Shi J, Zhang C. An experimental investigation of wave forces on a submerged horizontal plate over a simple slope. J. Mar. Sci. Eng. 2020; 8(7):507. doi.org/10.3390/jmse8070507.
[7] Hayatdavoodi, M., Ertekin, R.C., Seiffert B., (2014). Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I, Flat plate. Coastal Eng. 88, 194-209. doi.org/10.1016/j.coastaleng.2014.01.005.
[8] Hirt, C. W. and Nichols, B. D., (1981) Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39(1), 201-225.
[9] Huynh L-E, Chu C-R, Wu T-R. (2023) Hydrodynamic loads of the bridge decks in wave-current combined flows. Ocean Eng. 270, 113520. doi.org/10.1016/ j.oceaneng.2022.11352.
[10] Kuai Y. R., Zhou J, F., Duan J. L., Wang X. (2021) Numerical simulation of solitary wave forces on a vertical cylinder on a slope beach, China Ocean Eng., 2021, 35, 3, 317–331. doi.org/10.1007/s13344-021-0030-3
[11] Lau T. L., Ohmachi, T., Inoue S., Lukkunaprasit P. (2011) Experimental and numerical modeling of tsunami force on bridge decks. in Tsunami: a growing disaster edit M. Mokhtari, Rijeka, Croatia, 2011. doi.10.5772/23622
[12] Maruyama K, Tanaka Y., Kosa, K., Hosoda, A., Arikawa, T., Mizutani, N., Nakamura, T. (2013). Evaluation of tsunami force acting on bridge girders. The 13th East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), 11-13.
[13] O’Neil, J., Meneveau, C. (1997). Subgrid-scale stresses and their modelling in a turbulent plane wake. J. Fluid Mech. 349, 253-293. doi.org/10.1017/S0022112097006885.
[14] Padgett, J., DesRoches, R., Nielson, B., Yashinsky, M., Kwon, O.S., Burdette, N., Tavera, E. (2008). Bridge damage and repair costs from Hurricane Katrina. J. Bridge Eng. 13, 6-14. doi.org/10.1061/(ASCE)1084-0702(2008)13:1(6)
[15] Pope, S.B. (2000). Turbulent Flows. Cambridge, U.K., Cambridge University Press.
[16] Smagorinsky, J., (1963) General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Review, 91, 99-164.
[17] Troch, P., De Rouck, J. (1998). Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters. Coast. Eng. Proceedings of Conference, Copenhagen, Denmark. 1638-1649.
[18] Zhu, D., Dong Y. (2020) Experimental and 3D numerical investigation of solitary wave forces on coastal bridges. Ocean Engineering. 209 (2020) 107499, doi.org/10.1016/ j.oceaneng.2020.107499 |