博碩士論文 110322064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.135.213.83
姓名 陳孟賢(Meng-Hsien Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 在斜坡海岸矩形橋面板之波浪負載
(Hydrodynamic Loads of Rectangular Decks near a Sloped Beach)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-12-31以後開放)
摘要(中) 當波浪撞擊到海岸邊橋梁時,對橋面板產生的巨大衝擊力是設計海岸橋梁時必須考量的重要參數。本研究使用水槽模型實驗和數值模式來研究孤立波撞擊到在斜坡海岸旁矩形橋面板的波浪力,流場模擬採用大渦流模式,並利用流體體積法來計算自由水面的變化,模擬結果之波高變化與水槽實驗結果十分吻合。再利用一系列的數值模擬,探討波高、水深、潛沒比以及斜坡坡度對波浪沖擊力的影響。模擬結果顯示,隨著潛沒比降低,橋面板上方的碎波更為明顯,橋面板上方的動壓、波浪力與橋面上孤立波的波高成線性正比關係。在斜坡海岸案例中,溯升過程中的波浪沖擊力大於溯降的波浪荷載,且橋面板距離岸邊越近,受到斜坡的影響越大,橋面板所受的波浪荷載也越大。並可藉由無因次係數計算橋面板所受到的水平向和垂直向的波浪力,工程設計可以使用最大阻力係數CD = 0.58,升力係數CL = 0.45,彎矩係數Cm = -0.21來計算海岸橋樑所受到的波浪荷載。
摘要(英) This study utilizes laboratory experiments and a numerical model to investigate the wave loads of solitary waves on a rectangular bridge deck near a sloped beach. The flow fields and surface waves are simulated by a integrated model of Large Eddy Simulation (LES) and the Volume of Fluid (VOF) method. The simulation results compared favorably with experimental results of wave flumes. Subsequently, the numerical model is used to examine influences of wave height, water depth, submergence, and slope angle on the wave loads of the bridge deck by a series of numerical simulations. The simulation results revealed that as the submergence ratio decreases, wave breaking above the deck becomes more pronounced and the wave loads are linearly proportional to the wave height above the bridge deck. In the case of a sloped beach, wave load during the runup stage is larger than that during the rundown stage. Increasing proximity of the bridge deck to the shore results in a greater influence from the sloped beach, leading to larger wave loads acting on the bridge deck. The horizontal and vertical forces acting on the deck can be computed by a dimensionless force coefficients. The maximum drag coefficient CD = 0.58, lift coefficient CL = 0.45, and pitching moment coefficient Cm = -0.21 can be used to compute the wave loads of bridge decks in the coastal regions.
關鍵字(中) ★ 波浪負載
★ 橋面板
★ 大渦模式
★ 阻力係數
★ 升力係數
關鍵字(英) ★ Wave loads
★ Bridge deck
★ Sloped beach
★ Large Eddy Simulation model
★ Drag coefficient
★ Lift coefficient
論文目次 Abstract II
Contents III
Figure caption Ⅳ
Table caption Ⅸ
Chapter 1. Introduction 1
Chapter 2. Numerical Model 4
Chapter 3. Model Validation 8
3.1 Solitary Wave 8
3.2 Sloped beach 9
Chapter 4. Results and Discussion 10
4.1 Flat bed 10
4.2 Water depth 14
4.3 Beach Slope 16
4.4 Wave Height 17
Chapter 5. Conclusions 22
References 24
Tables 26
Figures 27
參考文獻 [1] Chella M.A., Bihs H., Myrhaug D., Muskulus M., (2017) Breaking solitary waves and breaking wave forces on a vertically mounted slender cylinder over an impermeable sloping seabed, Journal of Ocean Engineering and Marine Energy 3, 1–19 (2017), doi.org/10.1007/s40722-016-0055-5
[2] Chu C-R, Chung C-H, Wu T-R, Wang C-Y. Numerical analysis of free surface flow over a submerged rectangular bridge deck. J. of Hydraulic Eng. ASCE. 2016; 142(12): doi.10.1061/(ASCE)HY.1943-7900.0001177.
[3] Chu C-R, Wu Y-R, Wang C-Y, Wu T-R. Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng. 2018; 167: 282-292. doi.org/10.1016/j.oceaneng. 2018.08.049.
[4] Chu C-R, Lin Y-A, Wu T-R, and Wang C-Y. Hydrodynamic force of circular cylinder close to the water surface. Computers and Fluids 2018; 171:154-165. doi.org/10.1016/ compfluid.2018.05.032.
[5] Chu C-R, Huynh L-E, Wu T-R. Large Eddy Simulation of the wave loads on submerged rectangular decks. Applied Ocean Research. 2022; 120:103051. doi.org/10.1016/j.apor. 2022.103051.
[6] Dong J, Xue L, Cheng K, Shi J, Zhang C. An experimental investigation of wave forces on a submerged horizontal plate over a simple slope. J. Mar. Sci. Eng. 2020; 8(7):507. doi.org/10.3390/jmse8070507.
[7] Hayatdavoodi, M., Ertekin, R.C., Seiffert B., (2014). Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I, Flat plate. Coastal Eng. 88, 194-209. doi.org/10.1016/j.coastaleng.2014.01.005.
[8] Hirt, C. W. and Nichols, B. D., (1981) Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39(1), 201-225.
[9] Huynh L-E, Chu C-R, Wu T-R. (2023) Hydrodynamic loads of the bridge decks in wave-current combined flows. Ocean Eng. 270, 113520. doi.org/10.1016/ j.oceaneng.2022.11352.
[10] Kuai Y. R., Zhou J, F., Duan J. L., Wang X. (2021) Numerical simulation of solitary wave forces on a vertical cylinder on a slope beach, China Ocean Eng., 2021, 35, 3, 317–331. doi.org/10.1007/s13344-021-0030-3
[11] Lau T. L., Ohmachi, T., Inoue S., Lukkunaprasit P. (2011) Experimental and numerical modeling of tsunami force on bridge decks. in Tsunami: a growing disaster edit M. Mokhtari, Rijeka, Croatia, 2011. doi.10.5772/23622
[12] Maruyama K, Tanaka Y., Kosa, K., Hosoda, A., Arikawa, T., Mizutani, N., Nakamura, T. (2013). Evaluation of tsunami force acting on bridge girders. The 13th East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), 11-13.
[13] O’Neil, J., Meneveau, C. (1997). Subgrid-scale stresses and their modelling in a turbulent plane wake. J. Fluid Mech. 349, 253-293. doi.org/10.1017/S0022112097006885.
[14] Padgett, J., DesRoches, R., Nielson, B., Yashinsky, M., Kwon, O.S., Burdette, N., Tavera, E. (2008). Bridge damage and repair costs from Hurricane Katrina. J. Bridge Eng. 13, 6-14. doi.org/10.1061/(ASCE)1084-0702(2008)13:1(6)
[15] Pope, S.B. (2000). Turbulent Flows. Cambridge, U.K., Cambridge University Press.
[16] Smagorinsky, J., (1963) General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Review, 91, 99-164.
[17] Troch, P., De Rouck, J. (1998). Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters. Coast. Eng. Proceedings of Conference, Copenhagen, Denmark. 1638-1649.
[18] Zhu, D., Dong Y. (2020) Experimental and 3D numerical investigation of solitary wave forces on coastal bridges. Ocean Engineering. 209 (2020) 107499, doi.org/10.1016/ j.oceaneng.2020.107499
指導教授 朱佳仁 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明