博碩士論文 110827001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.137.220.120
姓名 吳名頎(Ming-Chi Wu)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 肺炎診斷導向之深度學習電腦斷層掃瞄影像分割
(Pneumonia-Oriented Deep Learning Semantic Segmentation for Chest Computed Tomography)
相關論文
★ 使用滾球篩選睡眠紡錘波檢測★ 利用深度學習產生去骨電腦斷層掃描血管造影改進椎動脈分割
★ 評估深度卷積神經網路用於檢測和分割Chest X-ray圖像中的鎖骨骨折★ 自然語言處理於病例情感分析分類器及句子相似度計算
★ 以圓柱採樣訓練深度神經網絡改進頭頸部電腦斷層掃描的骨骼偵測和分割★ 使用深度學習模型自動分割黑血磁共振腦血管管壁
★ 利用自然語言處理在胸腔X-Ray的自由文本病歷報告中標記識別心臟肥大的檔案和句子
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 胸部電腦斷層掃描是肺部疾病診斷的最重要的成像方式之一,肺部影像分割在電腦輔助分析和診斷過程中扮演至關重要的作用。由於深度學習模型在醫學影像解剖結構的語義分割方面的準確性已經達到了人類水平,我們提議使用經過訓練的深度學習模型來預測胸部電腦斷層切片中的肺部、肺炎感染區域和心臟位置。使用以肺炎診斷導向形式的3D影像視覺化透視人體結構繪製技術對語義分割結果進行總結和感染區域之視覺化。本次研究使用了五筆公開的胸腔電腦斷層資料集來訓練SE-ResNeXt50-FPN深度學習模型來訓練分割出胸腔電腦斷層中的肺部、感染區域和心臟位置。透過重疊率IoU與組內相關系數(ICC)的統計運算得出,模型在分割的結果上與專家所標記有很高的吻合度。我們將分割結果來生成肺炎導向的電腦輔助診斷地圖,該地圖是由3D的解剖結構的投影位置、肺總體積、和肺感染體積訊息組成,可用作為檢查胸部電腦斷層疑似肺部病變的位置指南,並可合併為診斷治療急性肺部疾病的快速分流演算法。
摘要(英) Computer tomography (CT) scanning of the chest is one of the most important imaging modalities available for pulmonary disease diagnosis. Lung segmentation plays a crucial step in the pipeline of computer-aided analysis and diagnosis. As deep learning models have achieved human-level accuracy in semantic segmentation of anatomical structures, we propose using trained deep learning models to segment lung, heart, and the infectious areas of pneumonia in chest CT scan slices. In this study, five publicly available thoracic CT data sets were used in training and testing a deep learning semantic segmentation model, SE-ResNeXt50-FPN, for the segmentation of lungs, infected regions, and heart locations in chest CT. The statistical analyses of intersect-over-union (IoU) overlapping scores, Bland-Altman plot, and intraclass correlation coefficients (ICC) demonstrated that the segmentation results of the model were highly consistent with the annotations marked by human experts. The semantic segmentation results were summarized and visualized using volume rendering technology to generate a pneumonia-oriented interpretation map consisting of both location and volume information that can be used as location guidance for inspecting suspected pulmonary lesions of chest CT and can possibly be combined into a rapid triage algorithm for treating acute pulmonary diseases.
關鍵字(中) ★ 胸腔電腦斷層掃描
★ 肺炎
★ 新冠肺炎
★ 語義分割
★ 深度學習
關鍵字(英) ★ chest computed tomography
★ pneumonia
★ COVID-19
★ semantic segmentation
★ deep learning
論文目次 中文摘要 i
Abstract ii
Table of contents iv
List of Tables v
List of Figures vi
Chapter 1 Introduction 1
Chapter 2 Related Work 4
2.1 Semantic Segmentation 4
2.2 Computer-aided Diagnosis (CAD) 4
2.3 Application of Anatomical Structure Segmentation 5
2.3.1 Lung and Infection Lung Segmentation 5
2.3.2 Heart Segmentation 6
2.4 Maximum Intensity Projection (MIP) 7
2.5 The Evolution of Deep Learning 8
Chapter 3 Data Preprocessing and Annotation 10
3.1 Chest CT dataset 10
3.2 Lung, Infection Lung and Heart Segmentation Labeling 12
3.2.1 Lung and Infection Lung Segmentation Labeling 13
3.2.2 Heart Segmentation Labeling 14
Chapter 4 SE-ResNeXt50-FPN Architecture 15
4.1 Backbone Network 16
4.2 Semantic Segmentation head 17
Chapter 5 Software Implementation and Experiment Design 19
5.1 Software Implementation 19
5.2 Experiment Design 19
5.2.1 SE-ResNeXt50-FPN for Lung and Infection Lung Segmentation (Experiment 1) 19
5.2.2 SE-ResNeXt50-FPN for Heart Segmentation (Experiment 2) 20
5.3 Evaluation and Statistical Analysis 22
5.4 Visualization 23
Chapter 6 Results 24
Chapter 7 Discussion 37
7.1 Cases with Poor Performance in Experiments 1 and 2 37
7.2 Data Annotation Limitations 39
7.3 Future Work 40
Chapter 8 Conclusion 42
References 43
參考文獻 [1] The Lancet. Emerging understandings of 2019-nCoV. Lancet. 2020 Feb 1;395(10221):311. doi: 10.1016/S0140-6736(20)30186-0. Epub 2020 Jan 24. PMID: 31986259; PMCID: PMC7134625.
[2] Sun, P., Qie, S., Liu, Z., Ren, J., & Xi, J. (2020). Clinical characteristics of 5732 patients with 2019-nCoV infection. Available at SSRN 3539664.
[3] Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020 Jan;25(3):2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045. Erratum in: Euro Surveill. 2020 Apr;25(14): Erratum in: Euro Surveill. 2020 Jul;25(30): Erratum in: Euro Surveill. 2021 Feb;26(5): PMID: 31992387; PMCID: PMC6988269.
[4] Böger B, Fachi MM, Vilhena RO, et al. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect Control. 2021 Jan;49(1):21-29. doi: 10.1016/j.ajic.2020.07.011. Epub 2020 Jul 10. PMID: 32659413; PMCID: PMC7350782.
[5] Dong D, Tang Z, Wang S, et al. The Role of Imaging in the Detection and Management of COVID-19: A Review. IEEE Rev Biomed Eng. 2021;14:16-29. doi: 10.1109/RBME.2020.2990959. Epub 2021 Jan 22. PMID: 32356760.
[6] Sharif PM, Nematizadeh M, Saghazadeh M, et al. Computed tomography scan in COVID-19: a systematic review and meta-analysis. Pol J Radiol. 2022 Jan 5;87:e1-e23. doi: 10.5114/pjr.2022.112613. PMID: 35140824; PMCID: PMC8814899.
[7] Bumm, R., Zaffino, P., Lasso, A., et al. (2023). From Voxels to Prognosis: AI-Driven Quantitative Chest CT Analysis Forecasts ICU Requirements in 81 COVID-19 Cases.
[8] Shi F, Wang J, Shi J, et al. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19. IEEE Rev Biomed Eng. 2021;14:4-15. doi: 10.1109/RBME.2020.2987975. Epub 2021 Jan 22. PMID: 32305937.
[9] K. Khan, M. Mauro and R. Leonardi, "Multi-class semantic segmentation of faces," 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 2015, pp. 827-831, doi: 10.1109/ICIP.2015.7350915.
[10] D. Feng et al., "Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges," in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1341-1360, March 2021, doi: 10.1109/TITS.2020.2972974.
[11] Li, J., Su, H., Zheng, X., et al. Study of a QueryPNet Model for Accurate Detection and Segmentation of Goose Body Edge Contours. Animals 2022, 12, 2653.
[12] Hatamizadeh, Ali, Demetri Terzopoulos, and Andriy Myronenko. "Edge-gated CNNs for volumetric semantic segmentation of medical images." arXiv preprint arXiv:2002.04207 (2020).
[13] Salih, O.; Viriri, S. Skin Lesion Segmentation Using Stochastic Region-Merging and Pixel-Based Markov Random Field. Symmetry 2020, 12, 1224.
[14] Luo, Dan, et al. "Deep learning for automatic image segmentation in stomatology and its clinical application." Frontiers in Medical Technology (2021): 68.
[15] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
[16] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, 2015.
[17] Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." IEEE transactions on pattern analysis and machine intelligence 40.4 (2017): 834-848.
[18] He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference on computer vision. 2017.
[19] Lin, Tsung-Yi, et al. "Feature pyramid networks for object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[20] Doi, Kunio. "Computer-aided diagnosis in medical imaging: historical review, current status and future potential." Computerized medical imaging and graphics 31.4-5 (2007): 198-211.
[21] Dromain, C., et al. "Computed-aided diagnosis (CAD) in the detection of breast cancer." European journal of radiology 82.3 (2013): 417-423.
[22] Mori Y, Kudo SE, Berzin TM, et al. Computer-aided diagnosis for colonoscopy. Endoscopy. 2017 Aug;49(8):813-819. doi: 10.1055/s-0043-109430. Epub 2017 May 24. PMID: 28561195; PMCID: PMC6193286.
[23] Suzuki K, Li F, Sone S, Doi K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging. 2005 Sep;24(9):1138-50. doi: 10.1109/TMI.2005.852048. PMID: 16156352.
[24] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Communications of the ACM 60.6 (2017): 84-90.
[25] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
[26] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.


[27] Hu S, Hoffman EA, Reinhardt JM. Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging. 2001 Jun;20(6):490-8. doi: 10.1109/42.929615. PMID: 11437109.
[28] Nakagomi, Keita, et al. "Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume." Medical image analysis 17.1 (2013): 62-77.
[29] Skourt, Brahim Ait, Abdelhamid El Hassani, and Aicha Majda. "Lung CT image segmentation using deep neural networks." Procedia Computer Science 127 (2018): 109-113.
[30] Saood, A., Hatem, I. COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet. BMC Med Imaging 21, 19 (2021). https://doi.org/10.1186/s12880-020-00529-5
[31] Larrey-Ruiz, J., Morales-Sánchez, J., Bastida-Jumilla, M.C. et al. Automatic image-based segmentation of the heart from CT scans. J Image Video Proc 2014, 52 (2014). https://doi.org/10.1186/1687-5281-2014-52
[32] Payer, Christian, et al. "Multi-label whole heart segmentation using CNNs and anatomical label configurations." Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers. Cham: Springer International Publishing, 2018.
[33] Tong, Qianqian, et al. "3D deeply-supervised U-net based whole heart segmentation." Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers 8. Springer International Publishing, 2018.
[34] Wang, Chengjia, et al. "A two-stage 3D Unet framework for multi-class segmentation on full resolution image." arXiv preprint arXiv:1804.04341 (2018).
[35] Hecht, Harvey S., et al. "2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the Society of Cardiovascular Computed Tomography and Society of Thoracic Radiology." Journal of cardiovascular computed tomography 11.1 (2017): 74-84.
[36] Zeleznik, R., Foldyna, B., Eslami, P. et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nat Commun 12, 715 (2021). https://doi.org/10.1038/s41467-021-20966-2
[37] Summerlin, D.; Willis, J.; Boggs, R.; Johnson, L.M.; Porter, K.K. Radiation Dose Reduction Opportunities in Vascular Imaging. Tomography 2022, 8, 2618-2638.
[38] Ebner, Lukas, et al. "Maximum-intensity-projection and computer-aided-detection algorithms as stand-alone reader devices in lung cancer screening using different dose levels and reconstruction kernels." American Journal of Roentgenology 207.2 (2016): 282-288.
[39] Kociński, Marek, et al. "Towards multi-scale personalized modeling of brain vasculature based on magnetic resonance image processing." 2017 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2017.
[40] Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[41] Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
[42] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).
[43] Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep learning." International conference on machine learning. PMLR, 2013.
[44] Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization." Journal of machine learning research 12.7 (2011).
[45] Ma, Jun, et al. "Toward data‐efficient learning: A benchmark for COVID‐19 CT lung and infection segmentation." Medical physics 48.3 (2021): 1197-1210. Download time: 2022/06/16
[46] MedSeg, a free online segmentation tool. Download time: 2022/08/24
http://medicalsegmentation.com/covid19/ (2020).
[47] Open Source Imaging Consortium (OSIC) Pulmonary Fibrosis Progression. https://www.kaggle.com/competitions/osic-pulmonary-fibrosis-progression/rules. Download time: 2022/09/19
[48] CT Lung & Heart & Trachea segmentation. Segmentation masks for CT scans from OSIC Pulmonary fibrosis progression Comp. Download time: 2022/09/19
https://www.kaggle.com/datasets/sandorkonya/ct-lung-heart-trachea-segmentation?fbclid=IwAR0Kedm9Alegtj4vHN49MBbRNWjDS5wZfUaGDBQQQYoIvyJ1_X9HVhCmBNs
[49] Shakouri, Shokouh, et al. "COVID19-CT-dataset: an open-access chest CT image repository of 1000+ patients with confirmed COVID-19 diagnosis." BMC Research Notes 14.1 (2021): 178. Download time: 2022/12/27
[50] SPIE-AAPM-NCI Lung Nodule Classification Challenge Dataset (SPIE-AAPM Lung CT Challenge). Download time: 2022/07/03
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=19039197
[51] Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020 Apr;20(4):425-434. doi: 10.1016/S1473-3099(20)30086-4. Epub 2020 Feb 24. PMID: 32105637; PMCID: PMC7159053.
[52] Kirillov, Alexander, et al. "A unified architecture for instance and semantic segmentation." (2017).
[53] H. Caesar, J. Uijlings, M. Maire, et al. The COCO 2017 Stuff Challenge.
http://presentations.cocodataset.org/COCO17-Stuff-Overview.pdf
[54] Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016 Jun;15(2):155-63. doi: 10.1016/j.jcm.2016.02.012. Epub 2016 Mar 31. Erratum in: J Chiropr Med. 2017 Dec;16(4):346. PMID: 27330520; PMCID: PMC4913118.
[55] Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307-10. PMID: 2868172.
[56] Huang A, Lee CW, Yang CY, Liu HM. Volume Visualization for Improving CT Lung Nodule Detection. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1035-1038. doi: 10.1109/EMBC.2019.8856849. PMID: 31946070.
指導教授 黃輝揚(Adam Huang) 審核日期 2023-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明