博碩士論文 110821013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.15.25.32
姓名 蔡晴雯(Ching-Wen Tsai)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 結合台灣本土脫鹵球菌與茭白筍殼生物炭進行三氯乙烯生物降解
(Combination of water bamboo husk biochar and Dehalococcoides mccartyi for trichloroethene biodegradation)
相關論文
★ 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色
★ TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡★ Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發
★ 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治
★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制★ 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討
★ 開發新穎性包埋Dehalococcoides mccartyi及Clostridium butyricum之長效脫氯膠體★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性
★ 以Lpp-OmpA工法建構新穎性基因工程菌強化鎘生物復育能力★ 建構脫鹵球菌與固氮菌共培養系統促進氮源缺乏環境下的還原脫氯作用
★ 硒代胱氨酸通過誘導人肝細胞癌中的 DNA 損傷和抑制 DNA 修復途徑來增強順鉑敏感性★ 轉錄體分析 Acetobacterium woodii 降解1,1,1-三氯乙烷機制並用以協助 Dehalococcoides進行還原脫氯
★ 以宏觀基因體分析新穎 Candidatus Dehalobacterium strain DLY 降解二氯甲烷機制★ 研究雙特松對HepG2細胞之DNA修復的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 三氯乙烯(TCE)是一種廣泛存在的污染物,因其持久性存在和顯著的致癌危險性而聞名。生物降解已成為移除三氯乙烯的首選方法,由於其成本低且環境友善性。然而,生物降解的效果可能受到各種環境因素的影響,例如營養源源供應不足,這可能阻礙微生物的活性,導致脫氯效果下降。所以本研究目標為提高TCE的降解效率,採用了一種協同方法,結合從台灣地下水中分離得到的Dehalococcoides mccartyi (Dhc.)菌株和茭白筍殼生物炭(BC)作為輔助吸附劑。生物炭在微生物降解系統中扮演提供營養物質、縮短污染物間的距離以及加速電子傳遞的功能,但不會改變原始微生物降解途徑。
本研究結果顯示,生物炭BC600 (1 g.L-1)在一天內對400 mole L-1的TCE表現出80%的去除效率,生物炭的去除效率與生物炭的用量呈現正相關。在本研究中發現,與僅有微生物(Micro)相比,添加生物炭可以顯著提高微生物的生物降解,加速移除環境中的三氯乙烯,在10天內微生物結合生物炭(Micro-BC)的協同系統完全去除了三氯乙烯,且在40天內,三氯乙烯被微生物完整代謝成終產物乙烯。為了評估生物炭對高濃度TCE(2000 mole L-1)的影響,我們證明添加生物炭可以縮短生物降解周期並提高降解效率,在第20天時效果顯著。而next generation sequence (NGS)的資料顯示,生物炭的添加可以選擇性增加或維持一些菌的生長,像Geobacter, Dehalococcoides, Peptoclostridium, Clostridium。共同處理系統具有在高污染濃度環境下使用的潛力,因為生物炭可以降低環境中污染物的毒性,提高微生物的存活率,並進一步提高污染物的去除效果。
摘要(英) Trichloroethylene (TCE) is a widely encountered pollutant known for its persistent nature and significant carcinogenic hazards. Biodegradation has gained prominence as the preferred approach due to its cost-effectiveness and environmental compatibility. Nevertheless, biodegradation can be hindered by various environmental factors, such as inadequate energy supply, which can impede the activity of microorganisms. This study aims to investigate a synergistic approach involving the use of Dehalococcoides mccartyi (Dhc.)isolated from Taiwan and water bamboo husk biochar(BC) as an assisting adsorbent for TCE removal. BC can enhance interaction with contaminants, provide nutrients, and promote electron transfer to improve TCE decomposition, although it would not change the pathway of degradation. The results show that BC600 (1 g.L-1) exhibited an 80% removal efficiency for TCE at 400 mole.L-1 within one day. The removal efficiency was significantly dose-dependent. Compared with only microorganisms (Micro), biodegradation efficiency could be profoundly promoted by the addition of biochar. The addition of BC resulted in the complete removal of TCE within 10 days. After 40 days, TCE was completely converted to ethene in coupled with Dhc. and BC group (Micro-BC).To evaluate the effects of the biochar on a high concentration of TCE (2000 mole L-1), we proved that the addition of biochar could shorten the biodegradation period and boost degradation efficiency at day 20. The next generation sequence (NGS) data revealed that biochar addition could selectively increase or maintain the growth of some bacteria such as Geobacter, Dehalococcoides, Peptoclostridium, Clostridium A Micro-BC coupled system has the potential to be used in situations with high concentrations of pollution due to biochar′s ability to lower the toxicity of pollutants in groundwater, increase the survival rate of microorganisms, and further improve removal effectiveness.
關鍵字(中) ★ 三氯乙烯
★ 生物炭
★ 生物降解
★ 菌相分析
關鍵字(英) ★ Trichloroethylene
★ Biochar
★ Biodegradation
★ Microbial community analysis
論文目次 圖書館學位論文授權書 i
延後公開申請書 ii
推薦書 iii
審定書 iv
致謝 v
摘要 vi
Abstract vii
目錄 ix
圖目綠 xi
第壹章 緒論 (Introduction) 1
1.1 多氯乙烯的介紹以及其危害 1
1.2 多氯乙烯污染地下水整治工法 2
1.2.1 化學整治 2
1.2.2 物理整治 2
1.2.3 生物整治 2
1.3 多氯乙烯厭氧生物整治-台灣本土脫鹵球菌 3
1.4 生物炭 4
1.4.1生物炭之於三氯乙烯的整治 4
1.4.2 生物炭背景介紹 5
1.4.3 生物炭之基本特性 5
1.4.4 生物炭結合生物整治 6
第貳章 研究目的 7
第參章 實驗材料與方法(Material & method) 9
3.1絕對厭氧技術 9
3.2 菌株繼代培養與保存 9
3.2.1菌種 9
3.2.2菌種 10
3.3 生物炭選擇 10
3.4 生物炭的吸附測試 11
3.5 生物降解試驗 11
3.7即時定量連鎖聚合酶反應 (Real-time quantitative polymerase chain reaction, qPCR) 12
3.8氣相層析儀 (Gas Chromatography)檢測多氯乙烯及其代謝物 13
3.9 掃描式電子顯微鏡(Scanning Electron Microscope , SEM) 13
3.10 次世代定序(Next Generation Sequencing , NGS) 14
3.11 菌相分析 14
第肆章 實驗結果 (Result) 16
4.1 生物炭對於三氯乙烯的吸附以及其物化特性 16
4.2 生物炭提升脫鹵球菌之生物降解 17
4.3對於生物降解之副產物乙烯的吸附 19
4.4 生物炭添加對於菌群的影響 19
4.5生物炭減緩三氯乙烯對於微生物的毒性抑制 20
第伍章 討論 (Discussion) 21
5.1 生物炭能夠有效吸附三氯乙烯以及氯乙烯 21
5.2生物炭能夠提升微生物提高脫率效果 22
5.3生物炭對於菌相的影響 24
第陸章 結論 (Conclusion) 26
參考文獻 (Reference) 27
附加資料 (Supplemental file)…………………..………………………………...49
參考文獻 Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., Lee, S.-E., & Ok, Y. S. (2013). Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 143, 615-622.
Aktaş, Ö., Schmidt, K. R., Mungenast, S., Stoll, C., & Tiehm, A. (2012). Effect of chloroethene concentrations and granular activated carbon on reductive dechlorination rates and growth of Dehalococcoides spp. Bioresource Technology, 103(1), 286-292.
Côrtes, L., Druzian, S., Streit, A., Godinho, M., Perondi, D., Collazzo, G., Oliveira, M., Cadaval Jr, T., & Dotto, G. (2019). Biochars from animal wastes as alternative materials to treat colored effluents containing basic red 9. Journal of Environmental Chemical Engineering, 7(6), 103446.
Chen, H., Li, D., Mašek, O., Zhai, Y., Rong, G., Xu, X., Cao, X., & Zhao, L. (2022). Simultaneous dissipation of trichloroethene and arsenic from co-contaminated groundwater by coupling biodechlorination and biodetoxification with assistance of biochar. Biochar, 4(1), 69.
Chen, X., Wu, B., Yang, W., Zhao, G., Han, J., Huang, C., Sun, B., Wang, A., & Li, Z. (2023). Biochar as a multifunctional material facilitate the organohalide remediation: A state-of-the-art review. Chemical Engineering Journal, 141700.
Cui, L., Yan, J., Yang, Y., Li, L., Quan, G., Ding, C., Chen, T., Fu, Q., & Chang, A. (2013). Influence of Biochar on Microbial Activities of Heavy Metals Contaminated Paddy Fields. BioResources, 8(4).
Della Puppa, L., Ducousso, M., Batisse, N., Dubois, M., Verney, V., Xavier, V., & Delor-Jestin, F. (2020). Poplar wood and tea biochars for trichloroethylene remediation in pure water and contaminated groundwater. Environmental Challenges, 1, 100003.
Dong, H., Zhang, C., Hou, K., Cheng, Y., Deng, J., Jiang, Z., Tang, L., & Zeng, G. (2017). Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution. Separation and Purification Technology, 188, 188-196.
Dorsey, E., Zafar, M., Lettenberger, S. E., Pawlik, M. E., Kinel, D., Frissen, M., Schneider, R. B., Kieburtz, K., Tanner, C. M., & De Miranda, B. R. (2023). Trichloroethylene: An Invisible Cause of Parkinson’s Disease? Journal of Parkinson′s Disease, 13(2), 203-218.
Dutta, N., Usman, M., Ashraf, M. A., Luo, G., & Zhang, S. (2022). Efficacy of emerging technologies in addressing reductive dechlorination for environmental bioremediation: A Review. Journal of Hazardous Materials Letters, 100065.
Elkhlifi, Z., Iftikhar, J., Sarraf, M., Ali, B., Saleem, M. H., Ibranshahib, I., Bispo, M. D., Meili, L., Ercisli, S., & Torun Kayabasi, E. (2023). Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: a review. Sustainability, 15(3), 2527.
Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater treatment—conversion technologies and applications. Applied Sciences, 10(10), 3492.
Guo, Z., Zhou, H., Yin, H., Wei, X., & Dang, Z. (2022). Functional bacterial consortium responses to biochar and implications for BDE-47 transformation: Performance, metabolism, community assembly and microbial interaction. Environmental Pollution, 313, 120120.
Haldar, S., & Ghosh, A. (2020). Microbial and plant-assisted heavy metal remediation in aquatic ecosystems: a comprehensive review. 3 Biotech, 10(5), 205.
Han, X., Hu, H., Shi, X., Zhang, L., & He, J. (2017). Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil. Chemosphere, 172, 286-293.
He, M., Xiong, X., Wang, L., Hou, D., Bolan, N. S., Ok, Y. S., Rinklebe, J., & Tsang, D. C. (2021). A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. Journal of Hazardous Materials, 414, 125378.
Holmes, V. F., He, J., Lee, P. K., & Alvarez-Cohen, L. (2006). Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Applied and Environmental Microbiology, 72(9), 5877-5883.
Imron, M. F., Kurniawan, S. B., Ismail, N. I., & Abdullah, S. R. S. (2020). Future challenges in diesel biodegradation by bacteria isolates: a review. Journal of Cleaner Production, 251, 119716.
Jayakumar, A., Wurzer, C., Soldatou, S., Edwards, C., Lawton, L. A., & Mašek, O. (2021). New directions and challenges in engineering biologically-enhanced biochar for biological water treatment. Science of The Total Environment, 796, 148977.
Jenjaiwit, S., Supanchaiyamat, N., Hunt, A. J., Ngernyen, Y., Ratpukdi, T., & Siripattanakul-Ratpukdi, S. (2021). Removal of triclocarban from treated wastewater using cell-immobilized biochar as a sustainable water treatment technology. Journal of Cleaner Production, 320, 128919.
Johnravindar, D., Patria, R. D., Lee, J. T., Zhang, L., Tong, Y. W., Wang, C.-H., Ok, Y. S., & Kaur, G. (2021). Syntrophic interactions in anaerobic digestion: how biochar properties affect them? Sustainable Environment, 7(1), 1945282.
Kurniawan, T. A., Othman, M. H. D., Liang, X., Goh, H. H., Gikas, P., Chong, K.-K., & Chew, K. W. (2023). Challenges and opportunities for biochar to promote circular economy and carbon neutrality. Journal of Environmental Management, 332, 117429.
Lang, Y., Yu, Y., Zou, H., Ye, J., & Zhang, S. (2022). Performance and Mechanisms of Sulfidated Nanoscale Zero-Valent Iron Materials for Toxic TCE Removal from the Groundwater. International Journal of Environmental Research and Public Health, 19(10), 6299.
Lefèvre, E., Bossa, N., Gardner, C. M., Gehrke, G. E., Cooper, E. M., Stapleton, H. M., Hsu-Kim, H., & Gunsch, C. K. (2018). Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A. Water Research, 128, 102-110.
Li, D., Zhong, Y., Zhu, X., Wang, H., Yang, W., Deng, Y., & Huang, W. (2021). Reductive degradation of chlorinated organophosphate esters by nanoscale zerovalent iron/cetyltrimethylammonium bromide composites: Reactivity, mechanism and new pathways. Water Research, 188, 116447.
Li, T., Wen, J., Li, B., Ding, S., & Wang, W. (2021). Biological effects of tourmaline treatment on Dehalococcoides spp. during the reductive dechlorination of trichloroethylene. RSC advances, 11(20), 12086-12094.
Li, X., Song, Y., Yao, S., Bian, Y., Gu, C., Yang, X., Wang, F., & Jiang, X. (2019). Can biochar and oxalic acid alleviate the toxicity stress caused by polycyclic aromatic hydrocarbons in soil microbial communities? Science of The Total Environment, 695, 133879.
Liu, S.-H., Lin, H.-H., Lai, C.-Y., Lin, C.-W., Chang, S.-H., & Yau, J.-T. (2019). Microbial community in a pilot-scale biotrickling filter with cell-immobilized biochar beads and its performance in treating toluene-contaminated waste gases. International Biodeterioration & Biodegradation, 144, 104743.
Liu, Y., Chen, H., Zhao, L., Li, Z., Yi, X., Guo, T., & Cao, X. (2021). Enhanced trichloroethylene biodegradation: Roles of biochar-microbial collaboration beyond adsorption. Science of The Total Environment, 792, 148451.
Lonappan, L., Rouissi, T., Brar, S. K., Verma, M., & Surampalli, R. Y. (2018). An insight into the adsorption of diclofenac on different biochars: mechanisms, surface chemistry, and thermodynamics. Bioresource Technology, 249, 386-394.
Lou, L., Yao, L., Cheng, G., Wang, L., He, Y., & Hu, B. (2015). Application of rice-straw biochar and microorganisms in nonylphenol remediation: adsorption-biodegradation coupling relationship and mechanism. PloS One, 10(9), e0137467.
Lyu, H., Tang, J., Shen, B., & Siddique, T. (2018). Development of a novel chem-bio hybrid process using biochar supported nanoscale iron sulfide composite and Corynebacterium variabile HRJ4 for enhanced trichloroethylene dechlorination. Water Research, 147, 132-141.
Ma, J., Xie, M., Zhao, N., Wang, Y., Lin, Q., Zhu, Y., Chao, Y., Ni, Z., & Qiu, R. (2023). Enhanced trichloroethylene biodegradation: The mechanism and influencing factors of combining microorganism and carbon‑iron materials. Science of The Total Environment, 162720.
Maphosa, F., de Vos, W. M., & Smidt, H. (2010). Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends In Biotechnology, 28(6), 308-316.
Mikkonen, A., Yläranta, K., Tiirola, M., Dutra, L. A. L., Salmi, P., Romantschuk, M., Copley, S., Ikäheimo, J., & Sinkkonen, A. (2018). Successful aerobic bioremediation of groundwater contaminated with higher chlorinated phenols by indigenous degrader bacteria. Water Research, 138, 118-128.
Miller, T. L., & Wolin, M. (1974). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Applied Microbiology, 27(5), 985-987.
Mogrovejo, M. Strategies for Complete Degradation of Tetrachloroethylene to Minimize Accumulation of Toxic Vinyl Chloride.
Mukherjee, S., Sarkar, B., Aralappanavar, V. K., Mukhopadhyay, R., Basak, B. B., Srivastava, P., Marchut-Mikołajczyk, O., Bhatnagar, A., Semple, K. T., & Bolan, N. (2022). Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. Environmental Pollution, 119609.
Muter, O. (2023). Current Trends in Bioaugmentation Tools for Bioremediation: A Critical Review of Advances and Knowledge Gaps. Microorganisms, 11(3), 710.
Najmanová, P., Steinová, J., Czinnerová, M., Němeček, J., Špánek, R., Knytl, V., & Halecký, M. (2022). Thermally Enhanced Biodegradation of TCE in Groundwater. Water, 14(21), 3456.
Nijenhuis, I., Stollberg, R., & Lechner, U. (2018). Anaerobic microbial dehalogenation and its key players in the contaminated Bitterfeld-Wolfen megasite. FEMS microbiology ecology, 94(4). https://doi.org/10.1093/femsec/fiy012
Palaniveloo, K., Amran, M. A., Norhashim, N. A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chian-Yee, M. G., & Jing-Yi, L. (2020). Food waste composting and microbial community structure profiling. Processes, 8(6), 723.
Panahi, H. K. S., Dehhaghi, M., Ok, Y. S., Nizami, A.-S., Khoshnevisan, B., Mussatto, S. I., Aghbashlo, M., Tabatabaei, M., & Lam, S. S. (2020). A comprehensive review of engineered biochar: production, characteristics, and environmental applications. Journal of Cleaner Production, 270, 122462.
Pant, P., & Pant, S. (2010). A review: Advances in microbial remediation of trichloroethylene (TCE). Journal of Environmental Sciences, 22(1), 116-126.
Pereira, F. L., Oliveira Júnior, C. A., Silva, R. O., Dorella, F. A., Carvalho, A. F., Almeida, G. M., Leal, C. A., Lobato, F. C., & Figueiredo, H. C. (2016). Complete genome sequence of Peptoclostridium difficile strain Z31. Gut pathogens, 8(1), 1-7.
Plessl, K., Russ, A., & Vollprecht, D. (2022). Application and development of zero-valent iron (ZVI) for groundwater and wastewater treatment. International Journal of Environmental Science and Technology, 1-16.
Pretto, P., Sanseverino, I., Demichelis, F., Lotti, F., Lahm, A., Garcia Perez, A., Ricci, R., & Lettieri, T. (2022). Bioremediation of a Polluted Groundwater: Microbial Community Comparison of Treated and Untreated Aquifer through Next Generation Sequencing. Water, 14(16), 2456.
Qin, H., Zha, T., Qian, K., Sun, Y., Guan, X., & Chen, C. (2023). Efficient full dechlorination of chlorinated ethenes on single enzyme-like Co− N4 sites in nitrogen-doped carbons. Applied Catalysis B: Environmental, 328, 122459.
Radhakrishnan, A., Balaganesh, P., Vasudevan, M., Natarajan, N., Chauhan, A., Arora, J., Ranjan, A., Rajput, V. D., Sushkova, S., & Minkina, T. (2023). Bioremediation of Hydrocarbon Pollutants: Recent Promising Sustainable Approaches, Scope, and Challenges. Sustainability, 15(7), 5847.
Rossi, M. M., Matturro, B., Amanat, N., Rossetti, S., & Petrangeli Papini, M. (2022). Coupled adsorption and biodegradation of trichloroethylene on biochar from pine wood wastes: A combined approach for a sustainable bioremediation strategy. Microorganisms, 10(1), 101.
Schneidewind, U., Haest, P. J., Atashgahi, S., Maphosa, F., Hamonts, K., Maesen, M., Calderer, M., Seuntjens, P., Smidt, H., & Springael, D. (2014). Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources. Journal Of Contaminant Hydrology, 157, 25-36.
Schreiter, I. J., Schmidt, W., & Schüth, C. (2018). Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single-and bi-solute experiments. Chemosphere, 203, 34-43.
Sharma, I. (2020). Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In Trace Metals In The Environment-New Approaches And Recent Advances. IntechOpen.
Suhaimi, N., Kooh, M. R. R., Lim, C. M., Chou Chao, C.-T., Chou Chau, Y.-F., Mahadi, A. H., Chiang, H.-P., Haji Hassan, N. H., & Thotagamuge, R. (2022). The use of gigantochloa bamboo-derived biochar for the removal of methylene blue from aqueous solution. Adsorption Science & Technology, 2022, 1-12.
Sun, T., Levin, B. D., Guzman, J. J., Enders, A., Muller, D. A., Angenent, L. T., & Lehmann, J. (2017). Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications, 8(1), 14873.
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215.
van der Zaan, B., Hannes, F., Hoekstra, N., Rijnaarts, H., de Vos, W. M., Smidt, H., & Gerritse, J. (2010). Correlation of Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenase genes with geochemical conditions in chloroethene-contaminated groundwater. Applied and Environmental Microbiology, 76(3), 843-850.
Wang, C., Chen, D., Shen, J., Yuan, Q., Fan, F., Wei, W., Li, Y., & Wu, J. (2021). Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agriculture, Ecosystems & Environment, 311, 107291.
Wang, J., & Yin, Y. (2021). Clostridium species for fermentative hydrogen production: An overview. International Journal of Hydrogen Energy, 46(70), 34599-34625.
Wang, Z., Yang, Z., Fagerlund, F., Zhong, H., Hu, R., Niemi, A., Illangasekare, T., & Chen, Y.-F. (2022). Pore-Scale Mechanisms of Solid Phase Emergence During DNAPL Remediation by Chemical Oxidation. Environmental Science & Technology, 56(16), 11343-11353.
Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil, 300(1), 9-20. https://doi.org/10.1007/s11104-007-9391-5
Wu, C., Zhi, D., Yao, B., Zhou, Y., Yang, Y., & Zhou, Y. (2022). Immobilization of microbes on biochar for water and soil remediation: A review. Environmental Research, 212, 113226.
Yang, Y., Xu, M., He, Z., Guo, J., Sun, G., & Zhou, J. (2013). Microbial electricity generation enhances decabromodiphenyl ether (BDE-209) degradation. PloS One, 8(8), e70686.
Yao, X., Ji, L., Guo, J., Ge, S., Lu, W., Cai, L., Wang, Y., Song, W., & Zhang, H. (2020). Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresource Technology, 302, 122842.
Yu, L., Yuan, Y., Tang, J., Wang, Y., & Zhou, S. (2015). Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Scientific Reports, 5(1), 16221.
Yuan, D., Yuan, H., He, X., Hu, H., Qin, S., Clough, T., Wrage-Mönnig, N., Luo, J., He, X., & Chen, M. (2021). Identification and verification of key functional groups of biochar influencing soil N 2 O emission. Biology and Fertility of Soils, 57, 447-456.
Zhang, X., Cheng, X., Lei, B., Zhang, G., Bi, Y., & Yu, Y. (2021). A review of the transplacental transfer of persistent halogenated organic pollutants: Transfer characteristics, influential factors, and mechanisms. Environment international, 146, 106224.
Zhang, X., Gong, Z., Allinson, G., Li, X., & Jia, C. (2022). Joint effects of bacterium and biochar in remediation of antibiotic-heavy metal contaminated soil and responses of resistance gene and microbial community. Chemosphere, 299, 134333.
Zhao, L., Xiao, D., Liu, Y., Xu, H., Nan, H., Li, D., Kan, Y., & Cao, X. (2020). Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater. Water Research, 172, 115494.
Zhao, N., Liang, D., Liu, H., Meng, S., & Li, X. (2023). Efficient H2 production in a novel separator electrode assembly (SEA) microbial electrolysis cell. Chemical Engineering Journal, 451, 138561.
Zhao, S., & He, J. (2019). Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G. FEMS Microbiology ecology, 95(1), fiy209.
Zhou, J., Chen, H., Thring, R. W., & Arocena, J. M. (2019). Chemical pretreatment of rice straw biochar: effect on biochar properties and hexavalent chromium adsorption. International Journal of Environmental Research, 13, 91-105.
Zhu, X., Li, J., Xie, B., Feng, D., & Li, Y. (2020). Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2, 4-D. Chemical Engineering Journal, 391, 123605.
指導教授 陳師慶(Ssu-Ching Chen) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明