參考文獻 |
[1] Thompson, S. E., & Parthasarathy, S. (2006). Moore′s law: the future of Si microelectronics. Materials today, 9(6), 20-25.
[2] Mack, C. A. (2011). Fifty years of Moore′s law. IEEE Transactions on semiconductor manufacturing, 24(2), 202-207.
[3] Li, M. Y., Su, S. K., Wong, H. S. P., & Li, L. J. (2019). How 2D semiconductors could extend Moore’s law. Nature, 567(7747), 169-170.
[4] Chen, R., Li, Y. C., Cai, J. M., & Cao, K. (2020). Atomic level deposition to extend Moore’s law and beyond. International Journal of Extreme Manufacturing, 2(2), 022002.
[5] Pirati, A., van Schoot, J., Troost, K., van Ballegoij, R., Krabbendam, P., Stoeldraijer, J., ... & Migura, S. (2017, March). The future of EUV lithography: enabling Moore′s Law in the next decade. In extreme ultraviolet (EUV) lithography VIII (Vol. 10143, pp. 57-72). SPIE.
[6] Arden, W., Brillouët, M., Cogez, P., Graef, M., Huizing, B., & Mahnkopf, R. (2010). More-than-Moore white paper. Version, 2, 14.
[7] Waldrop, M. M. (2016). More than moore. Nature, 530(7589), 144-148.
[8] Theis, T. N., & Wong, H. S. P. (2017). The end of moore′s law: A new beginning for information technology. Computing in Science & Engineering, 19(2), 41-50.
[9] England, L., & Arsovski, I. (2017, December). Advanced packaging saves the day!—How TSV technology will enable continued scaling. In 2017 IEEE International Electron Devices Meeting (IEDM) (pp. 3-5). IEEE.
[10] Farnum, C., & Rahim, K. (2021, June). Small Feature Size, Large Impact: How Advanced Packaging Will Reinvent Radar Manufacturing. In 2021 IEEE 71st Electronic Components and Technology Conference (ECTC) (pp. 1749-1753). IEEE.
[11] Kawano, M. (2021, April). Technology trends in 2.5 D/3D packaging and heterogeneous integration. In 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) (pp. 1-3). IEEE.
[12] Lau, J. H. (2022). Recent advances and trends in advanced packaging. IEEE Transactions on Components, Packaging and Manufacturing Technology, 12(2), 228-252.
[13] Zhang, X., Lin, J. K., Wickramanayaka, S., Zhang, S., Weerasekera, R., Dutta, R., ... & Kwong, D. L. (2015). Heterogeneous 2.5 D integration on through silicon interposer. Applied physics reviews, 2(2), 021308.
[14] Nayak, D. K., Banna, S., Samal, S. K., & Lim, S. K. (2015, October). Power, performance, and cost comparisons of monolithic 3D ICs and TSV-based 3D ICs. In 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) (pp. 1-2). IEEE.
[15] Lau, J. H. (2011, October). Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration. In 2011 International symposium on advanced packaging materials (APM) (pp. 462-488). IEEE.
[16] Li, Y., Srinath, P. K. M., & Goyal, D. (2016). A review of failure analysis methods for advanced 3D microelectronic packages. Journal of Electronic Materials, 45, 116-124.
[17] Ko, C. T., & Chen, K. N. (2013). Reliability of key technologies in 3D integration. Microelectronics Reliability, 53(1), 7-16.
[18] Auersperg, J., Dudek, R., Oswald, J., & Michel, B. (2011, April). Interaction integral and mode separation for beol-cracking and-delamination investigations under 3d-ic integration aspects. In 2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (pp. 1-7). IEEE.
[19] Fujimoto, K., Nakata, S., Manabe, T., & Fujii, A. (1996). Effects of bonding conditions and surface state on bondability: Study of Cu wire stitch bonding (1st Report).
[20] Murali, S., Srikanth, N., Wong, Y. M., & Vath III, C. J. (2007). Fundamentals of thermo-sonic copper wire bonding in microelectronics packaging. Journal of Materials Science, 42(2), 615-623.
[21] Chauhan, P. S., Choubey, A., Zhong, Z., Pecht, M. G., Chauhan, P. S., Choubey, A., ... & Pecht, M. G. (2014). Copper wire bonding (pp. 1-9). Springer New York.
[22] Harman, G. (2010). Wire bonding in microelectronics. McGraw-Hill Education.
[23] Murali, S., Srikanth, N., & Vath III, C. J. (2003). An analysis of intermetallics formation of gold and copper ball bonding on thermal aging. Materials research bulletin, 38(4), 637-646.
[24] Fre´ mont, H., Dele´ tage, J. Y., Pintus, A., & Danto, Y. (2001). Evaluation of the moisture sensitivity of molding compounds of IC’s packages. J. Electron. Packag., 123(1), 16-18.
[25]Lebbai, M., Kim, J. K., & Yuen, M. M. (2003). Effects of moisture and elevated temperature on reliability of interfacial adhesion in plastic packages. Journal of electronic materials, 32, 574-582.
[26] Asai, S. I., Ando, T., & Tobita, M. (1996). Adhesion between Ni/Fe lead frame and epoxy molding compounds in IC packages. Journal of adhesion science and technology, 10(1), 1-15.
[27] Wong, C. P., Luo, S., & Zhang, Z. (2000). Flip the chip. Science, 290(5500), 2269-2270.
[28] Elenius, P., & Levine, L. (2000). Comparing flip-chip and wire-bond interconnection technologies. Chip Scale Review, 4(6).
[29] Tu, K. N., & Zeng, K. (2001). Tin–lead (SnPb) solder reaction in flip chip technology. Materials science and engineering: R: reports, 34(1), 1-58.
[30] Tu, K. N., Ku, F., & Lee, T. Y. (2001). Morphological stability of solder reaction products in flip chip technology. Journal of electronic materials, 30, 1129-1132.
[31] Liu, C. Y., Chen, C., Mal, A. K., & Tu, K. N. (1999). Direct correlation between mechanical failure and metallurgical reaction in flip chip solder joints. Journal of Applied Physics, 85(7), 3882-3886.
[32] Subramanian, K. N., Puttlitz, K. J., & Galyon, G. T. (2007). Impact of the ROHS directive on high-performance electronic systems: Part I: need for lead utilization in exempt systems. Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics, 331-346.
[33] Puttlitz, K. J., & Galyon, G. T. (2007). Impact of the ROHS Directive on high-performance electronic systems: Part II: key reliability issues preventing the implementation of lead-free solders. Journal of Materials Science: Materials in Electronics, 18(1-3), 347-365.
[34] Suganuma, K. (2001). Advances in lead-free electronics soldering. Current Opinion in Solid State and Materials Science, 5(1), 55-64.
[35] Wu, C. M. L., Yu, D. Q., Law, C. M. T., & Wang, L. (2004). Properties of lead-free solder alloys with rare earth element additions. Materials Science and Engineering: R: Reports, 44(1), 1-44.
[36] Gayle, F. W., Becka, G., Syed, A., Badgett, J., Whitten, G., Pan, T. Y., ... & Olson, C. (2001). High temperature lead-free solder for microelectronics. Jom, 53, 17-21.
[37] Yu, D. Q., Zhao, J., & Wang, L. (2004). Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements. Journal of alloys and compounds, 376(1-2), 170-175.
[38] Pang, J. H., Xu, L., Shi, X. Q., Zhou, W., & Ngoh, S. L. (2004). Intermetallic growth studies on Sn-Ag-Cu lead-free solder joints. Journal of Electronic Materials, 33, 1219-1226.
[39] Choubey, A., Yu, H., Osterman, M., Pecht, M., Yun, F., Yonghong, L., & Ming, X. (2008). Intermetallics characterization of lead-free solder joints under isothermal aging. Journal of Electronic Materials, 37, 1130-1138.
[40] Hwang, C. W., Kim, K. S., & Suganuma, K. (2003). Interfaces in lead-free soldering. Journal of electronic materials, 32, 1249-1256.
[41] Osório, W. R., Peixoto, L. C., Garcia, L. R., Mangelinck-Noël, N., & Garcia, A. (2013). Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys. Journal of Alloys and Compounds, 572, 97-106.
[42] Zuo, Y., Bieler, T. R., Zhou, Q., Ma, L., & Guo, F. (2018). Electromigration and thermomechanical fatigue behavior of Sn0. 3Ag0. 7Cu solder joints. Journal of Electronic Materials, 47, 1881-1895.
[43] Lin, Y. H., Tsai, C. M., Hu, Y. C., Lin, Y. L., & Kao, C. R. (2005). Electromigration-induced failure in flip-chip solder joints. Journal of electronic materials, 34, 27-33.
[44] Subramanian, K. N., Chae, S. H., Zhang, X., Lu, K. H., Chao, H. L., Ho, P. S., ... & Ramanathan, L. N. (2007). Electromigration statistics and damage evolution for Pb-free solder joints with Cu and Ni UBM in plastic flip-chip packages. Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics, 247-258.
[45] Yang, D., Chan, Y. C., Wu, B. Y., & Pecht, M. (2008). Electromigration and thermomigration behavior of flip chip solder joints in high current density packages. Journal of Materials Research, 23(9), 2333-2339.
[46] Liang, Y. C., Tsao, W. A., Chen, C., Yao, D. J., Huang, A. T., & Lai, Y. S. (2012). Influence of Cu column under-bump-metallizations on current crowding and Joule heating effects of electromigration in flip-chip solder joints. Journal of Applied Physics, 111(4), 043705.
[47] Jiang, A. L. X., Ming, L. C., Gao, J. C. Y., & Hwee, T. K. (2006, August). Pillar bump technology and integrated embedded passive devices. In 2006 7th International Conference on Electronic Packaging Technology (pp. 1-5). IEEE.
[48] Gerber, M., Beddingfield, C., O′Connor, S., Yoo, M., Lee, M., Kang, D., ... & Park, K. (2011, May). Next generation fine pitch Cu Pillar technology—Enabling next generation silicon nodes. In 2011 IEEE 61st electronic components and technology conference (ECTC) (pp. 612-618). IEEE.
[49] Yoo, J. H., Kang, I. S., Jung, G. J., Kim, S., Ahn, H. S., Choi, W. H., ... & Yu, J. N. (2010, December). Analysis of electromigration for Cu pillar bump in flip chip package. In 2010 12th Electronics Packaging Technology Conference (pp. 129-133). IEEE.
[50] Hsiao, Y. H., Chen, C. F., Yang, P. F., Lee, C. C., Liu, M. C., Lin, K. L., ... & Factor, B. J. (2014, September). The physics of Cu pillar bump interconnect under electromigration stress testing. In Proceedings of the 5th Electronics System-integration Technology Conference (ESTC) (pp. 1-6). IEEE.
[51] Akiba, T., Funaya, T., Sakata, K., Tsuchiya, H., & Nakagawa, K. (2017, November). Electromigration mechanism on interconnected Cu pillar in flip chip package. In 2017 IEEE CPMT Symposium Japan (ICSJ) (pp. 1-4). IEEE.
[52] Hsiao, Y. H., & Lin, K. L. (2016). The formation and conversion of intermetallic compounds in the Cu pillar Sn–Ag micro-bump with ENEPIG Cu substrate under current stressing. Journal of Materials Science: Materials in Electronics, 27, 2201-2205.
[53] Hsiao, Y. H., Lin, K. L., Lee, C. W., Shao, Y. H., & Lai, Y. S. (2012). Study of electromigration-induced failures on Cu pillar bumps joined to OSP and ENEPIG substrates. Journal of electronic materials, 41, 3368-3374.
[54] Huang, M., Chen, L., Zhou, S., & Ye, S. (2011, October). Effect of surface finish (OSP and ENEPIG) on failure mechanism induced by electromigration in Sn-3.0 Ag-0.5 Cu flip chip solder interconnect. In 2011 International Symposium on Advanced Packaging Materials (APM) (pp. 297-301). IEEE.
[55] Zou, Y. S., Hsiao, Y. H., & Lin, K. L. (2014, December). Intermetallic compound growth mechanism and failure modes of flip chip solder bump with different UBM structure during electromigration. In 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC) (pp. 155-158). IEEE.
[56] Xu, K., Fu, X., Wang, X., Fu, Z., Yang, X., Chen, S., ... & Chen, H. (2022). The effect of grain orientation of β-Sn on Copper pillar solder joints during electromigration. Materials, 15(1), 108.
[57] Tian, Y., Han, J., Ma, L., & Guo, F. (2018). The dominant effect of c-axis orientation in tin on the electromigration behaviors in tricrystal Sn-3.0 Ag-0.5 Cu solder joints. Microelectronics Reliability, 80, 7-13.
[58] Kim, Y. R., Madanipour, H., Osmanson, A. T., Tajedini, M., Kim, C. U., Thompson, P. F., & Chen, Q. (2021, June). Relationship Between the Grain Orientation and the Electromigration Reliability of Electronic Packaging Interconnects. In 2021 IEEE 71st Electronic Components and Technology Conference (ECTC) (pp. 2334-2339). IEEE.
[59] Yang, T. L., Yu, J. J., Li, C. C., Lin, Y. F., & Kao, C. R. (2015). Dominant effects of Sn orientation on serrated cathode dissolution and resulting failure in actual solder joints under electromigration. Journal of Alloys and Compounds, 627, 281-286.
[60] Lee, K., Kim, K. S., Tsukada, Y., Suganuma, K., Yamanaka, K., Kuritani, S., & Ueshima, M. (2011). Influence of crystallographic orientation of Sn–Ag–Cu on electromigration in flip-chip joint. Microelectronics Reliability, 51(12), 2290-2297.
[61] Shen, Y. A., & Wu, J. A. (2022). Effect of Sn grain orientation on reliability issues of Sn-rich solder joints. Materials, 15(14), 5086.
[62] Lu, M., Shih, D. Y., Lauro, P., Goldsmith, C., & Henderson, D. W. (2008). Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders. Applied physics letters, 92(21), 211909.
[63] Huang, T. C., Yang, T. L., Ke, J. H., Hsueh, C. H., & Kao, C. R. (2014). Effects of Sn grain orientation on substrate dissolution and intermetallic precipitation in solder joints under electron current stressing. Scripta Materialia, 80, 37-40.
[64] Hsu, P. N., Lee, D. L., Tran, D. P., Shie, K. C., Tsou, N. T., & Chen, C. (2022). Effect of Tin Grain Orientation on Electromigration-Induced Dissolution of Ni Metallization in SnAg Solder Joints. Materials, 15(20), 7115.
[65] Jang, E. J., Kim, J. W., Kim, B., Matthias, T., & Park, Y. B. (2011). Annealing temperature effect on the Cu-Cu bonding energy for 3D-IC integration. Metals and Materials International, 17, 105-109.
[66] Kim, S. E., & Kim, S. (2015). Wafer level Cu–Cu direct bonding for 3D integration. Microelectronic Engineering, 137, 158-163.
[67] Ma, Y., Roshanghias, A., & Binder, A. (2018). A comparative study on direct Cu–Cu bonding methodologies for copper pillar bumped flip-chips. Journal of Materials Science: Materials in Electronics, 29, 9347-9353.
[68] Panigrahy, A. K., & Chen, K. N. (2018). Low temperature Cu–Cu bonding technology in three-dimensional integration: An extensive review. Journal of Electronic packaging, 140(1).
[69] Tan, C. S., Lim, D. F., Singh, S. G., Goulet, S. K., & Bergkvist, M. (2009). Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol. Applied Physics Letters, 95(19), 192108.
[70] Hu, L., Goh, S. C. K., Tao, J., Lim, Y. D., Zhao, P., Lim, M. J. Z., ... & Tan, C. S. (2021). Time-dependent evolution study of Ar/N2 plasma-activated Cu surface for enabling two-step Cu-Cu direct bonding in a non-vacuum environment. ECS Journal of Solid State Science and Technology, 10(12), 124001.
[71] Dubey, V., Derakhshandeh, J., Beyne, E., Gerets, C., Cooper, E., Laermans, P., ... & De Wolf, I. (2016, May). Surface treatment to enable low temperature and pressure copper direct bonding. In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (pp. 2435-2441). IEEE.
[72] Kim, J. W., Kim, K. S., Lee, H. J., Kim, H. Y., Park, Y. B., & Hyun, S. (2011, July). The effect of plasma pre-cleaning on the Cu-Cu direct bonding for 3D chip stacking. In 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) (pp. 1-4). IEEE.
[73] Huang, Y. P., Chien, Y. S., Tzeng, R. N., Shy, M. S., Lin, T. H., Chen, K. H., ... & Chen, K. N. (2013). Novel Cu-to-Cu Bonding With Ti Passivation at 180$^{circ}{ m C} $ in 3-D Integration. IEEE Electron Device Letters, 34(12), 1551-1553.
[74] Panigrahi, A. K., Bonam, S., Ghosh, T., Vanjari, S. R. K., & Singh, S. G. (2015, May). Low temperature, low pressure CMOS compatible Cu-Cu thermo-compression bonding with Ti passivation for 3D IC integration. In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (pp. 2205-2210). IEEE.
[75] Huang, Y. P., Chien, Y. S., Tzeng, R. N., & Chen, K. N. (2015). Demonstration and electrical performance of Cu–Cu bonding at 150° C with Pd passivation. IEEE Transactions on Electron Devices, 62(8), 2587-2592.
[76] Huang, Y. P., Chien, Y. S., Tzeng, R. N., & Chen, K. N. (2015). Demonstration and electrical performance of Cu–Cu bonding at 150° C with Pd passivation. IEEE Transactions on Electron Devices, 62(8), 2587-2592.
[77] Yang, Y. T., Yu, T. Y., Kuo, S. C., Huang, T. Y., Yang, K. M., Ko, C. T., ... & Chen, K. N. (2017, May). Breakthrough in Cu to Cu Pillar-Concave Bonding on Silicon Substrate with Polymer Layer for Advanced Packaging, 3D, and Heterogeneous Integration. In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (pp. 637-642). IEEE.
[78] Lin, P. F., Tran, D. P., Liu, H. C., Li, Y. Y., & Chen, C. (2022). Interfacial characterization of low-temperature Cu-to-Cu direct bonding with chemical mechanical planarized nanotwinned Cu films. Materials, 15(3), 937.
[79] Wang, Y. M., Sansoz, F., LaGrange, T., Ott, R. T., Marian, J., Barbee Jr, T. W., & Hamza, A. V. (2013). Defective twin boundaries in nanotwinned metals. Nature materials, 12(8), 697-702.
[80] Lu, T. F., Lai, T. Y., Chu, Y. Y., & Wu, Y. S. (2021). Effect of nanotwin boundary on the Cu–Cu bonding. ECS Journal of Solid State Science and Technology, 10(7), 074001.
[81] Liu, C. M., Lin, H. W., Huang, Y. S., Chu, Y. C., Chen, C., Lyu, D. R., ... & Tu, K. N. (2015). Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific reports, 5(1), 1-11.
[82] Humphreys, F. J., & Hatherly, M. (2012). Recrystallization and related annealing phenomena. elsevier.
[83] Vincent, J., Díaz-Guerra, C., Piqueras, J., Amariei, A., Polychroniadis, E. K., & Diéguez, E. (2006). Characterization of undoped and Te-doped GaSb crystals grown by the vertical feeding method. Journal of crystal growth, 289(1), 18-23.
[84] Reed-Hill, R. E., Abbaschian, R., & Abbaschian, R. (1973). Physical metallurgy principles (Vol. 17). New York: Van Nostrand.
[85] Fullman, R. L., & Fisher, J. C. (1951). Formation of annealing twins during grain growth. Journal of Applied Physics, 22(11), 1350-1355.
[86] Lannon, J., Gregory, C., Lueck, M., Huffman, A., & Temple, D. (2009, May). High density Cu-Cu interconnect bonding for 3-D integration. In 2009 59th Electronic Components and Technology Conference (pp. 355-359). IEEE.
[87] Gondcharton, P., Imbert, B., Benaissa, L., & Verdier, M. (2015, May). Copper-copper direct bonding: Impact of grain size. In 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM) (pp. 229-232). IEEE.
[88] Frazier, W. E., Rohrer, G. S., & Rollett, A. D. (2015). Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries. Acta Materialia, 96, 390-398.
[89] Fu, L. M., Wang, H. R., Wang, W., & Shan, A. D. (2011). Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels. Materials Science and Technology, 27(6), 996-1001.
[90] Zhang, J. M., Xu, K. W., & Ji, V. (2002). Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Applied surface science, 187(1-2), 60-67.
[91] G. B. Harris, Philosophical Magazine Series 7, 1952, vol. 43:336, pp. 113–123
[92] Suryanarayana, C., Norton, M. G., Suryanarayana, C., & Norton, M. G. (1998). X-rays and Diffraction (pp. 3-19). Springer US.
[93] Shewmon, P. (Ed.). (2016). Diffusion in solids. Springer.
[94] Gottstein, G., & Shvindlerman, L. S. (2009). Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC press.
[95] Hillert, M. J. A. M. (1965). On the theory of normal and abnormal grain growth. Acta metallurgica, 13(3), 227-238.
[96] Mizera, J., Wyrzykowski, J. W., & Kurzydłowski, K. J. (1988). Description of the kinetics of normal and abnormal grain growth in austenitic stainless steel. Materials Science and Engineering: A, 104, 157-162.
[97] Edalati, K., Hashiguchi, Y., Iwaoka, H., Matsunaga, H., Valiev, R. Z., & Horita, Z. (2018). Long-time stability of metals after severe plastic deformation: Softening and hardening by self-annealing versus thermal stability. Materials Science and Engineering: A, 729, 340-348.
[98] Bonneville, J. and Escaig, B. Cross-slipping process and the stress-orientation dependence in pure copper. Acta Metall. 27, 1477 (1979).
[99] Bonneville, J; Escaig, B; and Martin, JL. A study of cross-slip activation parameters in pure copper.
Acta Metall. 36, 1989 (1988).
[100] Kuykendall, W. P., Wang, Y., & Cai, W. (2020). Stress effects on the energy barrier and mechanisms of cross-slip in FCC nickel. Journal of the Mechanics and Physics of Solids, 144, 104105. |