博碩士論文 111322081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.141.35.116
姓名 曾得瑋(Te-Wei Tseng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用機器學習於邊坡光學與紅外線熱成像融合之長期穩定性監測評估
(The evaluation of slope monitoring using optical and thermal images fusion through machine learning)
相關論文
★ 時域反射法於土壤含水量與導電度遲滯效應之影響因子探討★ TDR監測資訊平台之改善與 感測器觀測服務之建立
★ 用過核子燃料最終處置場緩衝材料之 熱-水耦合實驗及模擬★ 堰塞壩破壞歷程分析及時域反射法應用監測
★ 深地層最終處置場緩衝材料小型熱-水耦合實驗之分層含水量量測改善★ 應用時域反射法於地層下陷監測之改善研發
★ 深地層處置場緩衝材料小型熱-水-力耦合實驗精進與模擬比對★ 淺層崩塌物聯網系統與深層型時域反射邊坡監測技術之整合
★ Modification of TDR Penetrometer for Water Content Profile Monitoring★ 利用線上遊戲於國小一年級至三年級學童防災教育推廣效益之研究—以桃園防災教育館為例
★ 低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬★ Improved TDR Deformation Monitoring by Integrating Centrifuge Physical Modeling
★ 用於滑坡監測的 PS- 和 SBAS-InSAR 處理的參數研究——以阿里山為例★ 穿戴式偵測墜落及跌倒裝備於本國建築工地之研發測試
★ 機器學習在水庫入流與濁度預測之應用-以石岡壩為例★ 深度學習與資料擴增於山崩監測預測之可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 山坡地的變化和移動量始終為其是否會坍塌的重要因素,以安全 性高、安裝成本低、機動性高的數位攝影測量方式,長時間地對山坡 地進行拍攝及觀測,可以有效地確保山坡地的穩定性。
本研究旨在將光學成像技術、紅外線熱成像技術與機器學習方法結合,並且用於雙時段圖像的變化檢測上。利用微型單板電腦—樹梅派結合兩鏡頭模組,通過在現場同一位置但不同時間拍攝的圖像,以機器學習的方式,讓電腦預測雙時段光學圖像組中的變化位置;以數值處理的方式,讓電腦計算雙時段紅外線熱圖像組中的溫度變化。
本研究先經室內模型實驗,使用自行收集的圖像組,訓練機器學習模型,以此對變化檢測模型進行可行性分析和檢驗,後再將監測系統移至室外,在現有坡地旁架設測站,根據監測結果顯示,本研究之方法能夠有效地在室外環境下進行長時間地監測作業,在國立中央大學停車場變化檢測的 mean F1-score 和 mean IoU 分別能達到 0.9359 和 0.8850,而在新北市瑞芳區南雅里的成效良好。
摘要(英) The change and displacements of slopes has always been an important
factor in determining whether they will collapse. Digital photogrammetric
methods, which are characterized by high safety, low installation cost, and
high mobility, can effectively ensure the stability of slopes by continuously
capturing and observing them over a long period of time. This study aims
to combine optical imaging technology, infrared thermography, and
machine learning methods for change detection in dual-temporal images.
By utilizing a micro single board computer, specifically the Raspberry Pi,
in combination with two camera modules, images are captured at the same
location but at different times. Through machine learning, the computer
can predict the locations of changes in the bi-temporal optical image set.
Numerical processing is used to calculate temperature changes in the bi-
temporal infrared thermographic image set. Initially, indoor model
experiments were conducted using a self-collected set of images to train
the machine learning model and analyze the feasibility and effectiveness
of the change detection model. Subsequently, the monitoring system was
deployed outdoors, setting up a monitoring station near existing slopes.
The monitoring results demonstrated that the proposed method in this study
can effectively perform long-term monitoring operations in outdoor
environments. The change detection score of mean F1-score and mean IoU
in the parking lot of National Central University can reach 0.9359 and
0.8850 respectively, showcasing good performance in the Nanya Village,
Ruifang District, New Taipei City.
關鍵字(中) ★ 光學成像
★ 紅外線熱成像
★ 機器學習
★ 變化檢測
★ 邊坡災害防治
關鍵字(英) ★ Optical imaging
★ Infrared thermal imaging
★ Machine learning
★ Change detection
★ Slope monitoring
論文目次 摘要............................................................................................................. i Abstract..................................................................................................... ii
目錄........................................................................................................... iv
圖目錄....................................................................................................... vi
表目錄..................................................................................................... xvi
1. 緒論.....................................................................................................1
1.1. 研究背景 ..................................................................................................... 1
1.2. 研究目的 ..................................................................................................... 3
1.3. 研究架構 ..................................................................................................... 3
2. 文獻回顧.............................................................................................5
2.1.滑坡監測技術回顧 ..................................................................................... 5
2.1.1.滑坡行為與傳統監測技術.............................................................................. 5
2.1.2.攝影測量於邊坡變化檢測............................................................................ 10
2.2.紅外線熱成像 ........................................................................................... 22
2.2.1.紅外線原理概述............................................................................................ 22
2.2.2.紅外線熱成像於土石結構應用.................................................................... 26
2.3.機器學習於影像分析應用 ....................................................................... 33
2.3.1.機器學習概述................................................................................................ 33
2.3.2.機器學習於影像判釋應用............................................................................ 44
2.3.3.機器學習變化檢測方法資料選擇................................................................ 52
2.4.綜合評析 ................................................................................................... 57
3. 研究方法...........................................................................................59
3.1.研究流程 ................................................................................................... 59
3.2.儀器設備組建 ........................................................................................... 60
3.2.1.硬體選擇........................................................................................................ 61
3.2.1.1.核心系統 ................................................................................................... 63
3.2.1.2.軌道系統 ................................................................................................... 69 3.2.1.3.供電系統 ................................................................................................... 75
3.2.2. 外殼設計........................................................................................................ 78 3.2.2.1. 中心電子設備設計外殼 ...........................................................................79 3.2.2.2. 周圍設備設計外殼 ...................................................................................86
3.2.3. 圖像變化檢測................................................................................................ 90
3.2.3.1.光學成像 ...................................................................................................90 3.2.3.1.1.變化檢測模型............................................................................................ 90
3.2.3.1.2.混淆矩陣.................................................................................................. 100
3.2.3.2.紅外線熱成像 .........................................................................................107 3.2.4. 操作腳本.......................................................................................................110 3.2.4.1. 操作腳本流程 ......................................................................................... 110
3.2.4.2.拍攝與移動 ............................................................................................. 111
3.2.4.3.資料管理 ................................................................................................. 113
3.2.4.4.光學成像處理 ......................................................................................... 116
3.2.4.5.熱成像處理 ............................................................................................. 119
3.3. 模型模擬 ................................................................................................. 121 3.3.1. 遙測公開影像資料...................................................................................... 121 3.3.1.1. OSCD ......................................................................................................121 3.3.1.2. LEVIR-CD.............................................................................................. 123 3.3.2. 逆向坡縮尺模型實驗.................................................................................. 124 3.3.2.1. 破壞準則與材料選用 .............................................................................124 3.3.2.2. 實驗說明 .................................................................................................128 3.4現地監測 ................................................................................................. 134
3.4.1中央大學停車場.......................................................................................... 134
3.4.2南雅場址...................................................................................................... 144
4. 研究結果.........................................................................................153
4.1. 儀器設備硬體和外殼 ............................................................................. 153
4.2.模型模擬結果 ......................................................................................... 162
4.2.1.遙測公開影像資料................................................................................. 162
4.2.1.1.OSCD ......................................................................................................162
4.2.1.2.LEVIR-CD.............................................................................................. 168
4.2.2. 逆向坡縮尺模型實驗.................................................................................. 176
4.3.現地監測 ................................................................................................. 184
4.3.1. 中央大學停車場.......................................................................................... 184
4.3.2.南雅場址...................................................................................................... 198
5. 結論與建議 ....................................................................................213
5.1. 結論 ......................................................................................................... 213
5.2. 建議 ......................................................................................................... 214
參考文獻.................................................................................................217
評審意見回覆表 ....................................................................................223
參考文獻 Bandis, S., Lumsden, A.C., & Barton, N.R. “Experimental studies of Scale Effectson the Shear Behaviour of Rock Joints.”, International Journal of RockMechanics and Mining Sciences & Geomechanics Abstracts, Volume 18,Issue 1, Pages 1-21, 1981.
Bitelli, G., Dubbini, M., & Zanutta, A. (2004). “Terrestrial Laser Scanning and digital photogrammetry techniques to monitor landslide bodies.” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 35.TERRESTRIAL LASER SCANNING AND DIGITAL PHOTOGRAMMETRY TECHNIQUES TO MONITOR LANDSLIDE BODIES.
Bromley, J.ane, Bentz, James W, Bottou, L ́eon, Guyon, Isabelle., LeCun, Y.ann, Moore, Cliff, S ä ckinger, E.d- uard, & and Shah, Roopak, S. “Signature verification using a siamese time delay neural network.” International Jour- nal of Pattern Recognition and Artificial Intelligence, 7 (04):669–688, 1993.
Bruce G. Baumgart, B.G.. (1975). “A polyhedron representation for computer vision.” In Proceedings of the May 19-22, 1975, national computer conference and exposition (AFIPS ′75). Association for Computing Machinery, New York, NY, USA, 589–596. https://doi.org/10.1145/1499949.1500071
causal process.” In Advances in neural information
Chen, H., Qi, Z., & Shi, Z. "“Remote Sensing Image Change Detection
With Transformers,"” in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-14, 2022, Art no. 5607514, doi: 10.1109/TGRS.2021.3095166.
Chen, H.,; & Shi, Z. “A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection.” Remote
Sens. 2020, 12, 1662. https://doi.org/10.3390/rs12101662
Daudt, R.C., odrigo & Saux, B.,Bertr & Boulch, Alexandre. (2018). “Fully Convolutional Siamese Networks for Change Detection.” 4063-4067.
10.1109/ICIP.2018.8451652.
Daudt, R.C., Saux, B., Boulch, A., &Rodrigo Caye Daudt, Bertrand Le
Saux, Alexandre Boulch, and Yann Gousseau, Y. “Urban change detection for multispectral earth observation using convolutional neural networks,” in International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2018 (pp. 2115-2118).
Dhar, N.K., ; Sood, A.K., ; & Dat, R. “Advances in Infrared Detector Array Technology.” InTech: Rijeka, Croatia, 2013.
Frodella, W., ; Gigli, G., ; Morelli, S., ; Lombardi, L., ; & Casagli, N. “Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies.” In Remote Sensing 2017 Vol.9 No.12 pp.1281 ref.93
Frodella, W., Morelli, S., Gigli, G., & Casagli, N. (2014, June). “Contribution of infrared thermography to the slope instability characterization.” In Proceedings of world landslide forum (Vol. 3, pp. 144-147).
Ghorbanzadeh, O.,; Blaschke, T.,; Gholamnia, K.,; Meena, S.R.,; Tiede, D., &; Aryal, J. “Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection.” Remote Sens. 2019, 11, 196. https://doi.org/10.3390/rs11020196
Goodman, R.E., & and Bray, J.W. (1976), “Toppling of Rock Slopes.” Proc.
Specialty. Conference on Rock Engineering for Foundations and
Slopes. Boulder, Colorado, ASCE Vol.2, pp. 201-234, 1976.
He, K., Zhang, X., Ren, S., & Sun, J. "Deep Residual Learning for Image Recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016 pp. 770-778. doi: 10.1109/CVPR.2016.90
http://doi.org/10.1098/rspb.1979.0029
Josh. “One-shot learning by inverting a compositional
Koch, G., Zemel, RKoch, Gregory R.., Salakhutdinov, R.. “Siamese Neural
Networks for One-Shot Image Recognition.” (2015).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). “ImageNet Classification with Deep Convolutional Neural Networks.” In F. Pereira, C. J. C. Burges, L. Bottou & K. Q. Weinberger (ed.), Advances in Neural Information Processing Systems 25 (pp. 1097--
1105) . Curran Associates, Inc. .
Kromer, R., Lato, M., Hutchinson, D.J., Gauthier, D., & Edwards, T. (2017).
“Managing rockfall risk through baseline monitoring of precursors using a terrestrial laser scanner.” Canadian geotechnical journal, 54(7), 953-967. https://doi.org/10.1139/cgj-2016-0178.
Lake, B.renden M., Salakhutdinov, R.uslan R., &and Tenenbaum,
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. "Gradient-based learning
applied to document recognition," in Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.
Lim, M., and Petley, D. N., and Rosser, N. J., and Allison, R. J., and Long, A. J., and & Pybus, D. (2005) “′Combined digital photogrammetry and time-of-flight laser scanning for monitoring cliff evolution.”′,
Photogrammetric record., 20 (110). pp. 109-129.
Liu, D.,; Li, D.,; Wang, M.,; & Wang, Z. “3D Change Detection Using
Adaptive Thresholds Based on Local Point Cloud Density.” ISPRS Int. J. Geo-Inf. 2021, 10, 127. https://doi.org/10.3390/ijgi10030127https://doi.org/10.3390/ijgi10030127
Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. "Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification," in IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 2, pp. 645-657, Feb. 2017, doi: 10.1109/TGRS.2016.2612821.
Marr D., & and Poggio T. (1979) “A computational theory of human stereo vision.” Proc. R. Soc. Lond. B.204301–328
Mora, O.E.,; Lenzano, M.G.,; Toth, C.K.,; Grejner-Brzezinska, D.A., &; Fayne, J.V. “Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs.” Geosciences 2018, 8, 23. https://doi.org/10.3390/geosciences801002
Mora, P, ; Baldi, P ;, Casula, G, ; Fabris, M, ; Ghirotti, M, ; Mazzini, E, ; & Pesci, A. (2003). “Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: Application to the Ca′ di Malta landslide (northern Apennines, Italy).” Engineering Geology. 68. 103-121. 10.1016/S0013-7952(02)00200-4.
Pappalardo, G.,; Mineo, S.,; Carbone, S.,; Monaco, C.,; Catalano, D., & ; Signorello, G. “Preliminary Recognition of Geohazards at the Natural Reserve “Lachea Islet and Cyclop Rocks” (Southern Italy).” Sustainability 2021, 13, 1082. https://doi.org/10.3390/su13031082
processing systems, pp. 2526–2534, 2013.
Rosenblatt, F. (1962) “Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms.” Spartan Books, Washington DC.
http://catalog.hathitrust.org/Record/000203591
Rumelhart, D., Hinton, G. & Williams, R. “Learning representations by
back-propagating errors.” Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0https://doi.org/10.1038/323533a0
Shi, W., Zhang, M., Zhang, R., Chen, S., & Zhan Z. “Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges.” Remote Sensing. 2020; 12(10):1688. https://doi.org/10.3390/rs12101688
Simonyan, K. and Zisserman, A. (2015) “Very Deep Convolutional Networks for Large-Scale Image Recognition.” The 3rd International Conference on Learning Representations (ICLR2015). https://arxiv.org/abs/1409.1556
Singh, A. (1989) “Review Article Digital change detection techniques using remotely-sensed data”, International Journal of Remote Sensing, 10:6, 989-1003, DOI: 10.1080/01431168908903939
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. "Going deeper with convolutions," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.
Varnes, D. J. (1978). “SLOPE MOVEMENT TYPES AND PROCESSES.” Transportation Research Board Special Report, 176. https://trid.trb.org/view/86168
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., & Polosukhin, I. “Attention is all you need,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 5998–6008.
Wyllie, D.C. and Mah, C. (2004), 4th Rock Slope Engineering; CRC Press:Boca Raton, FL, USA, 2004.
Yu, L., Jin, C., Wang, Q., Han, T., Li, G., Zhong, X., & Chen, G. (2023).
Combining InSAR and infrared thermography with numerical simulation to identify the unstable slope of open-pit: Qidashan case study, China. Landslides. 10.1007/s10346-023-02076-w.
M. Zhang, M., G. Xu, G., K. Chen, K., M. Yan, M., &and X. Sun, X. “Tripletbased semantic relation learning for aerial remote sensing image change detection,” IEEE Geosci. Remote. Sens. Lett., vol. 16, no. 2, pp. 266–270, 2019.
朱澄偉(2018),逆向坡之傾覆破壞物理模型分析研究,碩士論文,國 防大學理工學院環境資訊及工程學系。
李璟芳、張守陽、林志平(2004):〈紅外線熱影像應用於土石流監測之 可行性研究〉中華水土保持學報,第 35 卷,第 3 期,第 261-274 頁。
陳柏齊(2022),利用光學與熱影像融合進行邊坡之長期穩定性監測評 估 Fusion of Optical and Thermal Imagery for a Long-term Stability Application to Slopes Monitoring and Evaluation,碩士論文,中央 大學土木工程學系。
陳祺杰(2019),地震引致岩坡滑動之破壞機制與變形特徵,博士論文, 國防大學理工學院國防科學研究所環境資訊及工程組。
指導教授 鐘志忠(Chih-Chung Chung) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明