博碩士論文 111322027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:3.137.164.43
姓名 洪鎮韋(Zhen-Wei Hong)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 具凸面導軌之雙向偏心滾動隔震系統機構開發與試驗驗證
(Development and Experimental Verification of Bidirectional Eccentric Rolling Isolation System with Convex Guide)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 傳統隔震系統之回復力與位移呈現線性關係,因此其隔震頻率為定值。當地震力之頻率內涵與隔震頻率接近時,將會發生共振反應使隔震系統失去作用。因此,許多具有非線性回復力之隔震系統相關研究相繼產出。偏心滾動系統(Eccentric Rolling isolation System, ERIS)為其一,透過偏心設計使其具有非線性之回復力。前人之研究已證實相比於一般線性系統,ERIS於近斷層地震下有較低之加速度反應。此外,前人改進此數學模型,藉由加裝凸面導軌於ERIS下方使其成為(Eccentric Rolling isolation System with Convex guide, CERIS),CERIS保有了ERIS之非線性回復力特性,並且增加其隔震效能。然而過去研究中CERIS只考慮結構隔震應用故忽略了圓形隔震器慣性之影響,並且於機構上只考慮了單向輸入之情況。對於設備隔震而言,由於設備物之質量與圓形隔震器相近,其慣性之作用將明顯影響隔震效能。此外真實地震應為雙軸向輸入,過去之數學模型不符合實際應用之考量。因此本研究基於偏心滾動系統加裝凸面導軌(Eccentric Rolling isolation System with Convex guide, CERIS)考量了隔震器慣性之影響,並且利用正交堆疊之方式將單向之機構拓展至雙向以符合實際運用。於實驗機構單一方向上,隔震平台以偏心梢接於圓形隔震器之偏心點上,隔震平台上裝置隔震目標物,凸面導軌在固定曲率半徑下加裝於機構下方。本研究採用能量法推導在考慮圓形隔震器質量下之運動方程式,同時採用庫倫摩擦模型模擬系統之消能行為。經參數敏感度分析,探討系統設計參數,包含偏心比、半徑比、圓形隔震器半徑與質量比對系統水平及垂直向動力行為之影響。於強迫振動之模擬,考慮數筆包含近斷層與遠域震波並與具有線性回復力之摩擦隔震系統進行比較,確認CERIS於何組參數組合下可發揮較佳之隔震效果。最終,以雙軸向之振動台試驗,透過兩組不同參數組合之隔震系統試體進行試驗。由試驗量測與數值擬合之結果,成功驗證以下三點。第一,數學模型之正確性。第二,考慮圓形隔震器質量之必要性。第三,由實驗結果驗證機構雙向之耦合影響為可忽略的,大幅提升實務應用之可行性。
鍵字 : 隔震、非線性、滾動、凸面導軌、偏心、振動台試驗、摩擦消能
摘要(英) Conventional isolations exhibit a linear relationship between the restoring force and displacement, resulting in a fixed isolation frequency. However, when the dominant frequency of seismic excitation is close to the isolation frequency, the resonance will occur and the isolation system may be ineffective. To address this issue, numerous studies have been conducted on isolation systems with nonlinear restoring force. One such system is the eccentric rolling isolation system (ERIS), which possesses nonlinear restoring force by using the concept of eccentricity. Previous studies of ERIS have proven that ERIS exhibits a lower acceleration response compared to linear isolation systems during near-fault earthquakes. Furthermore, the eccentric rolling isolation system with the convex guide (CERIS) which is an improvement of ERIS by adding a convex guide beneath the ERIS has been proposed. CERIS retains the characteristic of nonlinear restoring force and also enhances the isolation performance. However, previous studies of CERIS focus on structural isolation applications, thus neglecting the influence of the inertial effects of circular isolators and the conceptual mechanism only effective for unidirectional input. For equipment isolation applications, the mass of the equipment is close to that of circular isolators, therefore the inertial effects significantly affect the isolation performance. Additionally, real earthquakes should be bidirectional inputs, which were not adequately considered in previous studies. Hence, this study proposes an investigation of the CERIS considering the influence of isolator inertia and extends the unidirectional mechanical system to a bidirectional one by using orthogonal stacking to satisfy the requirements of practical applications. In the unidirectional experimental setup, the isolation platform is eccentrically pin connected to the circular isolator, and the target object is mounted on the isolation platform. The convex guide with a fixed radius of curvature is assembled beneath each circular isolator. This study derives the equations of motion considering the mass of the circular isolator by the energy method and and the Coulomb friction model is used to simulate the energy dissipation of the system. Through parameter sensitivity analysis, the effects of system design parameters, including eccentricity ratio, radius ratio, circular isolator radius, and mass ratio on the horizontal and vertical dynamic behavior of the system. In the simulation of forced vibrations, several seismic waves including near-fault and far-field motions are considered and compared with linear isolation systems to perform the superior seismic performances of the CERIS with various design parameters. Finally, biaxial shaking table testing is conducted using two specific sets of parameters for the specimens. By numerical resimulation and experimental results, the accuracy of the mathematical model is validated, and the role of the mass of circular isolators is also investigated. Moreover, the coupling effect on the proposed bidirectional mechanism is also proved to be negligible, which further significantly enhanced the feasibility of practical applications.

Keywords: isolation, nonlinearity, rolling, eccentricity, shaking table test, frictional damping
關鍵字(中) ★ 隔震
★ 非線性
★ 滾動
★ 凸面導軌
★ 偏心
★ 振動台試驗
★ 摩擦消能
關鍵字(英) ★ isolation
★ nonlinearity
★ rolling
★ eccentricity
★ shaking table test
★ frictional damping
論文目次 摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vi
表目錄 x
符號說明 xi
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究內容 4
第二章 偏心滾動隔震器系統加裝凸面導軌理論 6
2-1 運動方程式推導 6
2-2 數值模擬方法 11
2-3 極限轉角推導 13
2-4 圓形隔震器之滾動慣性對偏心滾動隔震系統之影響 14
第三章 隔震系統之參數敏感度分析 19
3-1 系統參數及隔震性能指標 19
3-2 自由振動之參數敏感度分析 19
3-2-1 頻率參數敏感度分析 20
3-2-2 水平剪力與水平位移關係 21
3-2-3 垂直向絕對加速度與位移之關係 23
3-3 簡諧震波下之參數敏感度分析 25
3-3-1 CERIS與線性系統之頻率響應分析 25
3-3-2 垂直向之頻率響應分析 29
3-3-3 簡諧震波於不同外力頻率下CERIS水平剪力與水平位移關係 30
3-4 地震震波下之參數敏感度分析 31
3-4-1 偏心比對於隔震性能之影響 33
3-4-2 半徑比對於隔震性能之影響 34
3-4-3 圓形隔震器半徑對於隔震性能之影響 34
3-4-4 質量比對於隔震性能之影響 36
3-5 脈衝型震波(Pulse-Type motion)下之參數敏感度分析 37
第四章 振動台實驗結果及擬合比較 64
4-1 振動台實驗介紹 64
4-1-1 實驗機構 64
4-1-2 實驗設備 66
4-1-3 實驗項目 66
4-2 實驗量測數據後處理 67
4-2-1 實驗量測加速度歷時濾波 67
4-2-2 摩擦係數識別 68
4-3 實驗及擬合結果之比較 70
4-3-1 簡諧震波 71
4-3-2 地震震波 75
4-4 隔震性能之探討 81
4-4-1 簡諧震波 82
4-4-2 地震震波 83
第五章 結論與建議 127
5-1 結論 127
5-2 建議 129
參考文獻 131
附錄A 134
參考文獻 [1] 內政部營建署,「建築物耐震設計規範」(2023)。
[2] 張簡嘉賞,「滑動隔震結構受近斷層震波行為之理論分析及振動台實驗驗證」,國立高雄第一科技大學碩士論文 (2002)。
[3] Chung L.L., Yang C.Y., Chen H.M., and Lu L.Y., “Dynamic behavior of nonlinear rolling isolation system,” Structural Control and Health Monitoring, Vol. 16, Issue 1:32-54 (2009).
[4] Yang C.Y., Hsieh C.H., Chung L.L., Chen H.M., and Wu L.Y., “Effectiveness of an eccentric rolling isolation system with friction damping,” Journal of Vibration and Control, Vol. 18, Issue 14:2149-2163 (2012).
[5] Chung L.L., Hsieh C.H., Yang C.Y., Wu L.Y., and Chen H.M., “Study on nonlinear rolling isolation system with linear viscous damper,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 23, No. 2:175–186 (2011).
[6] 喬丹,「偏心滾動隔震系統之數值模擬及實驗驗證」,國立臺灣大學碩士論文 (2021)。
[7] 賴煜仁,「應用凸面導軌於偏心滾動隔震系統之研究」,國立臺灣大學碩士論文 (2020)。
[8] Kikuchi, M., and Aiken, I.D., “An analytical hysteresis model for elastomeric seismic isolation bearings,” Earthquake Engineering and Structural Dynamics, 26:215–231. (1997)。
[9] W. H. Robinson, “Lead rubber hysteretic bearings suitable for protecting structures during earthquakes,” PEL Report No. 715 (1981).
[10] 張正霖,「近斷層地震對遲滯隔震系統之影響」,國立臺灣科技大學營建工程學系碩士論文 (2016)。
[11] 陳廷暉,「近斷層地震對隔震系統之影響及相應設計對策」,國立臺灣科技大學營建工程學系碩士論文 (2019)。
[12] Ryan K.L., Kelly J.M., and Chopra A.K., “Formulation and implementation of a lead-rubber bearing model including material and geometric nonlinearities,” Proceedings of the 17th Analysis and Computation Specialty Conference, St. Louis, Missouri, USA (2006).
[13] Jangid, R.S., “Optimum friction pendulum system for near-fault motions,” Engineering Structures, 27(3): 349–359 (2005).
[14] Louisidis, A.P., and Stavroulakis, G.E., “Dynamic analysis of a friction pendulum isolation system (FPS) under earthquake excitation,” Institute of Computational Mechanics and Optimization, Department of Production Engineering and Management. (2015).
[15] Makris N., and Roussos Y., ‘‘Rocking response and overturning of equipment under horizontal pulse-type motions.’’ Rep. No. PEER98/05, Pacific Earthquake Engineering Research Center, University of California, Berkeley, Calif. (1998).
[16] George P.M., and Apostolos S.P., ‘‘A Mathematical Representation of Near-Fault Ground Motions.’’ Bulletin of the Seismological Society of America, Vol. 93, No. 3:1099–1131 (2003).
[17] Baker J.W., ‘‘Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.’’ Bulletin of the Seismological Society of America, Vol. 97, No. 5:1486–1501 (2007).
[18] Lu L.Y., Lee T.Y., Juang S.Y., and Yeh S.W., “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: an experimental and theoretical study,” Engineering Structures, Vol. 56:970-982 (2013).
[19] Tsai M.H., Chang K.C., and Wu S.Y., “Seismic isolation ofa scaled bridge model using rolling-type bearings,” Proceedings of the 4th International Conference on Earthquake Engineering, Taipei Taiwan (2006).
[20] Lee G.C., Ou Y.C., Niu T., Song J., and Liang Z., “Characterization of a roller seismic isolation bearing with supplemental energy dissipation for highway bridge,” Journal of Structural Engineering, 136(5):502–510 (2010).
[21] Wang S.J., Hwang J.S., Chang K.C., Shiau C.Y., Lin W.C., Tsai M.S., Hong J.X. and Yang Y.H., “Sloped multi-roller isolation devices for seismic protection of equipment and facilities,” Earthquake Engng Struct. Dyn.; Vol. 43:1443–1461 (2014).
[22] Wang S.J., Sung Y.L., Yang C.Y., Lin W.C., and Yu C.H., “Control Performances of Friction Pendulum and Sloped Rolling-Type Bearings Designed with Single Parameters,” (2020).
[23] Butterworth J.W., “Seismic response of a non-concentric rolling isolator system,” Advances in Structural Engineering; Vol. 9:39–54 (2006).
[24] Londhe Y.B., and Jangid R.S., “Effectiveness of elliptical rolling rods for base isolation,” Journal of Structural Engineering, Vol. 124, Issue 4:469-472 (1998).
[25] 許瞬程,「滾動隔震多自由度結構振動台試驗研究」,國立臺灣科技大學營建工程學系碩士論文 (2010)。
[26] Lu L.Y., and Hsu C.C., ‘‘Eccentric Rocking Bearings with a Designable Friction Property for Seismic Isolation: Experiment and Analysis.’’ Earthquake Spectra, Vol 29, No. 3: 869–895 (2013).
[27] Davoodi M., Sadjadi M., Goljahani P., and Kamalian M., ‘‘Effects of Near-Field and Far-Field Earthquakes on Seismic Response of SDOF System Considering Soil Structure Interaction.’’ Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal (2012).
指導教授 賴勇安 楊卓諺(Yong-An Lai Yang, Cho-yen) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明