參考文獻 |
1.朱經武、周偉禮 (2006),「以啟發式演算法求解單一場站多車種同時收送貨之車輛途程問題」,航運季刊第15卷第3期,頁63~頁88。
2.李忠憲 (2011),「運用粒子群最佳化解決多場站之收送貨問題」,國立交通大學運輸科技與管理學系,碩士論文。
3.何采維 (2018),「宅配結合智慧櫃之車輛途程問題」,國立臺灣科技大學工業管理系碩士論文。
4.李寶玉 (2019),「使用智能櫃進行都會區最初與最終一哩收送與轉運物流之眾包運送問題研究」,國立成功大學工業與資訊管理學系碩士論文。
5.林士安 (2019),「考量裝載可行性之車輛途程問題:以B2B個案公司為例」,國立東華大學運籌管理研究所碩士論文。
6.林依穎 (2020),「市區公車路線設計與時刻表整合最佳化」,國立臺灣大學土木工程研究所碩士論文。
7.黃品慈 (2018),「警察巡邏路線規劃模式暨求解演算法之研究」,國立中央大學土木工程學系碩士論文。
8.陳彥妤 (2021),「移動式智能櫃運送路線規劃暨求解演算法之研究」,國立中央大學土木工程學系碩士論文。
9.陳怡亘 (2022),「無人機貨物運送排程規劃暨求解演算法之研究」,國立中央大學土木工程學系碩士論文。
10.蘇雄義、蔡信傑 (2006),「物流與供應鏈管理人才職能需求調查與職能落差分析之研究」,經社法制論叢,18卷,頁315~頁346。
11.顏上堯、林妤玲、陳怡君 (2020),「最佳化報廢機車回收場區位途程模式之研究」,中國土木水利工程學刊32卷2期,頁135~頁146。
12.顏上堯、蕭妃晏、謝潤曉 (2011),「跨校選授課專車排程規劃模式暨演算法之研究」,運輸計劃季刊第40卷第4期,頁367~頁392。
13.顏上堯、盧宗成、徐鸛侖 (2015),「考慮護運風險下保全運鈔車路線與排程模式暨演算法之研究」,運輸計劃季刊第44卷1期,頁45~頁68。
14.Aziez, I., Côté, J.-F.& Coelho, LC. (2018). The multi-pickup and delivery problem with time windows: European Journal of Operational Research, Vol. 269, Issue 1, pp. 353-362.
15.Azizi, V.& Hu, G. (2020). Multi-product pickup and delivery supply chain design with location-routing and direct shipment: International Journal of Production Economics, Vol. 226, 107648.
16.Altinoz, M. and Altinoz, O-T. (2022). Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period: Neural Computing and Applications volume 35, pp. 3865–3882.
17.Benders, J.F. (1962). Partitioning procedures for solving mixed-variables programming problems: Numerische mathematik, 4(1), 238-252.
18.Bodin L. and Golden B. (1981). Classification in vehicle routing and scheduling: Networks, Vol. 11, pp.97-108.
19.Chen, C. Y., & Kornhauser, A. L. (1990). Decomposition of convex mulitcommodity network flow problem: Report SOR-90-19, Dept. of Civil Engineering and Operations Research, Princeton University, Princeton, NJ.
20.Chu, J., Yan, S., and Huang, H. (2017). A Multi-Trip Split-Delivery Vehicle Routing Problem with Time Windows for Inventory Replenishment Under Stochastic Travel Times: Networks and Spatial Economics, Vol. 17, Issue 1, pp. 41-68.
21.Devari, A., Nikolaev, A.G., He, Q. (2017). Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store customers. Transp. Res. Part E Logist. Transp. Rev. 105, 105–122. https://doi.org/10.1016/j.tre.2017.06.011
22.Ensafian, H., Andaryan, A.Z. , Bell, M.G.H., Geers, D.G., Kilby, P. , Li, J. (2023). Cost-optimal deployment of autonomous mobile lockers co-operating with couriers for simultaneous pickup and delivery operations: Transportation Research Part C: Emerging Technologies Volume 146, January 2023, 103958.
23.Goeke, D. (2019). Granular tabu search for the pickup and delivery problem with time windows and electric vehicles: European Journal of Operational Research, Vol. 278, Issue 3, pp. 821-836.
24.Kennington, J., & Shalaby, M.(1977). An effective subgradient procedure for minimal cost multicommodity flow problems: Management Science, 23(9), 994-1004.
25.Li, J., Ensafian, H., Bell, M.G.H., Geers, D.G. (2021). Deploying autonomous mobile lockers in a two-echelon parcel operation: Transportation Research Part C: Emerging Technologies Volume 128, July 2021, 103155.
26.Lu, C.C., Yan, S. and Huang, Y.W. (2018). Optimal scheduling of a taxi fleet with mixed electric and gasoline vehicles to service advance reservations: Transportation Research Part C: Emerging Technologies, Vol. 93, pp. 479-500.
27.Mahmoudi, M., & Zhou, X. (2016). Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations: Transportation Research Part B: Methodological, Vol. 89, pp. 19-42.
28.Mesquita, M. and Paixão, J. (1992). Multiple Depot Vehicle Scheduling Problem: A New Heuristic Based on Quasi-Assignment Algorithms: Computer-Aided Transit Scheduling. M. Desrochers and J.-M. Rousseau, Springer Berlin Heidelberg. 386, pp. 167-180.
29.Song, M., Cheng, L., Du, M., Sun, C. Ma, J. Ge, H. (2023). Charging station location problem for maximizing the space-time-electricity accessibility: A Lagrangian relaxation-based decomposition scheme: Expert Systems with Applications Volume 222, 15 July 2023, 119801.
30.Schwerdfeger, S. & Boysen, N. (2020). Optimizing the changing locations of mobile parcel lockers in last-mile distribution: European Journal of Operational Research, Vol. 285, Issue 3, 1077-1094.
31.Sitek, P., Wikarek, J., Rutczyńska-Wdowiak, K., Bocewicz, G., and Banaszak, Z. (2021). Optimization of capacitated vehicle routing problem with alternative delivery, pick-up and time windows: A modified hybrid approach: Neurocomputing, Vol. 423, pp. 670-678.
32.Simpson, R. W. (1996). Scheduling and Routing Models for Airline Systems.
33.Wang, Y., Zhang,Z., Huisman, D., D′Ariano,A., Zhang,J. (2022). A Lagrangian relaxation approach based on a time-space-state network for railway crew scheduling: Computers & Industrial Engineering Volume 172, Part A, October 2022, 108509
34.Yan, S. and Chen, H.-L. (2002). A scheduling model and a solution algorithm for inter-city bus carriers: Transportation Research Part A: Policy and Practice 36(9), pp. 805-825.
35.Yan, S., Lin, C.-K. and Chen, S.-Y. (2014). Logistical support scheduling under stochastic travel times given an emergency repair work schedule: Computers & Industrial Engineering 67, pp. 20-35.
36.Yan, S. and Young, H.-F. (1996). A decision support framework for multi-fleet routing and multi-stop flight scheduling: Transportation Research Part A: Policy and Practice 30(5), pp. 379-398.
37.Zhang, C., Gao, Y., Yang, L., Gao, Z., Qi, J. (2020). Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation: Transportation Research Part B: Methodological, Vol. 134, pp. 64-92.
38.Zheng, J., Zhong, J., Chen, M., He, K. (2023). A reinforced hybrid genetic algorithm for the traveling salesman problem: Computers & Operations Research Volume 157, September 2023, 106249. |