博碩士論文 110322077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.17.175.239
姓名 唐顥瑋(Hao-Wei Tang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 考量充電下移動式智能櫃運送排程最佳化之研究
相關論文
★ 橋梁檢測人力機具排班最佳化之研究★ 勤業務專責分工下消防人員每日勤務排班最佳模式之研究
★ 司機員排班作業最佳化模式之研究★ 科學園區廢水場實驗室檢驗員任務指派 最佳化模式之研究
★ 倉儲地坪粉光工程之最佳化模式研究★ 生下水道工程工作井佈設作業機組指派最佳化之研究
★ 急診室臨時性短期護理人力 指派最佳化之探討★ 專案監造人力調派最佳化模式研究
★ 地質鑽探工程人機作業管理最佳化研究★ 職業棒球球隊球員組合最佳化之研究
★ 鑽堡於卵礫石層施作機具調派最佳化模式之研究★ 職業安全衛生查核人員人力指派最佳化研究
★ 救災機具預置最佳化之探討★ 水電工程出工數最佳化之研究
★ 石門水庫服務台及票站人員排班最佳化之研究★ 空調附屬設備機組維護保養排程最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在目前市場經濟條件下,物流配送佔據整體供應鏈的相當大比例,且物流配送的支出持續增加。因此,物流已成為影響生產成本和流通成本的關鍵因素之一。若能針對配送環節進行改善,將有助於減少成本損耗,並為物流領域帶來正面的效益。有幾種方法可以改進物流配送,以降低成本並提高效率。首先,路線規劃和運輸計劃是一個重要的方向。透過使用現代的路線規劃技術和智能運輸系統,可以確保貨物的最佳運送路徑,減少不必要的里程和時間浪費。其次,引進節能環保技術也是值得考慮的一個方向。例如使用環保型車輛和節能設備,不僅可以降低燃料消耗和碳的排放,還能節約運輸成本。若臺灣物流業者能提前引進移動式智能櫃進行收送貨物的運送排程,不僅可以實現節能減碳目標,減少燃油和人力等相關成本,亦可以提高貨物運送效率,且能減少一般貨車與物流士運送所造成的道路安全相關問題。
本研究模式為考量充電下移動式智能櫃運送排程最佳化,於實務上考量相關條件限制,以營運成本最小化為目標,構建一考量充電下移動式智能櫃運送排程模式,再配合CPLEX數學規劃軟體進行模式求解。因模式問題規模過大,求解時間過長且不合理,為增加求解效率,故本研究撰寫C++程式語言發展啟發式演算法進行求解測試。為了評估此模式與演算法之實用與可靠性,以桃園市某物流公司之資料為測試範例,發展四種啟發式演算法進行測試結果比較,並選擇較優的啟發式演算法進行不同參數之敏感度分析。研究結果顯示,本研究提出之模式與啟發式演算法於實務上有較好的成效,可提供決策單位作為考量充電下移動式智能櫃運送排程最佳化之參考。
摘要(英) In the current market economy conditions, logistics distribution occupies a significant proportion of the overall supply chain, and the expenses related to logistics distribution are continually increasing. As a result, logistics has become a key factor influencing production and distribution costs. Improving the distribution process can help reduce cost wastage and bring positive benefits to the logistics sector. There are several methods to enhance logistics distribution for cost reduction and increased efficiency. Firstly, optimizing route planning and transportation strategies is crucial. Utilizing modern route planning techniques and intelligent transportation systems can ensure the most efficient delivery routes, reducing unnecessary mileage and time wastage. Secondly, adopting energy-saving and environmentally friendly technologies is worth considering. For example, using eco-friendly vehicles and energy-efficient equipment not only reduces fuel consumption and carbon emissions but also saves transportation costs. If Taiwanese logistics operators could introduce mobile smart containers for shipping scheduling, it would not only achieve energy-saving and carbon reduction goals but also reduce related costs such as fuel and labor. Additionally, it could enhance cargo delivery efficiency and mitigate road safety issues caused by conventional trucks and logistics personnel transportation.

This study focuses on the optimization of charging-based mobile smart container shipping scheduling, considering relevant practical constraints, with the objective of minimizing operational costs. A model for the charging-based mobile smart container shipping scheduling is constructed and then solved using the CPLEX mathematical optimization software. However, due to the large scale of the model, the solution time becomes excessively long and impractical. To increase the solution efficiency, this research develops a heuristic algorithm in C++ programming language for testing. To assess the practicality and reliability of this model and algorithm, data from a logistics company in Taoyuan City is used as a testing example. Four heuristic algorithms are developed and compared for testing results, and the optimal heuristic algorithm is selected for sensitivity analysis with different parameters. The research results demonstrate that the proposed model and heuristic algorithm have good performance in practical applications, providing decision-makers with references for optimizing charging-based mobile smart container shipping scheduling.
關鍵字(中) ★ 移動式智能櫃
★ 收送貨路徑規劃問題
★ 時空網路
★ 啟發式解法
關鍵字(英) ★ Mobile parcel locker
★ Pick-up and delivery problem
★ Time-space network
★ Heuristic
論文目次 摘 要 i
ABSTRACT ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究範圍與目的 3
1.3 研究方法與流程 4
第二章 文獻回顧 5
2.1 商用無人車智取櫃規劃之相關文獻 5
2.2 時空網路應用之相關文獻 8
2.3 大型含額外限制整數網路流動問題啟發式演算法之相關文獻 9
2.4 文獻評析 12
第三章 模式建構 13
3.1 問題描述 13
3.2 模式架構 13
3.2.1 模式基本假設 14
3.2.2 移動式智能櫃收送貨之時空網路 15
3.2.2.1 移動式智能櫃的車流網路 16
3.2.2.2 移動式智能櫃的送貨與收貨時空網路 20
3.2.3 符號說明與數學定式 24
3.2.3.1 符號說明 24
3.3.2.2 數學定式 26
3.3 模式驗證 30
3.4小結 34
第四章 啟發式演算法設計 35
4.1 啟發式演算法求解 35
4.1.1 時間優先法 35
4.1.2 距離優先法 39
4.1.3 最小比率法 42
4.1.4 門檻值法 45
4.2 啟發式演算法應用 50
4.3 小結 51
第五章 範例測試 52
5.1 資料輸入 52
5.1.1 移動式智能櫃規劃資料 52
5.1.2 運輸路網規劃資料 56
5.1.3 收、送貨物供需資料 58
5.2 模式發展 60
5.2.1 問題規模 60
5.2.2 電腦演算環境 61
5.2.3 模式輸入資料 61
5.2.4 模式輸出資料 61
5.3 範例測試結果分析 62
5.3.1 時間優先法測試結果 62
5.3.2 距離優先法測試結果 64
5.3.3 最小比率法測試結果 66
5.3.4 門檻值法測試結果 68
5.3.5 測試結果比較 71
5.3.6 演算法績效分析 73
5.4 敏感度分析 74
5.4.1 移動式智能櫃移動成本之敏感度分析 77
5.4.2 移動式智能櫃充電成本之敏感度分析 81
5.4.3 移動式智能櫃承載限制之敏感度分析 86
5.4.4 收送貨物需求規模之敏感度分析 90
5.4.5 移動式智能櫃耗電量之敏感度分析 95
5.4.6 移動式智能櫃電量上下限之敏感度分析 99
5.5 管理意涵 107
5.6 小結 109
第六章 結論與建議 110
6.1 結論 110
6.2 建議 111
6.3 貢獻 112
參考文獻 114
附錄 119
參考文獻 1.朱經武、周偉禮 (2006),「以啟發式演算法求解單一場站多車種同時收送貨之車輛途程問題」,航運季刊第15卷第3期,頁63~頁88。
2.李忠憲 (2011),「運用粒子群最佳化解決多場站之收送貨問題」,國立交通大學運輸科技與管理學系,碩士論文。
3.何采維 (2018),「宅配結合智慧櫃之車輛途程問題」,國立臺灣科技大學工業管理系碩士論文。
4.李寶玉 (2019),「使用智能櫃進行都會區最初與最終一哩收送與轉運物流之眾包運送問題研究」,國立成功大學工業與資訊管理學系碩士論文。
5.林士安 (2019),「考量裝載可行性之車輛途程問題:以B2B個案公司為例」,國立東華大學運籌管理研究所碩士論文。
6.林依穎 (2020),「市區公車路線設計與時刻表整合最佳化」,國立臺灣大學土木工程研究所碩士論文。
7.黃品慈 (2018),「警察巡邏路線規劃模式暨求解演算法之研究」,國立中央大學土木工程學系碩士論文。
8.陳彥妤 (2021),「移動式智能櫃運送路線規劃暨求解演算法之研究」,國立中央大學土木工程學系碩士論文。
9.陳怡亘 (2022),「無人機貨物運送排程規劃暨求解演算法之研究」,國立中央大學土木工程學系碩士論文。
10.蘇雄義、蔡信傑 (2006),「物流與供應鏈管理人才職能需求調查與職能落差分析之研究」,經社法制論叢,18卷,頁315~頁346。
11.顏上堯、林妤玲、陳怡君 (2020),「最佳化報廢機車回收場區位途程模式之研究」,中國土木水利工程學刊32卷2期,頁135~頁146。
12.顏上堯、蕭妃晏、謝潤曉 (2011),「跨校選授課專車排程規劃模式暨演算法之研究」,運輸計劃季刊第40卷第4期,頁367~頁392。
13.顏上堯、盧宗成、徐鸛侖 (2015),「考慮護運風險下保全運鈔車路線與排程模式暨演算法之研究」,運輸計劃季刊第44卷1期,頁45~頁68。
14.Aziez, I., Côté, J.-F.& Coelho, LC. (2018). The multi-pickup and delivery problem with time windows: European Journal of Operational Research, Vol. 269, Issue 1, pp. 353-362.
15.Azizi, V.& Hu, G. (2020). Multi-product pickup and delivery supply chain design with location-routing and direct shipment: International Journal of Production Economics, Vol. 226, 107648.
16.Altinoz, M. and Altinoz, O-T. (2022). Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period: Neural Computing and Applications volume 35, pp. 3865–3882.
17.Benders, J.F. (1962). Partitioning procedures for solving mixed-variables programming problems: Numerische mathematik, 4(1), 238-252.
18.Bodin L. and Golden B. (1981). Classification in vehicle routing and scheduling: Networks, Vol. 11, pp.97-108.
19.Chen, C. Y., & Kornhauser, A. L. (1990). Decomposition of convex mulitcommodity network flow problem: Report SOR-90-19, Dept. of Civil Engineering and Operations Research, Princeton University, Princeton, NJ.
20.Chu, J., Yan, S., and Huang, H. (2017). A Multi-Trip Split-Delivery Vehicle Routing Problem with Time Windows for Inventory Replenishment Under Stochastic Travel Times: Networks and Spatial Economics, Vol. 17, Issue 1, pp. 41-68.
21.Devari, A., Nikolaev, A.G., He, Q. (2017). Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store customers. Transp. Res. Part E Logist. Transp. Rev. 105, 105–122. https://doi.org/10.1016/j.tre.2017.06.011
22.Ensafian, H., Andaryan, A.Z. , Bell, M.G.H., Geers, D.G., Kilby, P. , Li, J. (2023). Cost-optimal deployment of autonomous mobile lockers co-operating with couriers for simultaneous pickup and delivery operations: Transportation Research Part C: Emerging Technologies Volume 146, January 2023, 103958.
23.Goeke, D. (2019). Granular tabu search for the pickup and delivery problem with time windows and electric vehicles: European Journal of Operational Research, Vol. 278, Issue 3, pp. 821-836.
24.Kennington, J., & Shalaby, M.(1977). An effective subgradient procedure for minimal cost multicommodity flow problems: Management Science, 23(9), 994-1004.
25.Li, J., Ensafian, H., Bell, M.G.H., Geers, D.G. (2021). Deploying autonomous mobile lockers in a two-echelon parcel operation: Transportation Research Part C: Emerging Technologies Volume 128, July 2021, 103155.
26.Lu, C.C., Yan, S. and Huang, Y.W. (2018). Optimal scheduling of a taxi fleet with mixed electric and gasoline vehicles to service advance reservations: Transportation Research Part C: Emerging Technologies, Vol. 93, pp. 479-500.
27.Mahmoudi, M., & Zhou, X. (2016). Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations: Transportation Research Part B: Methodological, Vol. 89, pp. 19-42.
28.Mesquita, M. and Paixão, J. (1992). Multiple Depot Vehicle Scheduling Problem: A New Heuristic Based on Quasi-Assignment Algorithms: Computer-Aided Transit Scheduling. M. Desrochers and J.-M. Rousseau, Springer Berlin Heidelberg. 386, pp. 167-180.
29.Song, M., Cheng, L., Du, M., Sun, C. Ma, J. Ge, H. (2023). Charging station location problem for maximizing the space-time-electricity accessibility: A Lagrangian relaxation-based decomposition scheme: Expert Systems with Applications Volume 222, 15 July 2023, 119801.
30.Schwerdfeger, S. & Boysen, N. (2020). Optimizing the changing locations of mobile parcel lockers in last-mile distribution: European Journal of Operational Research, Vol. 285, Issue 3, 1077-1094.
31.Sitek, P., Wikarek, J., Rutczyńska-Wdowiak, K., Bocewicz, G., and Banaszak, Z. (2021). Optimization of capacitated vehicle routing problem with alternative delivery, pick-up and time windows: A modified hybrid approach: Neurocomputing, Vol. 423, pp. 670-678.
32.Simpson, R. W. (1996). Scheduling and Routing Models for Airline Systems.
33.Wang, Y., Zhang,Z., Huisman, D., D′Ariano,A., Zhang,J. (2022). A Lagrangian relaxation approach based on a time-space-state network for railway crew scheduling: Computers & Industrial Engineering Volume 172, Part A, October 2022, 108509
34.Yan, S. and Chen, H.-L. (2002). A scheduling model and a solution algorithm for inter-city bus carriers: Transportation Research Part A: Policy and Practice 36(9), pp. 805-825.
35.Yan, S., Lin, C.-K. and Chen, S.-Y. (2014). Logistical support scheduling under stochastic travel times given an emergency repair work schedule: Computers & Industrial Engineering 67, pp. 20-35.
36.Yan, S. and Young, H.-F. (1996). A decision support framework for multi-fleet routing and multi-stop flight scheduling: Transportation Research Part A: Policy and Practice 30(5), pp. 379-398.
37.Zhang, C., Gao, Y., Yang, L., Gao, Z., Qi, J. (2020). Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation: Transportation Research Part B: Methodological, Vol. 134, pp. 64-92.
38.Zheng, J., Zhong, J., Chen, M., He, K. (2023). A reinforced hybrid genetic algorithm for the traveling salesman problem: Computers & Operations Research Volume 157, September 2023, 106249.
指導教授 顏上堯(Shang-Yao Yan) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明