博碩士論文 110229006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.145.75.103
姓名 張耀文(Yao-Wun Jhang)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 低質量X光雙星4U 1820-30之軌道週期演化與軌道相關光變之研究
(Study of Orbital Period Evolution and Superhump Modulation of Low Mass X-ray Binary 4U 1820-30)
相關論文
★ 長期監測低質量X-Ray雙星4U 1820-30之軌道週期演化及運行機制★ 利用鹿林前山一米望遠鏡對低質量X-射線雙星 XTE J1118+480 (KV UMa) 之光學波段時變研究
★ 利用參數化的方法研究低質量X光雙星系統 X1916-053 的X光dip之性質★ 長期監測吸積驅動毫秒波霎SAX J1808.4-3658之時變性質
★ 吸積驅動毫秒脈衝星 XTE J1814-338 之軌道參數及不同能量間相位延遲之研究★ 吸積毫秒脈衝星XTE J0929-314之不同能量間脈衝相位關係之研究
★ 吸積毫秒脈衝星SAX J1808.4-3658於2002年爆發之不同能量間脈衝相位關係之研究★ 低質量X光食雙星EXO 0748-676之軌道週期改變之研究
★ 使用鹿林一米望遠鏡對黑洞雙星Swift J1753.5-0127及A0620-00之可見光波段時變研究★ 低質量X光雙星4U1820-30之長週期X-ray光變改變之研究
★ 以X射線連續光譜限制在GX 339-4中的黑洞的自旋★ Applications of the Hilbert-Huang Transform on the Non-stationary Astronomical Time Series
★ 低質量 X 光雙星 4U 1323-62 和 4U 1254-69 之軌道週期演化★ 高質量 X 光雙星 LMC X-4 之軌道與自轉參數變化之研究
★ 利用巡天計畫資料研究激變變星的長周期光變現象★ 以全天監測X光望遠鏡觀測資料進一步研究高質量X光雙星天鵝座X-3之軌道週期變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 4U 1820-30是位於球狀星團NGC 6624中心附近的低質量X光雙星系統,由一顆中子星與一顆白矮星所組成,具有目前已知低質量X光雙星最短的685秒軌道週期。Rappaport et al. (1987)根據理論計算得出4U 1820-30的軌道週期變化率應為正值,但相關的觀測結果卻顯示軌道週期變化率為負值,此理論值與觀測值不符合的現象可能由球狀星團中的重力加速度引起。本論文目標為探討4U 1820-30之軌道週期演化。我們使用2017至2022年NICER的觀測數據,以Peuten et al. (2014)提出的線性星曆表(linear ephemeris)做疊合得到疊合光變曲線(folded light curve),並以一階諧波擬合求得波峰對應之軌道相位值,結合1976至2011年過往之研究結果,得出時間跨度(time span)長達46.3年的軌道相位演化曲線,利用二階多項式擬合軌道相位演化曲線得出觀測到的軌道週期$P=685.011968pm0.000021 s$及軌道週期變化率$dot{P}/P=(-5.206pm0.134) imes10^{-8} yr^{-1}$。而在三階多項式擬合中,在$|ddot{P}|<5.48 imes10^{-22} ss^{-2}$的2σ上限內並未明顯檢測到二階軌道週期變化率。我們進一步討論了可能的系統內在軌道週期變化率,由於其中存在太多不確定性,我們認為觀測到的軌道週期變化率不適合用於推斷NGC 6624中4U 1820-30的重力加速度。此外,我們在NICER收集到的X光光變曲線中還檢測到了$691.6pm0.7 s$週期的光變(periodic modulation),與Wang & Chakrabarty (2010)利用哈伯太空望遠鏡在遠紫外線波段中發現的superhump週期一致,我們認為此週期光變很可能是由於低質量X光雙星系統的$0.8pm0.1$天吸積盤進動週期所引起。
摘要(英) 4U 1820-30, a low mass X-ray binary (LMXB), located near the center of the globular cluster NGC 6624, consists of a neutron star and a white dwarf. It has the shortest orbital period of 685s in all of the known LMXBs. For its orbital period derivative, the theoretical value evaluated by Rappaport et al. (1987) should be positive, but the observational results showed that it is negative. This discrepancy is possible due to the gravitational acceleration in the globular cluster. The motivation of this thesis is to investigate the orbital period evolution and superhump modulation of 4U 1820-30. We used light curves collected by NICER from 2017 to 2022. The orbital modulation profiles were obtained by folding the light curves with the linear ephemeris proposed by Peuten et al. (2014) and the maximum of the profiles, evaluated by fitting a single sinusoidal function, were selected as the fiducial point of the orbital phases. Combined with previous results from 1976 to 2011, we obtained the orbital phase evolution with a time span of 46.3 years. Using a quadratic function to fit the orbital phase evolution, we obtained the observed orbital period of $P=685.011968pm0.000021 s$ and the orbital period derivative of $dot{P}/P=(-5.206pm0.134) imes10^{-8} yr^{-1}$. From the fitting of a cubic function, we found there is no second order orbital period derivative is significantly detected with 2σ upper limit of $|ddot{P}|<5.48 imes10^{-22} ss^{-2}$. We further discuss the possible intrinsic orbital derivative and argue that the observed orbital period derivative is improper to infer the gravitational acceleration of 4U 1820-30 in NGC 6624 because there are too much uncertainty in it. Furthermore in the X-ray light curve collected by NICER, we detected a periodic modulation with a period of $691.6pm0.7 s$, which is consistent with the superhump period discovered by Wang & Chakrabarty (2010) using the Hubble Space Telescope in the far-ultraviolet band. We believe that such periodic modulation is likely caused by a period of $0.8pm0.1$ day the precession of accretion disk.
關鍵字(中) ★ 雙星
★ 低質量X光雙星
★ NICER
★ 時序分析
關鍵字(英) ★ Binary
★ X-ray Binary
★ NICER
★ Timing Analysis
論文目次 1 緒論 (Introduction) 1
1.1 X 光雙星 (X-ray Binary) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 低質量 X 光雙星 (Low Mass X-ray Binary) . . . . . . . . . . . . . . 1
1.1.2 高質量 X 光雙星 (High Mass X-ray Binary) . . . . . . . . . . . . . . 2
1.2 4U 1820-30 簡介 (Introduction of 4U 1820-30) . . . . . . . . . . . . . . . . . 3
1.3 論文概述 (Outline of This Thesis) . . . . . . . . . . . . . . . . . . . . . . . . 9
2 觀測與數據處理 (Observation and Data Reduction) 11
2.1 NICER 簡介 (Introduction of NICER) . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 X-ray Timing Instrument (XTI) . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Focal Plane Modules (FPMs) . . . . . . . . . . . . . . . . . . . . . . 13
2.2 觀測數據 (Observation Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 目錄結構 (Directory Structure) . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 事件標誌 (Event Flags) . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 事件檔案 (Event files) . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 數據處理 (Data Reduction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 數據過濾 (Data Filtering) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 數據分析 (Data Analysis) 30
3.1 相位分析 (Phase Analysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 數據分組 (Group Data) . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 趨勢移除 (Trend Remove) . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 軌道相位 (Orbital Phase) . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.4 相位演化 (Phase Evolution) . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 尋找 Superhump 光變 (Search for Superhump Modulation) . . . . . . . . . . . 39
3.2.1 Lomb-Scargle Periodogram (LS Periodogram) . . . . . . . . . . . . . 39
3.2.2 質量比 (Mass Ratio) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 討論 (Discussion) 43
4.1 軌道週期 (Orbital Period) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Superhump 光變 (Superhump Modulation) . . . . . . . . . . . . . . . . . . . 48
5 結論 (Summary) 49
A 內在軌道週期變化率推導 53
B α 與 1 − β 關係推導 62
參考文獻 Anderson, S. F., Margon, B., Deutsch, E. W., Downes, R. A., & Allen, R. G. 1997, ApJ, 482,
L69
Baumgardt, H., He, C., Sweet, S. M., et al. 2019, MNRAS, 488, 5340
Bevington, P. R., Robinson, D. K., Blair, J. M., Mallinckrodt, A. J., & McKay, S. 1993, Com-
put. Phys., 7, 415
Burderi, L., Di Salvo, T., Riggio, A., et al. 2010, A&A, 515, A44
Callanan, P. J., Grindlay, J. E., & Cool, A. M. 1995, PASJ, v. 47, p. 153-162., 47, 153
Chou, Y., & Grindlay, J. 2001, ApJ, 563, 934
Chou, Y., Grindlay, J., & Bloser, P. 2001, ApJ, 549, 1135
Church, M., Dotani, T., Bałucińska-Church, M., et al. 1997, ApJ, 491, 388
Di Salvo, T., Burderi, L., Riggio, A., Papitto, A., & Menna, M. 2008, MNRAS, 389, 1851
Farrell, S., Barret, D., & Skinner, G. 2009, MNRAS, 393, 139
Giacconi, R., Murray, S., Gursky, H., et al. 1974, ApJS, 27, 37
Gieles, M., Balbinot, E., ISM Yaaqib, R., et al. 2018, MNRAS, 473, 4832
Goodchild, S., & Ogilvie, G. 2006, MNRAS, 368, 1123
Grindlay, J., Gursky, H., Schnopper, H., et al. 1976, ApJ, 205, L127
Grindlay, J., Hertz, P., Steiner, J., Murray, S., & Lightman, A. 1984, ApJ, 282, L13
Harvey, D., Skillman, D. R., Patterson, J., & Ringwald, F. 1995, PASP, 107, 551
Harvey, D. A., Skillman, D. R., Kemp, J., et al. 1998, ApJ, 493, L105
Haswell, C. A., King, A. R., Murray, J. R., & Charles, P. A. 2001, MNRAS, 321, 475
Hellier, C. 2001, Cataclysmic Variable Stars-how and why they vary (Springer Science & Busi-
ness Media)
Hu, C.-P., Chou, Y., & Chung, Y.-Y. 2008, ApJ, 680, 1405
Iaria, R., Sanna, A., Di Salvo, T., et al. 2021, A&A, 646, A120
Iaria, R., Gambino, A., Di Salvo, T., et al. 2018, MNRAS, 473, 3490
Jiang, L., Chen, W.-C., & Li, X.-D. 2017, ApJ, 837, 64
Keek, L., Heger, A., et al. 2012, ApJ, 752, 150
Kuulkers, E., den Hartog, P. i., Verbunt, F., et al. 2003, A&A, 399, 663
Lomb, N. R. 1976, Ap&SS, 39, 447
Morgan, E. H., Remillard, R. A., & Garcia, M. R. 1988, ApJ, 324, 851
Neil, E. T., Bailyn, C. D., & Cobb, B. E. 2007, ApJ, 657, 409
O’Donoghue, D., & Charles, P. 1996, MNRAS, 282, 191
Paczynski, B. 1971, ARA&A, 9, 183
Patterson, J., Kemp, J., Saad, J., et al. 1997, PASP, 109, 468
Patterson, J., Mineshige, S., & Wheeler, J. 1999, Universal Academic Press, Tokyo, 61
Patterson, J., Kemp, J., Harvey, D. A., et al. 2005, PASP, 117, 1204
Perera, B., Stappers, B., Lyne, A., et al. 2017a, MNRAS, 468, 2114
—. 2017b, MNRAS, 471, 1258
Peuten, M., Brockamp, M., Kuepper, A. H., & Kroupa, P. 2014, ApJ, 795, 116
Ponti, G., De, K., Munoz-Darias, T., Stella, L., & Nandra, K. 2017, MNRAS, 464, 840
Priedhorsky, W., & Terrell, J. 1984, ApJ, 284, L17
Prodan, S., & Murray, N. 2012, ApJ, 747, 4
Rappaport, S., Nelson, L., Ma, C., & Joss, P. 1987, ApJ, 322, 842
Retter, A., Chou, Y., & Bedding, T. 2002, in The Physics of Cataclysmic Variables and Related
Objects, Vol. 261, 527
Sansom, A. E., Watson, M. G., Makishima, K., & Dotani, T. 1989, PASJ, 41, 591
Scargle, J. D. 1982, ApJ, Part 1, vol. 263, Dec. 15, 1982, p. 835-853., 263, 835
Schwarzenberg-Czerny, A. 1989, MNRAS, 241, 153
Šimon, V. 2003, A&A, 405, 199
Smale, A., Mason, K., & Mukai, K. 1987, MNRAS, 225, 7P
Smale, A. P., Mason, K. O., Williams, O. R., & Watson, M. G. 1989, PASJ, 41, 607
Stella, L., Priedhorsky, W., & White, N. 1987, ApJ, 312, L17
Strohmayer, T. E., & Brown, E. F. 2002, ApJ, 566, 1045
Tan, J., Morgan, E., Lewin, W., et al. 1991, ApJ, 374, 291
Tavani, M. 1991, Nature, 351, 39
Van der Klis, M., Hasinger, G., Verbunt, F., et al. 1993a, A&A, 279, L21
Van der Klis, M., Hasinger, G., Dotani, T., et al. 1993b, MNRAS, 260, 686
Walter, F., Mason, K., Clarke, J., et al. 1982, ApJ, 253, L67
Wang, Z., & Chakrabarty, D. 2010, ApJ, 712, 653
Warner, B. 1995, Cambridge Astrophysics Series, 28
White, N., & Swank, J. 1982, ApJ, 253, L61
Whitehurst, R. 1988, MNRAS, 232, 35
Whitehurst, R., & King, A. 1991, MNRAS, 249, 25
Yoshida, K., Inoue, H., Mitsuda, K., Dotani, T., & Makino, F. 1995, PASJ, v. 47, p. 141-152.,
47, 141
Zdziarski, A. A., Gierliński, M., Wen, L., & Kostrzewa, Z. 2007a, MNRAS, 377, 1017
Zdziarski, A. A., Wen, L., & Gierliński, M. 2007b, MNRAS, 377, 1006
Zhang, Z., Gilfanov, M., Voss, R., et al. 2011, A&A, 533, A33
Zurita, C., Casares, J., Shahbaz, T., et al. 2002, MNRAS, 333, 791
指導教授 周翊(Yi Chou) 審核日期 2023-6-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明