博碩士論文 109256018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.131.13.37
姓名 徐健程(Chien Cheng Hsu)  查詢紙本館藏   畢業系所 光電科學研究所碩士在職專班
論文名稱 以二維電洞氣感測 DNA
(Two Dimensional Hole Gas for DNA Sensing)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) DNA 檢測是一項關鍵的生物技術,用於檢測個體間的遺傳差異。
本研究在 Si 基板上成長 AlGaN/GaN/BN,得到高濃度的二維電洞氣
(two dimensional hole gas, 2DHG),並以此測試 DNA 的感測效能。
使用 Si 基板和不同材料(AlGaN、BN..)製成的半導體元件具有以
下優點,Si 成本低、且與成熟的 CMOS 技術相容,極具商業價值。
其次,透過選擇不同的材料堆疊,可以調節元件的能隙和界面特性,
進一步優化其檢測性能。此外,使用電壓和電流差異檢測 DNA 差異
可簡化實驗流程,並提供快速、高效的檢測結果。
然而,在未來的研究中需要克服以下問題,需要進一步研究不同材
料堆疊對檢測性能的影響,以找到最佳組合並最大程度地提高靈敏度
和準確性。其次,需要解決樣本前處理、干擾和檢測靈敏度等方面的
挑戰,特別是在高濃度 DNA 樣本的檢測中。最後,需要開展更深入
的研究,以確定電壓和電流差異與 DNA 差異之間的關聯性,並進一
步改進檢測的準確性和可靠性。總的來說,使用 Si 基板和不同材料
堆疊的半導體元件以電壓和電流差異檢測 DNA 差異具有優越的靈敏
度、調控性和高效性。未來的研究應該集中在克服上述挑戰,以推動
這一 DNA 檢測方式進一步發展。
摘要(英) DNA testing is a crucial biotechnology used to detect genetic
differences between individuals. This study investigates the feasibility of
DNA testing by the two dimensional hole gas (2DHG) formed by
AlGaN/GaN/BN grown on Si substrates.
The semiconductor devices fabricated on Si substrates with different
materials (AlGaN, BN, etc.) offer several advantages. Si is cost effective
and compatible with the mature CMOS technology, being suitable for
commercialization. Furthermore, by selecting different material stackings,
the device′s bandgap and interface properties can be adjusted to further
optimize its detection performance. Additionally, detecting DNA
differences through voltage and current variations simplifies the
experimental process and provides rapid and efficient results.
However, several challenges need to be addressed in future research.
It is necessary to further investigate the impact of different material
stackings on detection performance to identify the optimal combination
and maximize sensitivity and accuracy. Furthermore, challenges related to
sample preparation, interference, and detection sensitivity need to be
addressed, particularly in the detection of high-concentration DNA
samples. Finally, more in-depth research is needed to determine the
correlation between voltage and current variations and DNA differences.
關鍵字(中) ★ DNA
★ 感測器
★ 二維電洞氣
關鍵字(英) ★ DNA
★ Sensing
★ Two Dimensional Hole Gas
論文目次 目錄
論文摘要.................................................................................................................... VII
Abstract.....................................................................................................................VIII
致謝..............................................................................................................................IX
目錄...............................................................................................................................X
圖目錄........................................................................................................................ XII
表目錄.......................................................................................................................XIII
第一章 緒論............................................................................................................1
1.1 前言............................................................................................................1
1.2 AlGaN 生醫感測器的發展現況..............................................................1
1.3 AlGaN 生醫感測器的技術瓶頸..............................................................2
1.4 二維電洞氣的形成原理(Two-dimensional hole gas) ....................................3
1.5 研究動機及章節架構.................................................................................4
第二章 實驗原理、步驟與儀器............................................................................5
2.1 磊晶結構與元件製備......................................................................................5
2.2 DNA 樣本的製備............................................................................................7
2.3 儀器介紹電源供應器 SMU(Keysight 2400)..................................................8
第三章 結果分析與討論......................................................................................10
3.1 DNA 濃度對 AlGaN 電壓電流之影響 ........................................................10
3.2 使用不同濃度樣本對 AlGaN 製成的 IV 的表現........................................16
3.2.1 1’40’’ AlGaN/ 60-min GaN/BN/Si 在電壓電流上的表現(M5703) .16
3.2.2 10s AlN -Si(100)在電壓電流上的表現 (M5796) ............................20
XI
3.2.3 5s AlN-Si(100)在電壓電流上的表現(M5788) .................................24
3.2.4 3s AlN-Si(100)在電壓電流上的表現(M5784) .................................28
3.2.5 不同 AlGaN 比對 SI-Si(100)電壓電流上的表現(SI-Si(100)) .........32
3.2.6 比對不同製程 M5742 電壓電流上的表現(M5742).........................36
第四章 結論與未來瞻望......................................................................................42
4.1 結論................................................................................................................42
4.2 未來瞻望........................................................................................................43
參考文獻 [1] Wang, J., Zhang, Y., Yang, Y., & Li, Y. (2022). Advances in DNA measurement
techniques and AlGaN biomedical sensors. Biosensors, 12(1), 10.
[2] Sun, Y., Zhang, X., Zhang, X., Tang, J., & Shen, Y. (2021). Recent advances in
DNA measurement techniques. Biosensors and Bioelectronics, 183, 113248.
[3] Chen, C. Y., Kuo, Y. C., Li, Z., Xie, M. H., Li, Z. J., Zhang, R., ... & Feng, Z. H.
(2020). AlGaN ultraviolet photodetectors with AlN interlayers grown on patterned
sapphire substrates. Journal of Applied Physics, 128(3), 035702.
[4] Liu, Y., et al. (2021). Advances in biological detection technologies: Principles,
applications, and challenges. Biosensors and Bioelectronics, 193, 113550.
[5] Smith, J., et al. (2020). Recent advances in medical diagnosis using biosensors.
Sensors and Actuators B: Chemical, 304, 127212.
[6] Wang, Z., et al. (2019). Advances in biological imaging techniques for biomedical
applications. Journal of Biophotonics, 12(2), e201800189.
[7] Li, X., et al. (2022). Emerging trends in drug detection using biosensors. Trends in
Analytical Chemistry, 146, 117204.
[8] Anderson, J. M., & Shive, M. S. (1997). Biodegradation and biocompatibility of
PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 28(1), 5-24.
[9] Leung, H., & Yang, L. (2006). Noise reduction techniques in electronic systems.
2nd ed. John Wiley & Sons.
[10] Li, L., et al. (2017). "Direct observation of the layer-dependent electronic
structure in phosphorene." Nature Nanotechnology, 12(1), 21-25.
[11] Stoneham, A. M. (1975). "Theory of Defects in Solids: Electronic Structure of
Defects in Insulators and Semiconductors." Oxford University Press, USA.
45
[12] Jamshidi, P., & Pahl, C. (2016). A survey of migration techniques for cloud
computing. Journal of Network and Computer Applications, 63, 8-25.
[13] Neamen, D. (2002). "Semiconductor Physics and Devices: Basic Principles."
McGraw-Hill Science/Engineering/Math.
[14] Mishra, U. K., Shen, L., & Kazior, T. E. (2008). SiC device technology for highpower and high-temperature applications. Proceedings of the IEEE, 96(2), 287-305.
[15] Mishra, U. K., Shen, L., & Kazior, T. E. (2008). GaAs device technology for
microwave applications. Proceedings of the IEEE, 96(2), 287-305.
[16] Tan, L. S. (2014). Fundamentals of semiconductor devices. John Wiley & Sons.
[17] Hull, R. (1999). Properties of crystalline solids: an introduction. John Wiley &
Sons.
[18] Kittel, C. (1996). Introduction to solid state physics. John Wiley & Sons.
[19] Smith, J. A., Johnson, R. W., Thompson, S. G., & Davis, M. J. (2018). Designing
Epitaxial Structures for Enhanced Semiconductor Performance. Journal of Applied
Physics, 124(6), 064301.
[20] Chen, L., Li, Q., Wang, H., & Zhang, J. (2019). Techniques for Thin Film
Deposition: A Comprehensive Review. Journal of Vacuum Science & Technology A,
37(4), 041501.
[21] Kim, Y. S., Lee, J. H., Park, S. H., & Choi, J. H. (2020). Photoresist Coating Methods
for Advanced Lithography. Journal of Microlithography, Microfabrication, and
Microsystems, 19(3), 031201.
[22] Zhang, Z., Li, L., & Zhang, X. (2019). Preparation and characterization of DNA
powders for gene delivery. Methods in Molecular Biology, 1943, 181-188.
46
[23] Li, J., Liu, F., Shao, Y., Yu, X., & Zhang, X. (2018). A comparative study of
phosphate-buffered saline and saline as a medium for in vitro cell culture.
Experimental and Therapeutic Medicine, 16(3), 2073-2082.
[24] Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple
regression/correlation analysis for the behavioral sciences (3rd ed.). Routledge.
[25]Gelman, A., & Hill, J. (2006). Data analysis using regression and
multilevel/hierarchical models. Cambridge University Press.
指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2023-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明