博碩士論文 108322087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:13.59.236.101
姓名 張恩慈(En-Tzu Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 偏鄉物流之行為意向與關鍵因素間交互影響關係之研究-以尖石鄉為例
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique
★ 含額外限制式動態用路人均衡模型之研究★ 動態起迄旅次矩陣推估模型之研究
★ 動態號誌時制控制模型求解演算法之研究★ 不同決策變數下動態用路人均衡路徑選擇模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 無人機近幾年來發展得非常快速,從原本用於軍事用途,如今可應用的範圍可說相當廣泛,而物流正是無人機能發展的重要方向。因為無人機具有方便高效、節約土地資源和基礎設施等特性,這對於完成偏鄉物流「最後一哩路」是非常適合的。
本研究整合了情境式問卷進行簡單隨機抽樣,於新竹縣尖石鄉蒐集336個有效樣本,綜合計畫行為理論(theory of planned behavior, TPB)和科技接受模式(technology acceptance model, TAM)兩種模式,再加上感知風險構面,設計本研究之理論框架,利用偏最小平方結構方程式(partial least squares structural equation modeling, PLS-SEM)來檢驗關鍵因素間的路徑顯著性,以調查使用無人機於偏鄉物流服務各因素間的交互影響關係。
本研究內容包括:(1)計畫行為理論及科技接受模型的因子以及其他關鍵因素(例如感知風險)是否會影響行為意向。結果顯示,除了感知行為控制對使用偏鄉無人機的行為意向之路徑沒有顯著性影響之外,其餘路徑之直接與間接效果皆呈現顯著性影響;(2)異質性分析利用多群組分析(partial least squares multi-group analysis, PLS-MGA)得出性別及年齡存在部分路徑的區隔效果,即是可觀測異質性呈現顯著性的效果;而不可觀測異質性分析是透過PLS-POS找出樣本存有兩個潛在類別,本研究將此兩個潛在類別命名為「內向使用者」和「外向使用者」,不可觀測異質性也呈現顯著性效果。最後分析結果並探討偏鄉無人機物流服務的管理意涵策略,並提出結論與建議。
摘要(英) In recent years, drone development has been very fast, from the original military use, now it can be applied to a wide range of applications, and logistics is precisely an important direction for the development of drone. Because drones are convenient, efficient, and save land resources and infrastructure, they are very suitable for accomplishing the "last mile" of logistics in remote villages.
This study integrates a contextual questionnaire for simple random sampling, and collects 336 valid samples in Jianshi Township, Hsinchu County, Taiwan, integrating two models, namely, theory of planned behavior (TPB) and technology acceptance model (TAM), together with the perceived risk profile, to design the theoretical framework of this study.
The theoretical framework of this study was designed to examine the significance of the paths between the key factors using partial least squares structural equation modeling (PLS-SEM) to investigate the interaction between the factors of using drones in logistics services in remote area. This study includes:(1) whether the factors of program behavior theory and technology acceptance model as well as other key factors (e.g., perceived risk) affect behavioral intention. The results showed that, except for perceived behavioral control, which had no significant effect on the path of behavioral intention to use the remote drone, the direct and indirect effects of the other paths showed significant effects; (2) Heterogeneity analysis using partial least squares multi-group analysis (PLS-MGA) yielded that gender and age had a significant effect on behavioral intention. In this study, the two potential categories were named "introverted users" and "extroverted users", and the unobservable heterogeneity also showed a significant effect. Finally, we analyze the results and discuss the management implications of drone logistics services in remote areas, and provide conclusions and recommendations.
關鍵字(中) ★ 偏鄉無人機物流服務
★ 計畫行為理論
★ 科技接受模式
★ 偏最小平方結構方程式
★ 異質性分析
關鍵字(英) ★ Remote area drone logistics service
★ planning behavior theory
★ technology acceptance model
★ partial least square structure equation
★ heterogeneity analysis
論文目次 摘要 i
Abstract ii
誌謝 iii
圖目錄 vi
表目錄 vii
第一章 緒論 1
第二章 研究背景架構及假設 5
2.1無人機研究背景 5
2.2研究架構與假設 12
2.2.1計畫行為理論 12
2.2.2科技接受模型 14
2.2.3整合TPB與TAM模式 14
2.2.4感知風險 16
2.3 專家訪談 18
第三章 研究方法 23
3.1偏最小平方結構方程式 23
3.2考慮異質性的偏最小平方結構方程模式 25
3.2.1偏最小平方-多群組分析 25
3.2.2可觀測異質性 26
第四章 衡量標準 27
第五章 結果分析 28
5.1資料前處理與結果資料處理方式 28
5.2受訪者社經背景統計 29
5.3共同變異方法 32
5.4測量模式之信效度分析 32
5.4.1信度分析 32
5.4.2效度分析 35
5.5結構模式的假設驗證 36
5.6異質性分析 41
5.6.1可觀測的異質性 41
5.6.2不可觀測的異質性 44
5.7管理意涵 49
第六章 結論與建議 51
6.1結論 51
6.2建議 52
參考文獻 54
附錄一 58
參考文獻 [1] 內政部,2019,國土發展研究報告。
[2] 方宣又,2020,電動機車共享服務之行為意向與關鍵因素間的交互影響關係—以台北市地區,碩士論文,國立中央大學土木工程學系,桃園市。
[3] 日本樂天,2022,取自https://drone.rakuten.co.jp/en/.
[4] 行政院,2021,汽車運輸業管理規則。
[5] 交通部,2020,無人機整合示範計畫推動管理服務。
[6] 交通部。2021,無人機整合示範計畫II-物流運送之深化應用。
[7] 交通部運輸研究所,2022,推動我國無人機科技產業發展先期研究規劃。
[8] 交通部運輸研究所,2022,需求反應式公共運輸服務補貼制度檢討。
[9] 交通部運輸研究所,2023,交通部無人機科技產業發展策略規劃與執行。
[10] 無人機市場調查分析2022-2030. 取自https://droneii.com/drone-market-analysis-2022-2030
[11] 陳惠國,2021,研究分析方法講義,國立中央大學土木工程學系,桃園市。
[12] 經濟部,2022,建立無人機偏鄉後勤補給運送機制。
[13] Ajzen, I., 1991. The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
[14] ASCL, 2023. Accessed from https://www.acsl.co.jp/en/business/.
[15] Baron, R. M., Kenny, D. A., 1986. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 51(6):1173-1182
[16] Bagozzi, R. P., Yi, Y.,1991. Multitrait-multimethod matrices in consumer research. Journal of Consumer Research, 17(4), 426-439.
[17] Bagozzi, R. P., Baumgartner, H., Yi, Y., 1992. State versus action orientation and the theory of reasoned action: An application to coupon usage. Journal of Consumer Research, 18(4), 505-518.
[18] Becker, J. M., Rai, A., Ringle, C. M., Völckner, F., 2013. Discovering unobserved heterogeneity in structural equation models to avert validity threats. MIS Quarterly, 665-694.
[19] Bielefeld, F., Ajzen, I., and Schmidt, P., 2003. Choice of travel mode in the theory of planned behavior: The roles of past behavior, habit and reasoned action. Basic and Applied Social Psychology, 25(3), 175-187.
[20] Bonges III, H. A., Lusk, A. C., 2016. Addressing electric vehicle (EV) sales and range anxiety through parking layout, policy and regulation. Transportation Research Part A: Policy and Practice, 83, 63-73.
[21] Bruzzone, F. Cavallaro, F. Nocera, S. 2021. The integration of passenger and freight transport for first-last mile operations. Transport Policy, 100(), 31–48.
[22] Chin, W. W. 1998., The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.
[23] Chin, W. W., Newsted, P. R., 1999. Structural equation modeling analysis with small samples using partial least squares. Statistical Strategies for Small Sample Research, 1(1), 307-341.
[24] Chen, C. F., Chao, W. H., 2011. Habitual or reasoned? Using the theory of
planned behavior, technology acceptance model, and habit to examine switching intentions toward public transit. Transportation Research Part F: Traffic Psychology and Behaviour, 14(2), 128-137.
[25] Chen, H. K., Chou, H. W., Hung, S. C., 2019. Interrelationships between behaviour intention and its influential factors for consumers of motorcycle express cargo delivery service. Transportmetrica A: Transport Science, 15(2),
526-555.
[26] Choe, J. Y., Kim, J, J., Hwang, J. 2023. Innovative marketing strategies for the successful construction of drone food delivery services: Merging TAM with TPB. Journal of Travel & Tourism Marketing, 38(1), 16-30.
[27] Chowdhury, S., Emelogu, A., Marufuzzaman, M., Nurre, S. G., Bian, L., 2017. Drones for disaster response and relief operations: A continuous approximation model. International Journal of Production Economics, 188(), 167–184.
[28] Comrey, A. L., Lee, H. B., 2013. A first course in factor analysis. Psychology Press, New York.
[29] Davis, F. D., 1986. A technology acceptance model for empirically testing new end-user information systems: Theory and results. Doctoral dissertation, Massachusetts Institute of Technology.
[30] Davis, F. D., 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
[31] Davis, F. D., Bagozzi, R. P., Warshaw, P. R., 1989. User acceptance of computer echnology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
[32] Davis, F.D., Bagozzi, R.P. and Warshaw, P.R., 1989. User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
[33] Dishaw, M. T., Strong, D. M., 1999. Extending the technology acceptance
model with task–technology fit constructs. Information & Management, 36(1), 9-21.
[34] Fishbein, M., Ajzen, I., 1977. Belief, attitude, intention, and behavior: An introduction to theory and research.
[35] Fornell, C., Larcker, D. F., 1981. Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18, 39-51.
[36] Gefen, D., Straub, D., Boudreau, M. C., 2000. Structural equation modeling
and regression: Guidelines for research practice. Communications of The Association for Information Systems, 4(1), 7.
[37] Hair, J. F., Ringle, C. M., Sarstedt, M., 2011. PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
[38] Hair, J. F., Sarstedt, M., Ringle, C. M., Mena, J. A., 2012. An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433.
[39] Hair, J.F., Hult, G.T.M., Ringle, C., Sarstedt, M., 2014. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Thousand Oaks, CA: Sage.
[40] Hayes, A. F., Preacher, K. J., 2014. Statistical mediation analysis with a multicategorical independent variable. British Journal of Mathematical and Statistical Psychology, 67(3), 451-470.
[41] Henseler, J., 2012. PLS-MGA: A non-parametric approach to partial least squaresbased multi-group analysis. Challenges at the Interface of Data Analysis, Computer Science, and Optimization, 495-501.
[42] Hwang, J., Kim, W., Kim, J, J., 2020. Application of the value-belief-norm model to environmentally friendly drone food delivery services the moderating role of product involvement. International Journal of Contemporary Hospitality Management, 32(5), 1775-1794.
[43] Jöreskog, K. G., 1978. Structural analysis of covariance and correlation matrices. Psychometrika, 43(4), 443-477.
[44] Keil, M., Tan, B. C., Wei, K. K., Saarinen, T., Tuunainen, V., Wassenaar, A., 2000. A cross-cultural study on escalation of commitment behavior in software projects. MIS Quarterly, 299-325.
[45] Lohmöller, J. B., 1989. Predictive vs. Structural modeling: PlS vs. ML. Latent Variable Path Modeling with Partial Least Squares, 199-226.
[46] MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., Sheets, V., 2002. A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83.
[47] Mathew, A, O., Jha, A, N., Lingappa, A, K., Sinha, P. Attitude towards Drone Food Delivery Services—Role of Innovativeness, Perceived Risk, and Green Image. Journal of Open Innovation: Technology, Market, and Complexity, 7(2), 144.
[48] Mattila, A. S., Enz, C. A., 2002. The role of emotions in service encounters. Journal of Service Research, 4(4), 268-277.
[49] Mayer, K. J., & Sparrowe, R. T., 2013. From the editors—Integrating theories in AMJ articles. Academy of Management Journal, 56(4), 917–922.
[50] Moan, I. S., & Rise, J., 2011. Predicting intentions not to “drink and drive” using an extended version of the theory of planned behaviour. Accident Analysis & Prevention, 43(4), 1378-1384.
[51] Nunnally, J. C., 1994. Psychometric Theory 3E, Tata McGraw-Hill Education.
[52] Podsakoff, P. M., Organ, D. W., 1986. Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4), 531-544.
[53] Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P., 2003. Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879.
[54] Preacher, K. J., & Hayes, A. F., 2004. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717-731.
[55] Preacher, K. J., & Hayes, A. F., 2008. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891.
[56] Ramadan, Z, B., Farah, M, F., Mrad, 2017. M. An adapted TPB approach to consumers’ acceptance of service-delivery drones. Technology Analysis & Strategic Management 29(7), 817-828.
[57] Roscoe, J. T., 1975. Fundamental research statistics for the behavioral sciences. Holt Rinehart & Winston.
[58] Rucker, D. D., Preacher, K. J., Tormala, Z. L., & Petty, R. E., 2011. Mediation analysis in social psychology: Current practices and new recommendations. Social and Personality Psychology Compass, 5(6), 359-371.
[59] Shaffer, J. P., 1995. Multiple hypothesis testing. Annual Review of Psychology, 46(1), 561-584.
[60] Shrout, P. E., & Bolger, N., 2002. Mediation in experimental an nonexperimental studies: new procedures and recommendations. Psychological Methods, 7(4), 422.
[61] Spector, P. E., 1987. Method variance as an artifact in self-reported affect and perceptions at work: Myth or significant problem? Journal of Applied Psychology, 72(3), 438.
[62] Wold, H., 1966. Estimation of principal components and related models by iterative least squares. Multivariate Analysis, 391-420.
[63] Werts, C. E., Linn, R. L., & Jöreskog, K. G., 1974. Intraclass reliability estimates: Testing structural assumptions. Educational and Psychological Measurement,34(1), 25-33.
[64] Wingcopter, 2022. Accessed from https://wingcopter.com/.
[65] Wold, H., 1982. Soft modeling: the basic design and some extensions. Systems Under Indirect Observation, 2, 1-54.
[66] Wold, H., 1985. Partial least squares. S. Kotz and NL Johnson (Eds.), Encyclopedia of statistical sciences.6. 581-591.
[67] Yoo, W., Yu, E., Jung, J., Drone delivery: Factors affecting the public’s attitude and intention to adopt. Telematics and Informatics.35(6), 1687-1700.
[68] Zipline, 2016. Accessed from https://www.flyzipline.com/instant-delivery.
指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2023-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明