博碩士論文 110229007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.15.141.171
姓名 許博智(Po-Chih Hsu)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 耀變體之光譜性質及無線電波輻射時變性
(Spectral Properties and Radio Variability of Blazars)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了有全方位的了解耀變體的光譜特性。在研究中,我們使用第五版Roma-BZCAT多波段耀變體目錄(the 5-th edition Roma-BZCAT Multi-frequency Catalog of Blazars)、ALMA校準目錄(ALMA Calibrator Catalog)以及各頻率的觀測資料進行耀變體的光譜特性分析。在1366個耀變體樣本中,我們計算無線電-毫米波頻譜指數和無線電頻譜指數,並擬合其全頻率頻譜能量分佈。分析表明,在蝎虎座天體(BL Lacertae object)與平譜電波類星體(flat spectrum radio quasar)中,相較於無線電-毫米波頻譜指數,無線電頻譜指數顯示出更廣泛的分佈。此外,我們將平譜電波類星體根據紅移,分為高紅移和低紅移的子分類。研究表明,高紅移平譜電波類星體表現出相較低紅移平譜電波類星體和蝎虎做天體有更平緩的無線電頻譜指數。此外,我們發現蝎虎座天體及平譜電波類星體的無線電-毫米波頻譜指數與無線電頻譜指數和同步輻射頻率峰值與光度之間沒有顯著相關性。

此外,我們還研究耀變體本質上的差異,藉由探索耀變體的無線電時變性。我們研究所使用的的耀變體取自於15 GHz歐文斯谷無線電天文台的耀變體監測計劃(15 GHz Owens Valley Radio Observatory Blazar Monitoring Program),此計畫自2008年開始使用15 GHz觀測耀變體至今。在計畫監測的1157個耀變體中,我們研究耀變體時變震幅和特徵時變尺度(基於擬合結構函數(structure function)的計算結果),與特長基線干涉儀測量的毫弧秒尺度的核心尺寸之間的依賴性。我們發現,較緊湊的角核心尺寸表現出更大的時變震幅和更短的特徵時變尺度,而真實的核心尺寸與時變震幅以及特徵時變尺度也具有顯著相關。此外,在消除因星際散射造成角核心尺寸放大效應後,時變震幅與1 GHz的固有角核心尺寸具有顯著相關性。
摘要(英) To obtain a comprehensive understanding of the spectral properties of blazars, extensive analysis was conducted using the multi-frequency data from the 5-th edition Roma-BZCAT and ALMA Calibrator Catalog, along with other archival data. This involved calculating the radio-mm/radio spectral index and fitting broadband spectral energy distribution for 1366 sources. Analysis revealed that the radio spectral index displayed a broader distribution compared to the radio-mm spectral index of both BL Lacertae objects (BLOs) and flat-spectrum radio quasars (FSRQs).In addition, these FSRQs were categorized based on their redshifts into high-z and low-z FSRQs. The high-z FSRQs exhibit significantly flatter radio spectral index than the low-z FSRQs and BLOs. Additionally, we found no significant correlation between the radio-mm/radio spectral indices and the synchrotron peak frequencies and luminosities of both BLOs and FSRQs.


In addition, we also study the radio variability of blazars to investigate their intrinsically variable nature. We focus on the radio variability of 1157 blazars observed at 15~GHz through the Owens Valley Radio Observatory (OVRO) Blazar Monitoring Program. We investigate the dependence of the variability amplitudes and timescales, which were characterized based on model fitting to the structure functions, on the milliarcsecond core sizes measured by Very Long Baseline Interferometry. We find that the more compact sources at milliarcsecond scales demonstrate larger variability amplitudes and shorter variability timescales compared to the more extended sources. Moreover, linear physical core sizes versus variability amplitudes, and intrinsic timescales are also significantly correlated. Besides, the variability amplitudes have significant correlation with the 1~GHz intrinsic core sizes, which are derived by deconvoluting the broadening effects of the interstellar scattering.
關鍵字(中) ★ 活躍星系核
★ 耀變體
★ 光譜特性
★ 無線電光譜時變性
★ 星系黑洞物理
★ 星系噴流
★ 類星體
★ 星系無線電連續光譜
關鍵字(英) ★ active galactic nuclei
★ blazar
★ spectral properties
★ radio variability
★ physcis of black holes
★ jets of galaxies
★ quasars
★ radio continuum of galaxies
論文目次 電子論文授權書 Authorisation of the Electronic Thesis i
指導教授推薦書 Recommendation Letter from the Thesis Advisor iii
口試委員審定書 Verification from the Oral Examination Committee v
英文摘要 Abstract in English vii
中文摘要 Abstract in Chinese ix
誌謝 Acknowledgements xi
List of Figures xvii List of Tables xix

1 Introduction 1
1.1 AGN and Blazar ................................ 1
1.1.1 Radio-Loud AGNs ........................... 2
1.1.2 Radio-Quiet AGNs ........................... 3
1.2 Blazar Variability................................ 4
1.2.1 Intrinsic Variability of Blazars..................... 5
1.2.2 Extrinsic Radio Variability of Blazars................. 5
1.2.3 Goals of this Study ................. 6
1.3 AGN Radio Spectral Index........................... 7
1.4 Spectral Energy Distribution of Blazars.................... 8

2 Multi-frequency Data and Core Sizes Measurement 11
2.1 ROMA-BZCAT................................. 12
2.2 ALMA Calibrator Catalog(ACC)....................... 13
2.3 Faint Images of the Radio Sky at Twenty-centimeters (FIRST) ....... 14
2.4 Very Large Array Sky Survey(VLASS).................... 16
2.5 GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) 16
2.6 Wide-field Infrared Survey Explorer(WISE) ................. 17
2.7 Sloan Digital Sky Survey(SDSS) ....................... 18
2.8 XMM-OM.................................... 18
2.9 Swift-BAT.................................... 19
2.10 X-ray Multi-Mirror Newton(XMM-Newton) ................. 20
2.11 ROSAT ..................................... 20
2.12 Energetic Gamma-Ray Experiment Telescope (EGRET).................................... 21
2.13 Fermi Large Area Telescope (Fermi-LAT)................... 22
2.14 The 15 GHz OVRO Blazar Monitoring Program ............... 23
2.15 VLBI Multi-frequency Core Sizes Measurement............... 24

3 Analysis and Methodology 27
3.1 Unifying Observed Source Flux ........................ 27
3.1.1 WISE .................................. 28
3.1.2 SDSS................................... 29
3.1.3 XMM-OM................................ 30
3.1.4 Swift-BAT................................ 30
3.1.5 XMM-Newton.............................. 31
3.1.6 ROSAT ................................. 31
3.1.7 EGRET and Fermi-LAT ........................ 32
3.2 Fermi gamma-ray Upper limit Constraint................... 32
3.3 K-correction................................... 34
3.4 Spectral Energy Distribution of Blazars.................... 35
3.4.1 BLOs SED model fit .......................... 36
3.4.2 FSRQs SED model fit ......................... 38
3.4.2.1 FSRQ BH Mass Constraint ................. 39
3.5 Characterizing Blazar Variability Amplitudes and Timescales ........45
3.5.1 Deriving the Structure Function(SF)................. 47
3.5.2 Structure Function (SF) Fitting.................... 47

4 Results and Discussion 51
4.1 Blazar Spectral Index.............................. 51
4.1.1 Radio-mm and Radio Spectral Index of BLOs and FSRQs..... 51
4.1.1.1 Radio-mm/Radio Spectral Index of BLOs ......... 52
4.1.1.2 Radio-mm/Radio Spectral Index of FSRQs ........ 53
4.1.1.3 Comparison of BLO and FSRQ Spectral Indices ...... 53
4.1.1.4 Dependence of Radio-mm/Radio Spectral Index on Redshift 54
4.1.1.5 Discussion of Spectral Index of BLOs and FSRQs ..... 59
4.1.2 Dependence of Radio-mm/Radio Spectral Index on Observed/Linear Core Sizes.............................. 59
4.1.2.1 Dependence of Radio-mm Spectral Indices on Observed Core Sizes........................... 59
4.1.2.2 Dependence of Radio Spectral Indices on Observed Core Sizes.............................. 61
4.1.2.3 Dependence of Radio-mm Spectral Indices on Physical CoreSizes........................... 62
4.1.2.4 Dependence of Radio Spectral Indices on Physical Core Sizes 63
4.1.2.5 Discussion of Spectral index and Core Size Relationship . 65
4.2 SED Peak Frequency and Peak Luminosity Density of Blazars ....... 65
4.2.1 Comparison Between BLOs and FSRQs................ 66
4.2.2 Comparison With Spectral Indices .................. 69
4.2.3 Comparison With Jet Power...................... 71
4.2.4 Discussion of Peak Frequency and Peak Luminosity Density of Blazars 73
4.3 Milliarcsecond Core Size Dependence of the Radio Variability of Blazars .. 74
4.3.1 Dependence of Variability Amplitudes on Core Sizes ......... 74
4.3.1.1 Dependence of Variability Amplitudes on Observed Angu- larCoreSizes......................... 74
4.3.1.2 Dependence of Variability Amplitudes on Linear Core Sizes 80
4.3.1.3 Discussion of the Variability Amplitude and Core Size Relationship........................... 82
4.3.2 Dependence of Variability Timescale on Core Sizes ......... 83
4.3.2.1 Dependence of Characteristic Timescale on Angular Core Sizes.............................. 84
4.3.2.2 Dependence of Intrinsic Timescale on Linear Core Sizes ..85
4.3.2.3 Discussion of Dependence of Variability Timescale on Core Sizes.............................. 87
4.3.3 Examining the Effects of Interstellar Scattering at 1 GHz ...... 88
4.3.3.1 Derivation of Intrinsic and Scattering Sizes from the ObservedCoreSizes.......................88
4.3.3.2 Dependence of Long Term Intrinsic Variability on the Intrinsic, Scattering, and Observed Core Sizes ........ 90
4.3.3.3 Dependence of Variability Timescales on the Intrinsic, Scattering,andObservedCoreSizes............... 92
4.3.3.4 Dependence of Variability Amplitudes at 4 days on the Intrinsic, Scattering, and Observed Core Sizes ....... 92
5 Conclusion and Summary 97
6 Bibliography 101
參考文獻 Abdo A. A., et al., 2010, ApJ, 716, 30
Aeronautics N., Center S. A. G. S. F., 2018, Likelihood Overview, https: //fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/ Cicerone_Likelihood/Likelihood_overview.html
Ahnen M. L., et al., 2017, A&A, 603, A29
Alam S., et al., 2015, ApJS, 219, 12
Alam et al. 2016, VizieR Online Data Catalog, p. V/147
Alexander K. D., van Velzen S., Horesh A., Zauderer B. A., 2020, Space Sci. Rev., 216, 81
Antonucci R., 1993, ARA&A, 31, 473
Aranzana E., Ko ̈rding E., Uttley P., Scaringi S., Bloemen S., 2018, MNRAS, 476, 2501
Armstrong J. W., Rickett B. J., Spangler S. R., 1995, ApJ, 443, 209
Aschenbach B., Citterio O., Ellwood J. M., Jensen P., de Korte P., Peacock A., Willingale R., Burke W. R., 1986, in ESA Special Publication.
Atwood W. B., et al., 2009, ApJ, 697, 1071
Becker R. H., White R. L., Helfand D. J., 1995, ApJ, 450, 559
Beichman C. A., Neugebauer G., Habing H. J., Clegg P. E., Chester T. J., eds, 1988, Infrared Astronomical Satellite (IRAS) Catalogs and Atlases.Volume 1: Explanatory Supplement. Vol. 1
Bell M. E., et al., 2014, MNRAS, 438, 352
Bell M. E., Huynh M. T., Hancock P., Murphy T., Gaensler B. M., Burlon D., Trott C.,
Bannister K., 2015, MNRAS, 450, 4221
Bentz M. C., Peterson B. M., Netzer H., Pogge R. W., Vestergaard M., 2009, ApJ, 697, 160
Bignall H. E., et al., 2003, ApJ, 585, 653
Blandford R. D., Ko ̈nigl A., 1979, ApJ, 232, 34
Blandford R. D., Rees M. J., 1978a, in Wolfe A. M., ed., BL Lac Objects. pp 328–341
Blandford R. D., Rees M. J., 1978b, Phys. Scr, 17, 265
Bock D. C. J., Large M. I., Sadler E. M., 1999, AJ, 117, 1578
Boller T., Freyberg M. J., Truemper J., Haberl F., Voges W., Nandra K., 2016a, VizieR Online Data Catalog, pp J/A+A/588/A103
Boller T., Freyberg M. J., Tru ̈mper J., Haberl F., Voges W., Nandra K., 2016b, A&A, 588, A103
Bonato M., et al., 2019, MNRAS, 485, 1188
Bower G. C., Whysong D., Blair S., Croft S., Keating G., Law C., Williams P. K. G.,
Wright M. C. H., 2011, ApJ, 739, 76
Bowman J. D., et al., 2013, PASA, 30, e031 Camenzind M., Krockenberger M., 1992, A&A, 255, 59 Celotti A., Ghisellini G., 2008, MNRAS, 385, 283
Chiang J., Bo ̈ttcher M., 2002, ApJ, 564, 92
Ciaramella A., et al., 2004, A&A, 419, 485
Coffey D., et al., 2019, A&A, 625, A123
Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
Corbin M. R., 1992, ApJ, 391, 577
Cordes J. M., Pidwerbetsky A., Lovelace R. V. E., 1986, ApJ, 310, 737 Cusumano G., et al., 2010, A&A, 524, A64
Cutri R. M., et al., 2021, VizieR Online Data Catalog, p. II/328 Czerny B., Hryniewicz K., 2011, A&A, 525, L8
De Breuck C., et al., 2001, AJ, 121, 1241
Dennett-Thorpe J., de Bruyn A. G., 2003, A&A, 404, 113
Doe S., et al., 2007, in Shaw R. A., Hill F., Bell D. J., eds, Astronomical Society of the Pacific Conference Series Vol. 376, Astronomical Data Analysis Software and Systems XVI. p. 543
Donnarumma I., Rossi E. M., Fender R., Komossa S., Paragi Z., Van Velzen S., Prandoni I., 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14). p. 54 (arXiv:1501.04640), doi:10.22323/1.215.0054
Evans P. A., et al., 2014, ApJS, 210, 8
Fan J. H., et al., 2007, A&A, 462, 547
Fanaroff B. L., Riley J. M., 1974, MNRAS, 167, 31P
Feldman F. R., Weedman D. W., Balzano V. A., Ramsey L. W., 1982, ApJ, 256, 427
Fermi LAT Collaboration 2010, ApJS, 188, 405
Fermi LAT Collaboration 2012, ApJS, 199, 31
Fermi LAT Collaboration 2015, ApJS, 218, 23
Fermi LAT Collaboration 2020a, arXiv e-prints, p. arXiv:2005.11208
Fermi LAT Collaboration 2020b, ApJS, 247, 33
Fermi LAT Collaboration 2022, ApJS, 260, 53
Finke J. D., 2016, ApJ, 830, 94
Fossati G., Maraschi L., Celotti A., Comastri A., Ghisellini G., 1998, MNRAS, 299, 433
Freeman P., Doe S., Siemiginowska A., 2001, in Starck J.-L., Murtagh F. D., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4477, Astro- nomical Data Analysis. pp 76–87 (arXiv:astro-ph/0108426), doi:10.1117/12.447161
Gehrels N., et al., 2004, ApJ, 611, 1005
Ghisellini G., Maraschi L., Dondi L., 1996, A&AS, 120, 503
Ghisellini G., Tavecchio F., Foschini L., Ghirlanda G., Maraschi L., Celotti A., 2010, MNRAS, 402, 497
Gibson R. R., Brandt W. N., 2012, ApJ, 746, 54
Giommi P., Ansari S. G., Micol A., 1995, A&AS, 109, 267
Gopal-Krishna Wiita P. J., 1992, A&A, 259, 109
Gordon Y. A., et al., 2021, ApJS, 255, 30
Greene J. E., Ho L. C., 2005, ApJ, 630, 122
Gregory P. C., Scott W. K., Douglas K., Condon J. J., 1996, ApJS, 103, 427
Haffner L. M., Reynolds R. J., Tufte S. L., Madsen G. J., Jaehnig K. P., Percival J. W., 2003, ApJS, 149, 405
Hancock P. J., Drury J. A., Bell M. E., Murphy T., Gaensler B. M., 2016, MNRAS, 461, 3314
Healey S. E., et al., 2008, ApJS, 175, 97
Heckman T. M., Best P. N., 2014, ARA&A, 52, 589
Heeschen D. S., 1984, AJ, 89, 1111
Heeschen D. S., Rickett B. J., 1987, AJ, 93, 589
Helfand D. J., White R. L., Becker R. H., 2015a, VizieR Online Data Catalog, p. VIII/92
Helfand D. J., White R. L., Becker R. H., 2015b, ApJ, 801, 26
Hodge J. A., Becker R. H., White R. L., Richards G. T., 2013, ApJ, 769, 125
Hovatta T., Tornikoski M., Lainela M., Lehto H. J., Valtaoja E., Torniainen I., Aller M. F., Aller H. D., 2007, A&A, 469, 899
Hovatta T., Nieppola E., Tornikoski M., Valtaoja E., Aller M. F., Aller H. D., 2008, A&A, 485, 51
Hughes P. A., Aller H. D., Aller M. F., 1985, ApJ, 298, 301 Hurley-Walker N., et al., 2017, MNRAS, 464, 1146
Impey C. D., Neugebauer G., 1988, AJ, 95, 307
Ishibashi W., Courvoisier T. J. L., 2009, A&A, 504, 61 Jauncey D. L., Macquart J. P., 2001, A&A, 370, L9
Jauncey D. L., Johnston H. M., Bignall H. E., Lovell J. E. J., Kedziora-Chudczer L., Tzioumis A. K., Macquart J.-P., 2003, Ap&SS, 288, 63
Kawaguchi T., Mineshige S., Umemura M., Turner E. L., 1998, ApJ, 504, 671
Kellermann K. I., 1966, ApJ, 146, 621
Khachikian E. Y., Weedman D. W., 1974, ApJ, 192, 581
Kimball A. E., Ivezi ́c Zˇ., 2008, AJ, 136, 684
Koay J. Y., et al., 2011, AJ, 142, 108
Koay J. Y., et al., 2018, MNRAS, 474, 4396
Koay J. Y., et al., 2019, MNRAS, 489, 5365
Komossa S., 2015, Journal of High Energy Astrophysics, 7, 148
Kong M.-Z., Wu X.-B., Wang R., Han J.-L., 2006, Chinese J. Astron. Astrophys., 6, 396
Koryukova T. A., Pushkarev A. B., Plavin A. V., Kovalev Y. Y., 2022, MNRAS, 515, 1736
Kovalev Y. Y., et al., 2005, AJ, 130, 2473
Kudryavtseva N. A., et al., 2011, A&A, 526, A51
Lazio T. J. W., Ojha R., Fey A. L., Kedziora-Chudczer L., Cordes J. M., Jauncey D. L., Lovell J. E. J., 2008, ApJ, 672, 115
Levenberg K., 1944, Quarterly of Applied Mathematics, 2, 164
Lin D. N. C., Shields G. A., 1986, ApJ, 305, 28
Liodakis I., Hovatta T., Huppenkothen D., Kiehlmann S., Max-Moerbeck W., Readhead A. C. S., 2018, ApJ, 866, 137
Lister M. L., Homan D. C., 2005, AJ, 130, 1389
Lister M. L., Aller M. F., Aller H. D., Hodge M. A., Homan D. C., Kovalev Y. Y., Pushkarev A. B., Savolainen T., 2018, ApJS, 234, 12
Lodato G., Rossi E. M., 2011, MNRAS, 410, 359
Lovell J. E. J., et al., 2008, ApJ, 689, 108
Maraschi L., Ghisellini G., Celotti A., 1992, ApJ, 397, L5
Markwardt C. B., Tueller J., Skinner G. K., Gehrels N., Barthelmy S. D., Mushotzky R. F., 2005, ApJ, 633, L77
Marquardt D. W., 1963, Journal of the Society for Industrial and Applied Mathematics, 11, 431
Mason K. O., et al., 2001, A&A, 365, L36
Massaro E., Giommi P., Leto C., Marchegiani P., Maselli A., Perri M., Piranomonte S.,
Sclavi S., 2009, A&A, 495, 691
Massaro E., Maselli A., Leto C., Marchegiani P., Perri M., Giommi P., Piranomonte S.,
2015, Ap&SS, 357, 75
Mattox J. R., et al., 1996, ApJ, 461, 396
Mauch T., Murphy T., Buttery H. J., Curran J., Hunstead R. W., Piestrzynski B., Robert- son J. G., Sadler E. M., 2003, MNRAS, 342, 1117
NASA CGRO Science Support Center 2021, Introduction to EGRET, EGRET Data Products, and EGRET Data Analysis, https://heasarc.gsfc.nasa.gov/docs/ cgro/egret/egret_doc.html
Narlikar J. V., 2002, An Introduction to Cosmology Third Edition. Cambridge University Press, p. 114–18
Netzer H., 2015, ARA&A, 53, 365
Neugebauer G., et al., 1984, ApJ, 278, L1
Nieppola E., Tornikoski M., Valtaoja E., 2006, A&A, 445, 441
Nieppola E., Hovatta T., Tornikoski M., Valtaoja E., Aller M. F., Aller H. D., 2009, AJ, 137, 5022
Nigro C., Sitarek J., Gliwny P., Sanchez D., Tramacere A., Craig M., 2022, A&A, 660, A18
Ofek E. O., Frail D. A., 2011, ApJ, 737, 45
Oh K., et al., 2018a, VizieR Online Data Catalog, p. J/ApJS/235/4
Oh K., et al., 2018b, ApJS, 235, 4
Oke J. B., Gunn J. E., 1983, ApJ, 266, 713
Padovani P., 2016, A&A Rev., 24, 13
Padovani P., Giommi P., A ́braha ́m P., Csizmadia S., Moo ́r A., 2006, A&A, 456, 131
Page M. J., et al., 2012, MNRAS, 426, 903
Page M. J., et al., 2021, VizieR Online Data Catalog, p. II/370
Peacock J. A., Gull S. F., 1981, MNRAS, 196, 611
Petrov L., Taylor G. B., 2011, AJ, 142, 89
Planck Collaboration 2013, VizieR Online Data Catalog, p. VIII/91
Prince R., Agarwal A., Gupta N., Majumdar P., Czerny B., Cellone S. A., Andruchow I., 2021, A&A, 654, A38
Pushkarev A. B., Kovalev Y. Y., 2015, MNRAS, 452, 4274
Rani B., et al., 2013, A&A, 552, A11
Readhead A. C. S., 1980, Phys. Scr, 21, 662
Readhead A. C. S., Cohen M. H., Pearson T. J., Wilkinson P. N., 1978, Nature, 276, 768 Richards J. L., et al., 2011, ApJS, 194, 29
Richards J. L., Hovatta T., Max-Moerbeck W., Pavlidou V., Pearson T. J., Readhead
A. C. S., 2014, MNRAS, 438, 3058
Rickett B. J., 1990, ARA&A, 28, 561
Rickett B. J., Witzel A., Kraus A., Krichbaum T. P., Qian S. J., 2001, ApJ, 550, L11
Ross K., 2020, in The Build-Up of Galaxies through Multiple Tracers and Facilities. p. 57,
doi:10.5281/zenodo.3756534
Sadler E. M., 2016, Astronomische Nachrichten, 337, 105
Sambruna R. M., Maraschi L., Urry C. M., 1996, ApJ, 463, 444
Scarpa R., Falomo R., 1997, A&A, 325, 109
Scheuer P. A. G., Readhead A. C. S., 1979, Nature, 277, 182
Seyfert C. K., 1943, ApJ, 97, 28
SikoraM.,StawarzL?.,ModerskiR.,NalewajkoK.,MadejskiG.M.,2009,ApJ,704,38
Sloan Digital Sky Survey Collaboration 2015, SDSS Flux Calibration, https://www. sdss.org/dr13/algorithms/fluxcal/#SDSStoAB
Thompson D. J., et al., 1993, ApJS, 86, 629
Thompson D. J., et al., 1995, ApJS, 101, 259
Thompson D. J., et al., 1996, VizieR Online Data Catalog, p. J/ApJS/101/259 Titov O., Malkin Z., 2009, A&A, 506, 1477
Titov O., Lambert S. B., Gontier A. M., 2011, A&A, 529, A91
Urry C. M., Padovani P., 1995, PASP, 107, 803
Voges W., et al., 1996, IAU Circ., 6420, 2
WISE Collaboration 2012, IV. WISE Data Processing, https://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4h.html
Wall J. V., 1975, The Observatory, 95, 196
Waters T., Kashi A., Proga D., Eracleous M., Barth A. J., Greene J., 2016, ApJ, 827, 53 Webb N. A., et al., 2020, A&A, 641, A136
Webb N. A., et al., 2022, VizieR Online Data Catalog, p. IX/65
White R. L., Becker R. H., Helfand D. J., Gregg M. D., 1997, ApJ, 475, 479
Willott C. J., Rawlings S., Blundell K. M., Lacy M., Eales S. A., 2001, MNRAS, 322, 536 Wright A. E., Griffith M. R., Burke B. F., Ekers R. D., 1994, ApJS, 91, 111
Wright E. L., et al., 2010, AJ, 140, 1868
Yang G., et al., 2016, ApJ, 831, 145
Zhang J., Liang E.-W., Zhang S.-N., Bai J. M., 2012, ApJ, 752, 157
Zhang J., Xue Z.-W., He J.-J., Liang E.-W., Zhang S.-N., 2015, ApJ, 807, 51
de Gasperin F., Intema H. T., Frail D. A., 2018, MNRAS, 474, 5008
指導教授 黃崇源 郭駿毅 松下聰樹(Chorng-Yuan Hwang Jun-Yi Koay Satoki Matsushita) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明