參考文獻 |
[1] T. R. Hryniewicz, R.; Rokosz, K. , “Corrosion Characteristics of Medical-Grade AISI Type 316L Stainless Steel Surface After Electropolishing in a Magnetic Field,” CORROSION SCIENCE SECTION, vol. 64, no. 8, pp. 660-665, 2008.
[2] S. T. M. Ha¨ıdopoulos, C. Sarra-Bournet, G. Laroche, D. Mantovani, “Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications,” J Mater Sci: Mater Med, vol. 17, no. 7, pp. 647-657, Jul, 2006.
[3] A. T. W. Z. M. A. P. Tschiptschin., “Correlations between microstructure and surface properties in a high nitrogen martensitic stainless steel,” Acta Materialia, vol. 51, no. 12, pp. 3363-3374, 2003.
[4] H. V. Ö. Kadir Gunoglu, İskender Akkurt, “Evaluation of gamma ray attenuation properties of boron carbide (B4C) doped AISI 316 stainless steel: Experimental, XCOM and Phy-X/PSD database software,” Materials Today Communications, vol. 29, 2021.
[5] G. S. KALIARAJ, VISHWAKARMA, V., RAMADOSS, A. et al., “Corrosion, haemocompatibility and bacterial adhesion behaviour of TiZrN-coated 316L SS for bioimplants.,” Bulletin of Materials Science, vol. 38, pp. 951–955, 2015.
[6] K. R. Yang, Yibin. , “Nickel-free austenitic stainless steels for medical applications.,” Science and Technology of Advanced Materials, vol. 11, no. 1, 2010.
[7] G. S. V. Kaliaraj, Vinita; Kirubaharan, A.M. Kamalan., “Biocompatible Zirconia‐Coated 316 stainless steel with anticorrosive behavior for biomedical application,” Ceramics International, vol. 44, no. 8, pp. 9780–9786, 2018.
[8] C. Vericat, Vela, M. E., Benitez, G., Carro, P., & Salvarezza, R. C., “ Self-assembled monolayers of thiols and dithiols on Gold: New Challenges for a well-known system,” Chemical Society Reviews, vol. 39, no. 5, 2010.
[9] X. Liu, Wang, Z., Zhao, C., Bu, W., & Na, H., “Preparation and characterization of silane-modified SIO2 particles reinforced resin composites with fluorinated acrylate polymer,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 80, pp. 11-19, 2018.
[10] W. Gao, Dickinson, L., Grozinger, C., Morin, F. G., & Reven, L., “Self-assembled monolayers of alkylphosphonic acids on metal oxides,” Langmuir, vol. 12, no. 26, pp. 6429–6435, 1996.
[11] F. Ali, Roldán‐Carmona, C., Sohail, M., & Nazeeruddin, M. K., “Applications of self‐assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability,” Advanced Energy Materials, vol. 10, no. 48, pp. 2002989, 2020.
[12] B. Farkaš, Terranova, U., & de Leeuw, N. H., “Binding modes of carboxylic acids on cobalt nanoparticles,” Physical Chemistry Chemical Physics, vol. 22, no. 3, pp. 985–996, 2020.
[13] X. Jia, Ma, J., Xia, F., Xu, Y., Gao, J., & Xu, J., “Carboxylic acid-modified metal oxide catalyst for selectivity-tunable aerobic ammoxidation,” Nature Communications, vol. 9, no. 1, 2018.
[14] S.-M. Zhang, Chang, Z., Hu, T.-L., & Bu, X.-H., “New three-dimensional porous metal organic framework with tetrazole functionalized aromatic carboxylic acid: Synthesis, structure, and gas adsorption properties,” Inorganic Chemistry, vol. 49, no. 24, pp. 11581–11586, 2010.
[15] A. Murray, & Örmeci, B., “ Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters,” Journal of Environmental Sciences, vol. 75, pp. 247–254, 2019.
[16] J. Wysocka, Cieslik, M., Krakowiak, S., & Ryl, J., “Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in Alkaline Media,” Electrochimica Acta, vol. 289, pp. 175–192, 2018.
[17] G. Žerjav, & Milošev, I., “Corrosion Protection of brasses and zinc in simulated urban rain,” Materials and Corrosion, vol. 66, no. 12, pp. 1402–1413, 2015.
[18] S. Thery, Jacquet, D., & Mantel, M., “A study of chemical interactions at the stainless steel/polymer interface by infrared spectroscopy. part 1: Interaction mechanisms between succinic anhydride and 304 stainless steel,” The Journal of Adhesion, vol. 56, no. 1-4, pp. 1-13, 1996.
[19] S. P. Pujari, Scheres, L., Marcelis, A. T., & Zuilhof, H., “Covalent surface modification of oxide surfaces,” Angewandte Chemie International Edition, vol. 53, no. 25, pp. 6322–6356, 2014.
[20] Q. Qu, Geng, H., Peng, R., Cui, Q., Gu, X., Li, F., & Wang, M., “Chemically binding carboxylic acids onto tio2 nanoparticles with adjustable coverage by Solvothermal strategy,” Langmuir, vol. 26, no. 12, pp. 9539–9546, 2010.
[21] N. S. Bhairamadgi, Pujari, S. P., Trovela, F. G., Debrassi, A., Khamis, A. A., Alonso, J. M., Al Zahrani, A. A., Wennekes, T., Al-Turaif, H. A., van Rijn, C., Alhamed, Y. A., & Zuilhof, H., “ Hydrolytic and thermal stability of organic monolayers on various inorganic substrates,” Langmuir, vol. 30, no. 20, pp. 5829–5839, 2014.
[22] E. Cooper, & Leggett, G. J., “Influence of tail-group hydrogen bonding on the stabilities of self-assembled monolayers of alkylthiols on gold,” Langmuir, vol. 15, no. 4, pp. 1024–1032, 1999.
[23] G. A. Buckholtz, & Gawalt, E. S., “Effect of alkyl chain length on carboxylic acid sams on ti-6al-4v,” Materials, vol. 5, no. 7, pp. 1206–1218, 2012.
[24] Y. T. Tao, “Structural comparison of self-assembled monolayers of N-alkanoic acids on the surfaces of silver, copper, and aluminum,” Journal of the American Chemical Society, vol. 115, no. 10, pp. 4350–4358, 1993.
[25] S. Jadhav, “Self-assembled monolayers (sams) of carboxylic acids: An overview,” Open Chemistry, vol. 9, no. 3, pp. 369–378, 2011.
[26] K. Tamada, Ishida, T., Knoll, W., Fukushima, H., Colorado, R., Graupe, M., Shmakova, O. E., & Lee, T. R., “Molecular packing of semifluorinated alkanethiol self-assembled monolayers on gold: influence of alkyl spacer length,” Langmuir, vol. 17, no. 6, pp. 1913–1921, 2001.
[27] W. Azzam, Bashir, A., Terfort, A., Strunskus, T., & Wöll, Ch., “Combined STM and FTIR characterization of Terphenylalkanethiol monolayers on au(111): effect of alkyl chain length and deposition temperature,” Langmuir, vol. 22, no. 8, pp. 3647–3655, 2006.
[28] R. S. Clegg, & Hutchison, J. E., “Hydrogen-bonding, self-assembled monolayers: ordered molecular films for study of through-peptide electron transfer,” Langmuir, vol. 12, no. 22, pp. 5239–5243, 1996.
[29] M. A. Ramin, Le Bourdon, G., Heuzé, K., Degueil, M., Buffeteau, T., Bennetau, B., & Vellutini, L., “Epoxy-terminated self-assembled monolayers containing internal urea or amide groups,” Langmuir, vol. 31, no. 9, pp. 2783–2789, 2015.
[30] R. Valiokas, Malysheva, L., Onipko, A., Lee, H.-H., Ruželė, Ž., Svedhem, S., Svensson, S. C. T., Gelius, U., & Liedberg, B., “On the quality and structural characteristics of oligo(ethylene glycol) assemblies on Gold: An Experimental and Theoretical Study,” Journal of Electron Spectroscopy and Related Phenomena, vol. 172, no. 1-3, pp. 9–20, 2009.
[31] S.-W. Tam-Chang, Biebuyck, H. A., Whitesides, G. M., Jeon, N., & Nuzzo, R. G., “Self-assembled monolayers on gold generated from alkanethiols with the structure RNHCOCH2SH,” Langmuir, vol. 11, no. 11, pp. 4371–4382, 1995.
[32] R. C. Sabapathy, Bhattacharyya, S., Leavy, M. C., Cleland, W. E., & Hussey, C. L., “Electrochemical and spectroscopic characterization of self-assembled monolayers of ferrocenylalkyl compounds with amide linkages,” Langmuir, vol. 14, no. 1, pp. 124–136, 1998.
[33] P. Lin, Lin, C.-W., Mansour, R., & Gu, F., “Improving biocompatibility by surface modification techniques on implantable bioelectronics,” Biosensors and Bioelectronics, vol. 47, pp. 451–460, 2013.
[34] M. J. Penna, Mijajlovic, M., & Biggs, M. J., “Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface,” Journal of the American Chemical Society, vol. 136, no. 14, pp. 5323–5331, 2014.
[35] A. M. Maan, Hofman, A. H., Vos, W. M., & Kamperman, M., “Recent developments and practical feasibility of polymer‐based antifouling coatings,” Advanced Functional Materials, vol. 30, no. 32, pp. 2000936, 2020.
[36] J. Y. Lichtenberg, Ling, Y., & Kim, S., “Non-specific adsorption reduction methods in Biosensing,” Sensors, vol. 19, no. 11, pp. 2488, 2019.
[37] R. Ciriminna, Bright, F. V., & Pagliaro, M., “Ecofriendly antifouling marine coatings,” ACS Sustainable Chemistry & Engineering, vol. 3, no. 4, pp. 559–565, 2015.
[38] D. M. Yebra, Kiil, S., & Dam-Johansen, K., “Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings,” Progress in Organic Coatings, vol. 50, no. 2, pp. 75–104, 2004.
[39] A. B. Lowe, & McCormick, C. L., “Synthesis and solution properties of zwitterionic polymers,” Chemical Reviews, vol. 102, no. 11, pp. 4177–4190, 2002.
[40] S. Chen, & Jiang, S., “An New Avenue to nonfouling materials,” Advanced Materials, vol. 20, no. 2, pp. 335–338, 2008.
[41] J. B. Schlenoff, “Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption,” Langmuir, vol. 30, no. 32, pp. 9625–9636, 2014.
[42] W. Yang, Xue, H., Li, W., Zhang, J., & Jiang, S., “Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma,” Langmuir, vol. 25, no. 19, pp. 11911–11916, 2009.
[43] J. Zhang, Zhu, Y., Song, J., Xu, T., Yang, J., Du, Y., & Zhang, L., “Rapid and long‐term glycemic regulation with a balanced charged immune‐evasive hydrogel in T1DM mice,” Advanced Functional Materials, vol. 29, no. 19, pp. 1900140, 2019.
[44] Q. Liu, Chiu, A., Wang, L., An, D., Li, W., Chen, E. Y., Zhang, Y., Pardo, Y., McDonough, S. P., Liu, L., Liu, W. F., Chen, J., & Ma, M., “Developing mechanically robust, triazole-zwitterionic hydrogels to mitigate foreign body response (FBR) for islet encapsulation,” Biomaterials, vol. 230, pp. 119640, 2020.
[45] R. S. Smith, Zhang, Z., Bouchard, M., Li, J., Lapp, H. S., Brotske, G. R., Lucchino, D. L., Weaver, D., Roth, L. A., Coury, A., Biggerstaff, J., Sukavaneshvar, S., Langer, R., & Loose, C., “Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment,” Science Translational Medicine, vol. 4, no. 153, 2012.
[46] C. Diaz Blanco, Ortner, A., Dimitrov, R., Navarro, A., Mendoza, E., & Tzanov, T., “Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach,” ACS Applied Materials & Interfaces, vol. 6, no. 14, pp. 11385–11393, 2014.
[47] Q. Li, Wen, C., Yang, J., Zhou, X., Zhu, Y., Zheng, J., Cheng, G., Bai, J., Xu, T., Ji, J., Jiang, S., Zhang, L., & Zhang, P. , “Zwitterionic biomaterials,” Chemical Reviews, vol. 122, no. 23, pp. 17073–17154, 2022.
[48] Y. KADOMA, NAKABAYASHI, N., MASUHARA, E., & YAMAUCHI, J., “Synthesis and Hemolysis Test of the Polymer Containing Phosphorylcholine Groups,” KOBUNSHI RONBUNSHU, vol. 35, no. 7, pp. 423–427, 1978.
[49] K. Ishihara, Ueda, T., & Nakabayashi, N., “Preparation of phospholipid polylners and their properties as polymer hydrogel membranes,” Polymer Journal, vol. 22, no. 5, pp. 355–360, 1990.
[50] K. Ishihara, Fukumoto, K., Iwasaki, Y., & Nakabayashi, N., “Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. part 1. surface characterization,” Biomaterials, vol. 20, no. 17, pp. 1545–1551, 1999.
[51] K. Ishihara, “Successful development of biocompatible polymers designed by natures original inspiration,” Procedia Chemistry, vol. 4, pp. 34-38, 2012.
[52] J.-M. Ringeard, Griesmar, P., Caplain, E., Michiel, M., Serfaty, S., Huerou, J.-Y. L., Marinkova, D., & Yotova, L., “ Design of poly(n-acryloylglycine) materials for incorporation of microorganisms,” Journal of Applied Polymer Science, vol. 130, no. 2, pp. 835–841, 2013.
[53] N. Deepuppha, Khadsai, S., Rutnakornpituk, B., Wichai, U., & Rutnakornpituk, M., “Multiresponsive Poly(n-acryloyl glycine)-based nanocomposite and its drug release characteristics,” Journal of Nanomaterials, vol. 2019, pp. 1-12, 2019.
[54] R. Barbucci, Casolaro, M., Magnani, A., Roncolini, C., & Ferruti, P., “Vinyl polymers containing amido and carboxylic groups as side substituents: I. Synthesis of N-acryloyl-glycine and N-acryloyl-6-caproic acid and their grafting on cellulose membranes,” Polymer, vol. 30, no. 9, pp. 1751–1757, 1989.
[55] C. Gu, He, J., Jia, J., Fang, N., & Shamsi, S. A., “Surfactant-bound monolithic columns for CEC,” ELECTROPHORESIS, vol. 30, no. 22, pp. 3814–3827, 2009.
[56] K. W. Yeoh, Chew, C. H., Can, L. M., Koh, L. L., & Teo, H. H., “Synthesis and polymerization of surface-active sodium acrylamidoundecanoate,” Journal of Macromolecular Science: Part A - Chemistry, vol. 26, no. 4, pp. 663–680, 1989.
[57] E. Johansson, & Nyborg, L., “XPS study of carboxylic acid layers on oxidized metals with reference to particulate materials,” Surface and Interface Analysis, vol. 35, no. 4, pp. 375–381, 2003.
[58] M. Seo, Lee, J., & Lee, M., “Grating-coupled surface plasmon resonance on bulk stainless steel,” Optics Express, vol. 25, no. 22, pp. 26939, 2017.
[59] F. Sinapi, Naji, A., Delhalle, J., & Mekhalif, Z., “ Assessment by XPS and electrochemical techniques of two molecular organosilane films prepared on stainless-steel surfaces,” Surface and Interface Analysis, vol. 36, no. 11, pp. 1484–1490, 2004.
[60] X. Cao, & Hamers, R. J., “Interactions of alkylamines with the silicon (001) surface,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 20, no. 4, pp. 1614, 2002.
[61] N. C. Maile, Shinde, S. K., Patil, R. T., Fulari, A. V., Koli, R. R., Kim, D.-Y., Lee, D. S., & Fulari, V. J., “Structural and morphological changes in binder-free MNCO2O4 electrodes for supercapacitor applications: Effect of deposition parameters,” Journal of Materials Science: Materials in Electronics, vol. 30, no. 4, pp. 3729–3743, 2019.
[62] M. Chávez, Sánchez-Obrero, G., Madueño, R., Sevilla, J. M., Blázquez, M., & Pineda, T., “Electrochemical evaluation of the grafting density of self-assembled monolayers of polyethylene glycol of different chain lengths formed by the grafting to approach under conditions close to the cloud point,” Journal of Electroanalytical Chemistry, vol. 913, pp. 116294, 2022.
[63] A. Kociubczyk, Mendez, C., Gregorutti, R., & Ares, A., “Electrochemical tests in stainless steel surgical implants,” Procedia Materials Science, vol. 9, pp. 335–340, 2015.
[64] D. J. Beltran-Villegas, Wessels, M. G., Lee, J. Y., Song, Y., Wooley, K. L., Pochan, D. J., & Jayaraman, A., “Computational reverse-engineering analysis for scattering experiments on Amphiphilic Block Polymer Solutions,” Journal of the American Chemical Society, vol. 141, no. 37, pp. 14916–14930, 2019.
[65] C. D. Putnam, Hammel, M., Hura, G. L., & Tainer, J. A., “X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution,” Quarterly Reviews of Biophysics, vol. 40, no. 3, pp. 191–285, 2007.
[66] A. G. Kikhney, & Svergun, D. I., “A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins,” FEBS Letters, vol. 589, no. 19PartA, pp. 2570–2577, 2015.
[67] R. Pires-Oliveira, Tang, J., Percebom, A. M., Petzhold, C. L., Tam, K. C., & Loh, W., “Effect of molecular architecture and composition on the aggregation pathways of Poegma random copolymers in water,” Langmuir, vol. 36, no. 49, pp. 15018–15029, 2020.
[68] K. Matsumoto, Kubota, M., Matsuoka, H., & Yamaoka, H., “Water-soluble fluorine-containing amphiphilic block copolymer: synthesis and aggregation behavior in aqueous solution,” Macromolecules, vol. 32, no. 21, pp. 7122–7127, 1999.
[69] R. Tanaka, Sato, E., Hunt, J. E., Winans, R. E., Sato, S., & Takanohashi, T., “Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering,” Energy & Fuels, vol. 18, no. 4, pp. 1118–1125, 2004.
[70] T. J. Neal, Beattie, D. L., Byard, S. J., Smith, G. N., Murray, M. W., Williams, N. S., Emmett, S. N., Armes, S. P., Spain, S. G., & Mykhaylyk, O. O., “Self-assembly of Amphiphilic Statistical Copolymers and their aqueous rheological properties,” Macromolecules, vol. 51, no. 4, pp. 1474–1487, 2018.
[71] S. H. Shin, “Thermodynamics and structure of poly(ethylene oxide) in mixtures of water and ethanol,” Ph.D., University of Maryland, College Park, United States -- Maryland, 2011. |