博碩士論文 110329006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.220.43.139
姓名 楊庭宇(Ting-Yu Yang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 沸石咪唑酯骨架衍生物支撐鈀鈷雙金屬觸媒應用於廣泛酸鹼值析氫反應之研究
(ZIF-derivative Supported Palladium-Cobalt Bimetallic Catalyst for Hydrogen Evolution Reaction in Wide pH Value)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 隨著化石燃料造成的環境污染與日俱增,尋求清潔與可再生的能源已成為當務之急。氫能,為傳統能源的一種有前途的替代品,它在生產及使用過程中幾乎不會產生有害排放物。經由電解水之析氫反應 (hydrogen evolution reaction, HER) ,是目前製氫的最佳方式之一,然而,其緩慢的反應動力學阻礙了整體反應效率,故通過使用適當的觸媒以降低HER中的過電位對於提升反應效率至關重要。鉑 (Pt) 基觸媒在酸性電解質中有著快速的反應動力學以及優異的氫吸附能,但其在鹼性環境下的活性不佳,且鉑具有稀缺性,限制了其廣泛運用的可能性。因此,為了實現高效的HER,研究並開發具有高活性及耐用性的非鉑基觸媒勢在必行。
鈀 (Pd) 是鉑族金屬之一,具有與鉑相似的電子結構以及僅次於鉑的高氫吸附能,使其成為鉑的潛在替代品,然而鈀對氫的吸附力極強,因此弱化其氫吸附能,才能有效促進其產氫步驟。本研究製備鈀-鈷 (Pd-Co) 雙金屬觸媒 (Pd-Co2/NC) ,利用沸石咪唑酯骨架- 67 (ZIF-67) 衍生物代替碳黑作為觸媒的支撐物。ZIF-67 獨特的結晶和多孔結構可以通過高溫熱解轉化為具有眾多活性位點的奈米結構。這些高度分散的活性位點嵌入具有相互連通孔隙的高導電性氮摻雜碳中,能促進質傳並增強奈米結構的催化活性和穩定性。除此之外,ZIF-67 中固有的鈷可作為水解位點並調節鈀的氫吸附能。 Pd-Co2/NC 在酸性和鹼性電解質中均表現出優異的HER活性,分別是在電流密度為10 mA cm-2時的過電位為23 和 13 mV,Tafel 斜率為11 和 54 mV dec-1 ,質量活性為745 和 186 A gPd-1,以及轉換頻率 (turnover frequency, TOF) 7.89和1.80 H2 s-1。值得注意的是,透過感應耦合電漿放射光譜儀 (Inductively coupled plasma optical emission, ICP-OES) 對進行了5000圈穩定度測試的電解液進行分析,發現鈀-鈷的合金化有助於降低觸媒於電解液中的溶解率,提升其結構穩定性,進而保留高HER效能。此外,也透過 X 射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS)確認了觸媒的表面組成,證明了鈷的添加會改變觸媒的電子結構,並增加鈀的抗氧化能力。另一方面,透過毒化試驗與 X 射線吸收光譜儀 (X-ray absorption spectroscopy, XAS) 分析,得知觸媒的活性位點主要是由金屬,特別是鍵結比例最高的鈀-鈀配位所提供,驗證了結構對 HER 性能的影響。本研究之觸媒結合了過渡金屬的引入以及多孔性氮摻雜碳做為支撐物的優點,並對其結構與電化學結果進行了一系列分析,為開發高性能 HER 觸媒提供了一個有前景的新方向。
摘要(英) With the escalating environmental pollution caused by fossil fuels, the pursuit of clean and renewable energy has become an urgent priority. One promising alternative to traditional energy sources is hydrogen, which produces almost no harmful emissions during its production and utilization. Among the various methods, hydrogen evolution reaction (HER) from electro-splitting of water has emerged as a leading approach for hydrogen production. However, the sluggish reaction kinetics of HER impede overall efficiency, so it is crucial to utilize appropriate catalysts to reduce the overpotential in HER and enhance reaction efficiency. Pt-based catalysts exhibit rapid reaction kinetics and excellent hydrogen adsorption in acidic electrolytes, however, the limited activity in alkaline electrolytes, and the scarcity limit their widespread application. Therefore, to achieve efficient HER, it is essential to research and develop non-Pt-based catalysts with high activity and durability.
Pd is a member of the platinum group metals and shares similar electronic structure with Pt. It exhibits high hydrogen adsorption energy second only to platinum, which makes it a potential substitute for Pt. Nevertheless, the hydrogen binding energy of Pd is extremely strong. Therefore, it is essential to weaken its hydrogen adsorption energy so that the hydrogen generation step can be effectively promoted. Pd-Co bimetallic catalyst (Pd-Co2/NC), utilizing zeolitic imidazolate framework-67 (ZIF-67)-derivative as a support instead of carbon black has been prepared. The unique crystalline and porous structure of ZIF-67 can be transformed into nanostructures with numerous active sites through high-temperature pyrolysis. These highly dispersed active sites are embedded in a highly conductive nitrogen-doped carbon matrix with interconnected pores, promoting mass transfer and enhancing the catalytic activity and stability of the nanostructures. Moreover, the inherent Co presented in ZIF-67 can serve as hydrolysis sites and modulate the hydrogen binding energy of Pd. Pd-Co2/NC demonstrates excellent HER activity in both acidic and alkaline electrolytes, exhibiting low overpotentials of 23 and 13 mV at a current density of 10 mA cm–2, Tafel slopes of 11 and 54 mV dec-1, high mass activity (MA) values of 745 and 186 A gPd-1, and impressive turnover frequency (TOF) values of 7.89 and 1.80 H2 s-1 in 0.5 M H2SO4 and 1.0 M KOH solutions, respectively. It is worth noting that the analysis of the electrolytes after 5000 cycles of stability tests through inductively coupled plasma optical emission (ICP-OES) revealed that the alloying of Pd and Co helps reduce the dissolution rate of the catalyst in the electrolyte, enhancing its structural stability and thereby preserving high HER performance. Furthermore, the surface composition of the catalyst was confirmed through X-ray photoelectron spectroscopy (XPS), demonstrating that the addition of cobalt alters the electronic structure of the catalyst and enhances the oxidation resistance of Pd. On the other hand, through poisoning tests and X-ray absorption spectroscopy (XAS) analysis, it was found that the active sites of the catalyst are primarily provided by the metal, especially the Pd-Pd bonds with the highest coordination number, confirming the influence of the structure on HER performance. were conducted to verify the impact of structures on the HER performance. The catalyst developed in this study combines the advantages of introducing transition metals and utilizing porous nitrogen-doped carbon as a support. A series of analyses were conducted on its structure and electrochemical results, providing a promising new direction for the development of high-performance HER catalysts.
關鍵字(中) ★ 沸石咪唑酯骨架
★ 析氫反應
★ 鈀
★ 鈷
★ 碳氮
★ 活性位點
關鍵字(英) ★ zeolitic imidazolate framework (ZIF)
★ hydrogen evolution reaction (HER)
★ palladium
★ cobalt
★ Co/NC
★ active sites
論文目次 摘要 i
Abstract iii
Table of Contents vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Mechanism of HER 2
1.2 The Preparation and Application of ZIF-67 4
1.3 Pd-based Electrocatalyst 8
1.4 Motivation and Approach 10
Chapter 2 Experimental Section 11
2.1 Preparation of Catalysts 11
2.1.1 Materials and reagents 11
2.1.2 Synthesis of Pd/C 11
2.1.3 Synthesis of PdCo2/C 11
2.1.4 Synthesis of Co/NC 12
2.1.5 Synthesis of Pd-Co2/NC 12
2.2 Characterization of Catalysts 13
2.3 Electrochemical Measurements 15
Chapter 3 Result and Discussion 18
3.1 The Characterizations of Catalysts 18
3.2 Electrocatalytic Performance 28
3.3 Poisoning Test 38
Chapter 4 Conclusions 41
Reference 43
參考文獻 [1] Chu, S., Majumdar, A., Opportunities and challenges for a sustainable energy future. nature 2012, 294-303.
[2] Zang, M., Xu, N., Cao, G., Chen, Z., Cui, J., Gan, L., Dai, H., Yang, X., Wang, P., Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction. ACS Catal. 2018, 5062-5069.
[3] Bandal, H. A., Jadhav, A. R., Tamboli, A. H., Kim, H., Bimetallic iron cobalt oxide self-supported on Ni-Foam: An efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochim. Acta 2017, 253-262.
[4] Zou, X., Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 5148-5180.
[5] Shi, Y., Zhang, B., Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 1529-1541.
[6] Sheng, W., Zhuang, Z., Gao, M., Zheng, J., Chen, J. G., Yan, Y., Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 5848.
[7] Zhao, B., Xu, S., Carbon-Based Nanomaterials for Hydrogen Evolution Reaction, in Carbon-Based Nanomaterials for Energy Conversion and Storage: Applications in Electrochemical Catalysis. 2022, Springer. p. 123-146.
[8] Zeng, M., Li, Y., Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 14942-14962.
[9] Sun, F., Tang, Q., Jiang, D. e., Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal. 2022, 8404-8433.
[10] Indra, A., Song, T., Paik, U., Metal organic framework derived materials: progress and prospects for the energy conversion and storage. Adv. Mater. 2018, 1705146.
[11] Shit, S., Chhetri, S., Jang, W., Murmu, N. C., Koo, H., Samanta, P., Kuila, T., Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces 2018, 27712-27722.
[12] Wang, L., Guan, Y., Qiu, X., Zhu, H., Pan, S., Yu, M., Zhang, Q., Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@ metal–organic framework. Chem. Eng. J. 2017, 945-955.
[13] Yang, H., He, X. W., Wang, F., Kang, Y., Zhang, J., Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J. Mater. Chem. 2012, 21849-21851.
[14] Dang, S., Zhu, Q. L., Xu, Q., Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 2017, 1-14.
[15] Zhu, R., Ding, J., Yang, J., Pang, H., Xu, Q., Zhang, D., Braunstein, P., Quasi-ZIF-67 for boosted oxygen evolution reaction catalytic activity via a low temperature calcination. ACS Appl. Mater. Interfaces 2020, 25037-25041.
[16] Zheng, F., Xia, H., Xu, S., Wang, R., Zhang, Y., Facile synthesis of MOF-derived ultrafine Co nanocrystals embedded in a nitrogen-doped carbon matrix for the hydrogen evolution reaction. RSC Adv. 2016, 71767-71772.
[17] Chen, J., Zhou, H., Huang, Y., Yu, H., Huang, F., Zheng, F., Li, S., A 3D Co–CN framework as a high performance electrocatalyst for the hydrogen evolution reaction. RSC Adv. 2016, 42014-42018.
[18] Yang, H., Tang, Z., Wang, K., Wu, W., Chen, Y., Ding, Z., Liu, Z., Chen, S., Co@ Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon as dual functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. J. Colloid Interface Sci. 2018, 18-26.
[19] Su, J., Yang, Y., Xia, G., Chen, J., Jiang, P., Chen, Q., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 14969.
[20] Morales-Guio, C. G., Stern, L. A., Hu, X., Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 6555-6569.
[21] Nørskov, J. K., Bligaard, T., Logadottir, A., Kitchin, J., Chen, J. G., Pandelov, S., Stimming, U., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, J23.
[22] Li, H., Shin, K., Henkelman, G., Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J. Chem. Phys. 2018, 174705.
[23] Takehiro, N., Liu, P., Bergbreiter, A., Nørskov, J.K., Behm, R.J., Hydrogen adsorption on bimetallic PdAu (111) surface alloys: minimum adsorption ensemble, ligand and ensemble effects, and ensemble confinement. Phys. Chem. Chem. Phys. 2014, 23930-23943.
[24] Wang, Y., Balbuena, P. B., Design of oxygen reduction bimetallic catalysts: ab-initio-derived thermodynamic guidelines. J. Phys. Chem. B 2005, 18902-18906.
[25] Zhang, R., Sun, Z., Feng, R., Lin, Z., Liu, H., Li, M., Yang, Y., Shi, R., Zhang, W., Chen, Q., Rapid adsorption enables interface engineering of PdMnCo alloy/nitrogen-doped carbon as highly efficient electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 38419-38427.
[26] Wang, R., Jiang, L. Y., Feng, J. J., Liu, W. D., Yuan, J., Wang, A. J., One-pot solvothermal synthesis of PdCu nanocrystals with enhanced electrocatalytic activity toward glycerol oxidation and hydrogen evolution. Int. J. Hydrog. Energy 2017, 6695-6704.
[27] Skúlason, E., Tripkovic, V., Björketun, M. E., Gudmundsdóttir, S., Karlberg, G., Rossmeisl, J., Bligaard, T., Jónsson, H., Nørskov, J.K., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 18182-18197.
[28] Zhang, L., Chang, Q., Chen, H., Shao, M., Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 198-219.
[29] Jiang, T., Yu, L., Zhao, Z., Wu, W., Wang, Z., Cheng, N., Regulating the intermediate affinity on Pd nanoparticles through the control of inserted-B atoms for alkaline hydrogen evolution. Chem. Eng. J. 2022, 133525.
[30] Zhou, D., Usher, B.F., Deviation of the AlGaAs lattice constant from Vegard′s law. J. Phys. D 2001, 1461.
[31] Kibsgaard, J., Jaramillo, T. F., Besenbacher, F., Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13] 2− clusters. Nat. Chem. 2014, 248-253.
[32] Cheng, X., Xiao, B., Chen, Y., Wang, Y., Zheng, L., Lu, Y., Li, H., Chen, G., Ligand Charge Donation–Acquisition Balance: A Unique Strategy to Boost Single Pt Atom Catalyst Mass Activity toward the Hydrogen Evolution Reaction. ACS Catal. 2022, 5970-5978.
[33] Cao, D., Wang, J., Xu, H., Cheng, D., Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 2000924.
[34] Shi, Y., Zhao, Q., Li, J., Gao, G., Zhi, J., Onion-liked carbon-embedded graphitic carbon nitride for enhanced photocatalytic hydrogen evolution and dye degradation. Appl. Catal. B 2022, 121216.
[35] Kuang, B., Song, W., Ning, M., Li, J., Zhao, Z., Guo, D., Cao, M., Jin, H., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 2018, 209-217.
[36] Yin, Y., Liu, X., Wei, X., Li, Y., Nie, X., Yu, R., Shui, J., Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2017, 30850-30861.
[37] Wang, S., Xu, Y., Fu, R., Zhu, H., Jiao, Q., Feng, T., Feng, C., Shi, D., Li, H., Zhao, Y., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nanomicro Lett. 2019, 1-16.
[38] Wang, X., Zhou, J., Fu, H., Li, W., Fan, X., Xin, G., Zheng, J., Li, X., MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2014, 14064-14070.
[39] Lin, C. M., Hung, T. L., Huang, Y. H., Wu, K. T., Tang, M. T., Lee, C. H., Chen, C., Chen, Y., Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy. Phys. Rev. B 2007, 125426.
[40] Lopes, C. W., Cerrillo, J. L., Palomares, A. E., Rey, F., Agostini, G., An in situ XAS study of the activation of precursor-dependent Pd nanoparticles. Phys. Chem. Chem. Phys. 2018, 12700-12709.
[41] Kim, Y. T., Ohshima, K., Higashimine, K., Uruga, T., Takata, M., Suematsu, H., Mitani, T., Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew. Chem. Int. Ed. 2006, 407-411.
[42] Kim, D. S., Kim, J. H., Jeong, I. K., Choi, J. K., Kim, Y. T., Phase change of bimetallic PdCo electrocatalysts caused by different heat-treatment temperatures: Effect on oxygen reduction reaction activity. J Catal 2012, 65-78.
[43] Wang, L., Zhang, J., Zhu, Y., Xu, S., Wang, C., Bian, C., Meng, X., Xiao, F. S., Strong metal–support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal. 2017, 7461-7465.
[44] Chen, A., Ostrom, C., Palladium-based nanomaterials: synthesis and electrochemical applications. Chem. Rev. 2015, 11999-12044.
[45] Li, T., Tang, Z., Wang, K., Wu, W., Chen, S., Wang, C., Palladium nanoparticles grown on β-Mo2C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. Int. J. Hydrog. Energy 2018, 4932-4941.
[46] Ghoshal, S., Zaccarine, S., Anderson, G. C., Martinez, M. B., Hurst, K. E., Pylypenko, S., Pivovar, B. S., Alia, S. M., ZIF 67 based highly active electrocatalysts as oxygen electrodes in water electrolyzer. ACS Appl. Energy Mater. 2019, 5568-5576.
[47] Li, X., Niu, Z., Jiang, J., Ai, L., Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. J. Mater. Chem. A 2016, 3204-3209.
[48] Yuan, S., Pu, Z., Zhou, H., Yu, J., Amiinu, I. S., Zhu, J., Liang, Q., Yang, J., He, D., Hu, Z., A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 2019, 472-480.
[49] Cai, Z. X., Wang, Z. L., Xia, Y. J., Lim, H., Zhou, W., Taniguchi, A., Ohtani, M., Kobiro, K., Fujita, T., Yamauchi, Y., Tailored catalytic nanoframes from metal–organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction. Angew. Chem. 2021, 4797-4805.
[50] Zhong, M., Li, L., Zhao, K., He, F., Su, B., Wang, D., PdCo alloys@ N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Mater. Sci. 2021, 14222-14233.
[51] Bhowmik, T., Kundu, M.K., Barman, S., Palladium nanoparticle–graphitic carbon nitride porous synergistic catalyst for hydrogen evolution/oxidation reactions over a broad range of pH and correlation of its catalytic activity with measured hydrogen binding energy. ACS Catal. 2016, 1929-1941.
[52] Zhang, J., Liu, P., Wang, G., Zhang, P., Zhuang, X., Chen, M., Weidinger, I., Feng, X., Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2017, 25314-25318.
[53] Kaushik, P., Kaur, G., Chaudhary, G.R., Batra, U., Cleaner way for overall water splitting reaction by using palladium and cobalt based nanocomposites prepared from mixed metallosurfactants. Appl. Surf. Sci. 2021, 149769.
[54] Wang, Z. L., Hao, X. F., Jiang, Z., Sun, X. P., Xu, D., Wang, J., Zhong, H. X., Meng, F. L. Zhang, X. B., C and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 15070-15073.
[55] Cao, D., Wang, J., Xu, H., Cheng, D., Construction of Dual‐Site Atomically Dispersed Electrocatalysts with Ru‐C5 Single Atoms and Ru‐O4 Nanoclusters for Accelerated Alkali Hydrogen Evolution. Small 2021, 2101163.
[56] Lu, B., Guo, L., Wu, F., Peng, Y., Lu, J. E., Smart, T. J., Wang, N., Finfrock, Y. Z., Morris, D., Zhang, P., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 631.
[57] Yin, J., Fan, Q., Li, Y., Cheng, F., Zhou, P., Xi, P., Sun, S., Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 14546-14549.
[58] Wang, Q., Cui, K., Liu, D., Wu, Y., Ren, S., Co–N Active Sites between Co Nanoparticles and N-Doped Carbon toward Remarkably Enhanced Electrocatalytic Oxygen Evolution and Hydrogen Evolution Reactions. Energy Fuels 2022, 1688-1696.
[59] Xing, L., Gao, H., Hai, G., Tao, Z., Zhao, J., Jia, D., Chen, X., Han, M., Hong, S., Zheng, L., Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. J. Mater. Chem. A 2020, 3203-3210.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2023-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明