博碩士論文 110324060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:52.15.70.0
姓名 徐悅華(Yueh-Hua Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用機器學習決定不鏽鋼耐腐蝕性的關鍵因素
(Identifying Critical Factors that Determine the Corrosion Resistance of Stainless Steels Using Machine Learning)
相關論文
★ 多孔材料的BET表面積測定:限制和改進★ 二維凡德瓦材料和異質結構中熱傳輸的計算研究
★ 利用密度泛函理論探討鐵合金中間隙元素的影響★ 利用密度泛函理論開發高效率矽鍺錫熱電合金
★ 使用分子動力學模擬探討甲烷/二氧化碳/氮氣混合水合物的成核與生長★ 研究多孔材料的孔徑分布:BJH方法的探討與機 器學習方法的應用潛力
★ 利用密度泛函理論計算探討元素摻雜對g-C3N4光催化效率的提升
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-30以後開放)
摘要(中) 抗腐蝕合金是一種具有高度抗腐蝕能力的材料,近年來被廣泛應用於工業界中,主要是因為它卓越的抗腐蝕性可以降低由於腐蝕所造成的維修成本、破壞。為了設計適用於各種嚴苛環境的抗腐蝕合金,研究影響合金抗腐蝕能力的關鍵因素成為非常重要的研究主題。先前的研究提出臨界點蝕溫度 (Critical pitting temperature) 和點蝕電位 (Pitting potential) 這兩個用於衡量抗腐蝕能力的指標與金屬組成的經驗式之間存在線性關係,該經驗方程式中並未考慮環境參數對抗腐蝕能力的影響,然而,許多研究指出環境參數(例如酸鹼值、氯離子濃度、溶液溫度)對於合金抗腐蝕能力有顯著的影響。因此,本研究將透過機器學習方法探討合金組成與環境因素對合金抗腐蝕能力的影響,為抗腐蝕材料的開發提供重要的資訊。機器學習相對於傳統方法具有較低的計算成本和較短的開發週期,並且具有強大的數據處理能力和高度準確的預測性能。本研究將合金的組成和環境因素作為特徵值利用機器學習模型進行訓練和測試分析預測合金的抗腐蝕能力,透過本次研究發現環境參數對於合金抗腐蝕能力的預測至關重要,使我們能夠更全面地瞭解金屬組成和環境因素對抗腐蝕能力的影響。
摘要(英) Corrosion resistant alloys (CRAs), a class of materials that is of great importance in many applications because of its high corrosion resistance. In order to design good CRAs for various applications, understanding the key factors that determine corrosion resistance is crucial. Previous work showed that the critical pitting temperature can be estimated by a composition-depend equation, measure of alloying for resistance to corrosion (MARC), whereas the pitting corrosion resistance be predicted by a composition-depend equation, pitting resistance equivalent (PREN). These two empirical equations only depend on the alloy composition. However, environmental parameters, believed to be critical factors, are not considered in both empirical equations. In order to obtain comprehensive understanding of effects of the environmental parameters on corrosion resistance, machine learning technique, which has powerful data processing capabilities, is utilized in this work. The influence of metal composition and environmental parameters on corrosion resistance are studied using machine learning. This study shows that environmental parameters play important roles in predicting corrosion resistance and provides valuable insights into developing good CRAs.
關鍵字(中) ★ 不鏽鋼
★ 抗腐蝕能力
★ 機器學習
★ 點蝕電位
★ 臨界點蝕溫度
關鍵字(英) ★ stainless steels
★ corrosion resistance
★ machine learning
★ pitting potential
★ critical pitting temperature
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Contents iv
1 Introduction 1
1.1 Corrosion resistant alloys (CRAs) .............................................. 1
1.1.1 The development of corrosion resistant alloys in recent years . . . . . . . . . . . . 1
1.1.2 Localized corrosion..................................................... 2
1.1.3 Passive film............................................................. 2
1.2 Corrosion resistance measurement.............................................. 3
1.2.1 Pitting potential......................................................... 4
1.2.2 Critical pitting temperature.............................................. 5
1.3 Empirical equation to estimate corrosion resistance ............................. 6
1.3.1 Pitting resistance equivalent number .................................... 6
1.3.2 Measure of alloying for resistance to corrosion .......................... 7
1.4 Effects of alloy compositions on corrosion resistance ........................... 8
1.4.1 Roles of nickel and chromium in stainless steels......................... 8
1.4.2 Additives in stainless steels ............................................. 9
1.5 Environmental effect on corrosion resistance.................................... 10
1.5.1 pH effect................................................................ 10
1.5.2 Chloride concentration effect............................................ 10
1.5.3 Temperature effect...................................................... 11
1.6 Machine learning in corrosion .................................................. 11
1.7 Motivation ..................................................................... 12
2 Data and Methods 14
2.1 Data............................................................................ 14
2.1.1 Critical pitting temperature dataset ...................................... 14
2.1.2 Pitting potential dataset ................................................. 15
2.2 Machine learning methods...................................................... 15
2.2.1 Linear regression ....................................................... 15
2.2.2 Decision tree regression................................................. 16
2.2.3 Cross-validation ........................................................ 19
2.2.4 Random forest regression ............................................... 19
2.2.5 Predict criteria .......................................................... 20
2.2.6 Machine learning packages.............................................. 21
2.3 Machine learning workflow .................................................... 22
3 Results and Discussions 23
3.1 Critical pitting temperature ..................................................... 23
3.1.1 Using MARC and Mo-N-Mn to predict CPT ............................ 23
3.1.2 Tree depth in decision tree regression ................................... 29
3.1.3 Feature importance...................................................... 30
3.1.4 The elements in the MARC as input features ............................ 35
3.2 Pitting potential ................................................................ 39
3.2.1 Using PREN to predict pitting potential ................................. 39
3.2.2 Identification of unreasonable data ...................................... 42
3.2.3 Feature importance...................................................... 43
3.2.4 Roles of PREN in prediction ............................................ 45
4 Conclusion 47
4.1 Critical pitting temperature ..................................................... 47
4.2 Pitting potential ................................................................ 47
5 Future work 48
5.1 Critical Pitting Temperature .................................................... 48
5.2 Pitting potential ................................................................ 48
5.3 Corrosion resistance............................................................ 49
Bibliography 50
參考文獻 1. Koch, G. Cost of corrosion. Trends in Oil and Gas Corrosion Research and Technologies, 3–30 (2017).
2. Taylor, C. D., Lu, P., Saal, J., Frankel, G. & Scully, J. Integrated computational materials engi- neering of corrosion resistant alloys. npj Materials Degradation 2, 6 (2018).
3. Enos, D. & Bryan, C. R. UFD expert panel on chloride induced stress corrosion cracking of interim storage containers for spent nuclear fuel tech. rep. (Sandia National Lab.(SNL-NM), Al- buquerque, NM (United States), 2017).
4. Qiu, Y., Thomas, S., Gibson, M. A., Fraser, H. L. & Birbilis, N. Corrosion of high entropy alloys. npj Materials Degradation 1, 15 (2017).
5. Dursun, T. & Soutis, C. Recent developments in advanced aircraft aluminium alloys. Materials & Design 56, 862–871 (2014).
6. Lo, K. H., Shek, C. H. & Lai, J. Recent developments in stainless steels. Materials Science and Engineering: R: Reports 65, 39–104 (2009).
7. Dewangan, A., Patel, A. & Bhadania, A. Stainless steel for dairy and food industry: a review. Journal of Material Sciences & Engineering 4, 1–4 (2015).
8. Narahari Prasad, S. & Narayana Rao, M. Stainless steel-a versatile engineering material for critical applications. Advanced Materials Research 794, 44–49 (2013).
9. Ibrahim, M. A., Abd El Rehim, S. & Hamza, M. Corrosion behavior of some austenitic stainless steels in chloride environments. Materials Chemistry and Physics 115, 80–85 (2009).
10. Tuthill, A. H. & Covert, R. A. Stainless steels: an introduction to their metallurgy and corrosion resistance. Dairy Food and Environmental Sanitation 20, 506–517 (2000).
11. Roy, A. et al. Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys. npj Materials Degradation 6, 9 (2022).
12. Nyby, C. et al. Electrochemical metrics for corrosion resistant alloys. Scientific Data 8, 58 (2021).
13. Zarras, P. & Stenger-Smith, J. in Handbook of Smart Coatings for Materials Protection 3–28
(Elsevier, 2014).
14. Sun, Y., Wang, J., Jiang, Y. & Li, J. A comparative study on potentiodynamic and potentio- static critical pitting temperature of austenitic stainless steels. Materials and Corrosion 69, 44–52 (2018).
15. Olsson, C.-O. & Landolt, D. Passive films on stainless steels—chemistry, structure and growth. Electrochimica Acta 48, 1093–1104 (2003).
16. Baba, H., Kodama, T. & Katada, Y. Role of nitrogen on the corrosion behavior of austenitic stain- less steels. Corrosion Science 44, 2393–2407 (2002).
17. Frankel, G. S. et al. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. npj Materials Degradation 2, 15 (2018).
18. Marcus, P., Maurice, V. & Strehblow, H.-H. Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure. Corrosion Science 50, 2698–2704 (2008).
19. Xu, C. & Gao, W. Pilling-bedworth ratio for oxidation of alloys. Materials Research Innovations 3, 231–235 (2000).
20. Stringer, J. Stress generation and relief in growingoxide films. Corrosion Science 10, 513–543 (1970).
21. Laycock, N. & Newman, R. Temperature dependence of pitting potentials for austenitic stainless steels above their critical pitting temperature. Corrosion Science 40, 887–902 (1998).
22. Pardo, A. et al. Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels. Corrosion 56 (2000).
23. Ebrahimi, N., Momeni, M., Kosari, A., Zakeri, M. & Moayed, M. H. A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques. Corrosion Science 59, 96–102 (2012).
24. Salinas-Bravo, V. & Newman, R. An alternative method to determine critical pitting temperature of stainless steels in ferric chloride solution. Corrosion Science 36, 67–77 (1994).
25. Renner, M., Heubner, U., Rockel, M. & Wallis, E. Temperature as a pitting and crevice corrosion criterion in the FeCl3 test. Materials and Corrosion 37, 183–190 (1986).
26. Park, J., Matsch, S. & Böhni, H. Effects of temperature and chloride concentration on pit initiation and early pit growth of stainless steel. Journal of the Electrochemical Society 149, B34 (2001).
27. Li, H.-b., Jiang, Z.-h., Yang, Y., Cao, Y. & Zhang, Z.-r. Pitting corrosion and crevice corrosion be- haviors of high nitrogen austenitic stainless steels. International Journal of Minerals, Metallurgy and Materials 16, 517–524 (2009).
28. Deng, B. et al. Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions. Electrochimica Acta 53, 5220–5225 (2008).
29. Burstein, G. & Ilevbare, G. The effect of specimen size on the measured pitting potential of stain- less steel. Corrosion Science 38, 2257–2265 (1996).
30. Broli, A. & Holtan, H. Use of potentiokinetic methods for the determination of characteristic po- tentials for pitting corrosion of aluminium in a deaerated solution of 3% NaCl. Corrosion Science 13, 237–246 (1973).
31. Esmailzadeh, S., Aliofkhazraei, M. & Sarlak, H. Interpretation of cyclic potentiodynamic polar- ization test results for study of corrosion behavior of metals: a review. Protection of Metals and Physical Chemistry of Surfaces 54, 976–989 (2018).
32. Pessall, N. & Liu, C. Determination of critical pitting potentials of stainless steels in aqueous chloride environments. Electrochimica Acta 16, 1987–2003 (1971).
33. Oldfield, J. W. Test techniques for pitting and crevice corrosion resistance of stainless steels and nickel-base alloys in chloride-containing environments. International Materials Reviews 32, 153– 172 (1987).
34. Man, H. C. & Gabe, D. The study of pitting potentials for some austenitic stainless steels using a potentiodynamic technique. Corrosion Science 21, 713–721 (1981).
35. Brigham, R. & Tozer, E. Temperature as a pitting criterion. Corrosion 29, 33–36 (1973).
36. Brigham, R. & Tozer, E. Effect of alloying additions on the pitting resistance of 18% Cr austenitic
stainless steel. Corrosion 30, 161–166 (1974).
37. Sugimoto, K. & Sawada, Y. The role of alloyed molybdenum in austenitic stainless steels in the
inhibition of pitting in neutral halide solutions. Corrosion 32, 347–352 (1976).
38. Asaduzzaman, M., Mohammad, C. M. & Mayeedul, I. Effects of concentration of sodium chlo- ride solution on the pitting corrosion behavior of AISI 304L austenitic stainless steel. Chemical Industry & Chemical Engineering Quarterly 17, 477–483 (2011).
39. Malik, A., Siddiqi, N., Ahmad, S. & Andijani, I. The effect of dominant alloy additions on the corrosion behavior of some conventional and high alloy stainless steels in seawater. Corrosion Science 37, 1521–1535 (1995).
40. Abd El Meguid, E. & Abd El Latif, A. Critical pitting temperature for Type 254 SMO stainless steel in chloride solutions. Corrosion Science 49, 263–275 (2007).
41. Frazão, I., Magnabosco, R. & Delblanc, A. Comparison between stainless steels and nickel alloys through pitting corrosion resistance electrochemical tests. Materials Research 24 (2021).
42. Speidel, H. J. & Speidel, M. O. Nickel and chromium-based high nitrogen alloys. Materials and Manufacturing Processes 19, 95–109 (2004).
43. Jargelius-Pettersson, R. Application of the pitting resistance equivalent concept to some highly alloyed austenitic stainless steels. Corrosion 54, 162–168 (1998).
44. Pardo, A. et al. Pitting corrosion behaviour of austenitic stainless steels–combining effects of Mn and Mo additions. Corrosion Science 50, 1796–1806 (2008).
45. Hara, N., Hirabayashi, K., Sugawara, Y. & Muto, I. Improvement of pitting corrosion resistance of type 316L stainless steel by potentiostatic removal of surface MnS inclusions. International Journal of Corrosion 2012 (2012).
46. Mori, G. & Bauernfeind, D. Pitting and crevice corrosion of superaustenitic stainless steels. Ma- terials and Corrosion 55, 164–173 (2004).
47. Jiang, Y. et al. Influence of Creq/Nieq on pitting corrosion resistance and mechanical properties of UNS S32304 duplex stainless steel welded joints. Corrosion Science 70, 252–259 (2013).
48. Gholami, M., Hoseinpoor, M. & Moayed, M. H. A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel. Corrosion Science 94, 156–164 (2015).
49. Deng, B. et al. Evaluation of localized corrosion in duplex stainless steel aged at 850 C with critical pitting temperature measurement. Electrochimica Acta 54, 2790–2794 (2009).
50. Deng, B. et al. Effect of thermal cycles on the corrosion and mechanical properties of UNS S31803 duplex stainless steel. Corrosion Science 51, 2969–2975 (2009).
51. Speidel, M. New nitrogen-bearing austenitic stainless steels with high strength and ductility. Metal Science and Heat Treatment 47 (2005).
52. Lapechenkov, A., Fedorov, A., Galata, L. & Piskarev, A. Comparative analysis of the corrosion resistance of UNS S31200 duplex stainless steel and its analogue. Materials Today: Proceedings 30, 361–364 (2020).
53. Speidel, M. O. Nitrogen containing austenitic stainless steels. Materialwissenschaft und Werk- stofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen Technischer Werk- stoffe 37, 875–880 (2006).
54. Li, L., Dong, C., Xiao, K., Yao, J. & Li, X. Effect of pH on pitting corrosion of stainless steel welds in alkaline salt water. Construction and Building Materials 68, 709–715 (2014).
55. Olefjord, I. & Elfstrom, B.-O. The composition of the surface during passivation of stainless steels. Corrosion 38, 46–52 (1982).
56. Hakiki, N., Boudin, S., Rondot, B. & Belo, M. D. C. The electronic structure of passive films formed on stainless steels. Corrosion Science 37, 1809–1822 (1995).
57. Wallinder, I. O., Lu, J., Bertling, S. & Leygraf, C. Release rates of chromium and nickel from 304 and 316 stainless steel during urban atmospheric exposure—a combined field and laboratory study. Corrosion Science 44, 2303–2319 (2002).
58. Abreu, C. et al. The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels. Electrochimica Acta 51, 2991–3000 (2006).
59. Willenbruch, R., Clayton, C., Oversluizen, M., Kim, D. & Lu, Y. An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel. Corrosion Science 31, 179–190 (1990).
60. Maurice, V., Yang, W. & Marcus, P. X-Ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surfaces. Journal of the Electrochemical Society 145, 909 (1998).
61. Potgieter, J., Olubambi, P., Cornish, L., Machio, C. & Sherif, E.-S. M. Influence of nickel addi- tions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels. Corrosion Science 50, 2572–2579 (2008).
62. Tavara, S., Chapetti, M. D., Otegui, J. & Manfredi, C. Influence of nickel on the susceptibility to corrosion fatigue of duplex stainless steel welds. International Journal of Fatigue 23, 619–626 (2001).
63. An, L.-c., Cao, J., Wu, L.-c., Mao, H.-h. & Yang, Y.-t. Effects of Mo and Mn on pitting behavior of duplex stainless steel. Journal of Iron and Steel Research International 23, 1333–1341 (2016).
64. Matsch, S. & Böhni, H. Influence of temperature on the localized corrosion of stainless steels. Russian Journal of Electrochemistry 36, 1122–1128 (2000).
65. Jargelius-Pettersson, R. Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels. Corrosion Science 41, 1639–1664 (1999).
66. Jung, K. et al. Alloy design employing high Cr concentrations for Mo-free stainless steels with enhanced corrosion resistance. Corrosion Science 140, 61–72 (2018).
67. Ha, H.-Y., Lee, T.-H., Oh, C.-S. & Kim, S.-J. Effects of combined addition of carbon and nitrogen on pitting corrosion behavior of Fe–18Cr–10Mn alloys. Scripta Materialia 61, 121–124 (2009).
68. Yoon, H. et al. Effects of carbon substitution for nitrogen on the pitting corrosion resistance of type UNS S32205 duplex stainless steel. Corrosion Science 164, 108308 (2020).
69. Zhang, S. H., Tan, Y. & Liang, K. X. The effects of environmental factors on the pitting corrosion of 304 stainless steel. Advanced Materials Research 214, 573–577 (2011).
70. Fattah-Alhosseini, A. & Vafaeian, S. Effect of solution pH on the electrochemical behaviour of AISI 304 austenitic and AISI 430 ferritic stainless steels in concentrated acidic media. Egyptian Journal of Petroleum 24, 333–341 (2015).
71. Souza, E. C., Rossitti, S. M. & Rollo, J. M. Influence of chloride ion concentration and temper- ature on the electrochemical properties of passive films formed on a superduplex stainless steel. Materials Characterization 61, 240–244 (2010).
72. Wei, J. et al. Machine learning in materials science. InfoMat 1, 338–358 (2019).
73. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molec-
ular and materials science. Nature 559, 547–555 (2018).
74. Li, Z. et al. Evaluating the corrosion resistance of marine steels under different exposure environ-
ments via machine learning. Physica Scripta 98, 015402 (2022).
75. Diao, Y., Yan, L. & Gao, K. Improvement of the machine learning-based corrosion rate prediction
model through the optimization of input features. Materials & Design 198, 109326 (2021).
76. Lu, Z. et al. Prediction of Mg alloy corrosion based on machine learning models. Advances in
Materials Science and Engineering 2022 (2022).
77. Guiraldenq, P. & Duparc, O. H. The genesis of the schaeffler diagram in the history of stainless
steel. Metallurgical Research & Technology 114, 613 (2017).
78. Kaneko, M. & Isaacs, H. Effects of molybdenum on the pitting of ferritic-and austenitic-stainless
steels in bromide and chloride solutions. Corrosion Science 44, 1825–1834 (2002).
79. Bui, N., Irhzo, A., Dabosi, F. & Limouzin-Maire, Y. On the mechanism for improved passivation
by additions of tungsten to austenitic stainless steels. Corrosion 39, 491–496 (1983).
80. Böhni, H. & Uhlig, H. Effect of alloyed Re on the critical pitting potentials of 18% Cr/10% Ni
stainless steels. Corrosion Science 9, 353–355 (1969).
81. Lizlovs, E. & Bond, A. Anodic polarization of some ferritic stainless steels in chloride media.
Journal of The Electrochemical Society 116, 574 (1969).
82. Tomashov, N., Chernova, G. & Marcova, O. Effect of supplementary alloying elements on pitting
corrosion susceptibility of 18Cr-14Ni stainless steel. Corrosion 20, 166t–173t (1964).
83. Goetz, R., Laurent, J. & Landolt, D. The influence of minor alloying elements on the passivation behaviour of iron-chromium alloys in HCl. Corrosion Science 25, 1115–1126 (1985).
84. Kim, J.-S. & Kwon, H.-S. Effects of tungsten on corrosion and kinetics of sigma phase formation of 25% chromium duplex stainless steels. Corrosion 55, 512–521 (1999).
85. Garfias-Mesias, L., Sykes, J. & Tuck, C. The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions. Corrosion Science 38, 1319–1330 (1996).
86. Bond, A. Effects of molybdenum on the pitting potentials of ferritic stainless steels at various temperatures. Journal of The Electrochemical Society 120, 603 (1973).
87. Lim, H.-I. A linear regression approach to modeling software characteristics for classifying sim- ilar software in 2019 IEEE 43rd annual computer software and applications conference (COMP- SAC) 1 (2019), 942–943.
88. Maulud, D. & Abdulazeez, A. M. A review on linear regression comprehensive in machine learn- ing. Journal of Applied Science and Technology Trends 1, 140–147 (2020).
89. Tranmer, M. & Elliot, M. Multiple linear regression. The Cathie Marsh Centre for Census and Survey Research 5, 1–5 (2008).
90. Uyanık, G. K. & Güler, N. A study on multiple linear regression analysis. Procedia-Social and Behavioral Sciences 106, 234–240 (2013).
91. Dismuke, C. & Lindrooth, R. Ordinary least squares. Methods and Designs for Outcomes Research 93, 93–104 (2006).
92. Navada, A., Ansari, A. N., Patil, S. & Sonkamble, B. A. Overview of use of decision tree algorithms in machine learning in 2011 IEEE control and system graduate research colloquium (2011), 37– 42.
93. Pekel, E. Estimation of soil moisture using decision tree regression. Theoretical and Applied Cli- matology 139, 1111–1119 (2020).
94. Ali, J., Khan, R., Ahmad, N. & Maqsood, I. Random forests and decision trees. International Journal of Computer Science Issues 9, 272 (2012).
95. Loh, W.-Y. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1, 14–23 (2011).
96. Louppe, G., Wehenkel, L., Sutera, A. & Geurts, P. Understanding variable importances in forests of randomized trees. Advances in Neural Information Processing Systems 26 (2013).
97. Berrar, D. in Encyclopedia of Bioinformatics and Computational Biology (eds Ranganathan, S., Gribskov, M., Nakai, K. & Schönbach, C.) 542–545 (Academic Press, Oxford, 2019). ISBN: 978- 0-12-811432-2. https://www.sciencedirect.com/science/article/pii/B978012809633820349X.
98. Li, Y. et al. Random forest regression for online capacity estimation of lithium-ion batteries. Ap- plied Energy 232, 197–210 (2018).
99. Liu, Y., Wang, Y. & Zhang, J. New machine learning algorithm: Random forest in Information computing and applications: third international conference, ICICA 2012, chengde, china, septem- ber 14-16, 2012. proceedings 3 (2012), 246–252.
100. Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).
101. Svetnik, V. et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences 43, 1947–1958 (2003).
102. Fawagreh, K., Gaber, M. M. & Elyan, E. Random forests: from early developments to recent advancements. Systems Science & Control Engineering: An Open Access Journal 2, 602–609 (2014).
103. Lam, L. & Suen, S. Application of majority voting to pattern recognition: an analysis of its be- havior and performance. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 27, 553–568 (1997).
104. Siroky, D. S. Navigating random forests and related advances in algorithmic modeling (2009).
105. Horning, N. et al. Random forests: an algorithm for image classification and generation of contin- uous fields data sets in Proceedings of the International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Osaka, Japan 911 (2010), 1–6.
106. Chicco, D., Warrens, M. J. & Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 7, e623 (2021).
107. Chai, T. & Draxler, R. R. Root mean square error (RMSE) or mean absolute error (MAE). Geo- scientific Model Development Discussions 7, 1525–1534 (2014).
108. Pedregosa, F. et al. Scikit-learn: machine learning in Python. Journal of Machine Learning Re- search 12, 2825–2830 (2011).
109. Oliphant, T. E. Python for scientific computing. Computing in Science & Engineering 9, 10–20 (2007).
110. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinfor- matics, 14 (2014).
111. McKinney, W. et al. pandas: a foundational Python library for data analysis and statistics. Python for High Performance and Scientific Computing 14, 1–9 (2011).
112. McKinney, W. Python for data analysis: data wrangling with Pandas, NumPy, and IPython (” O’Reilly Media, Inc.”, 2012).
113. Nelli, F. Python data analytics with Pandas, NumPy, and Matplotlib (2018).
114. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
115. Ari, N. & Ustazhanov, M. Matplotlib in python in 2014 11th International conference on electron- ics, computer and computation (ICECCO) (2014), 1–6.
116. De’ath, G. & Fabricius, K. E. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).
117. Hou, X. et al. Effect of temperature on the electrochemical pitting corrosion behavior of 316L stainless steel in chloride-containing MDEA solution. Journal of Natural Gas Science and Engi- neering 86, 103718 (2021).
118. Malik, A. U., Andijani, I. N. & Siddiqi, N. A. Corrosion behavior of some conventional and high alloy stainless steels in gulf seawater. Issued as a Technical Report No. SWCC RDC-2 (1992).
119. Malik, A. U., Siddiqi, N. & Andijani, I. N. Corrosion behavior of some highly alloyed stainless steels in seawater. Desalination 97, 189–197 (1994).
指導教授 簡思佳(Szu-Chia Chien) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明