參考文獻 |
(1) P. Allongue, F. Maroun, Electrodeposited magnetic layers in the ultrathin limit. MRS bulletin, 2010, 35, 761-770
(2) L. Zhang, J. Dong, F. Ding, Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis, Chemical Reviews. 121 (2021) 6321–6372.
(3) Chou, H.-L. and J. Rick, Investigation of CO and OH adsorption and oxidation in the presence of cocatalytic ruthenium ions on the Pt(111) surface.Catalysis Communications, 2022. 162: p. 106400.
(4) Chen, D.J. and Y.Y.J. Tong, The Bifunctional Electrocatalysis of Carbon Monoxide Oxidation Reaction, in Encyclopedia of Interfacial Chemistry, K. Wandelt, Editor. 2018, Elsevier: Oxford. p. 881-897.
(5) Yeager, E. Journal of Molecular Catalysis 1986, 38, 5.
(6) Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angewandte Chemie International Edition 2005, 44, 2132.
(7) Maruyama, J.; Inaba, M.; Ogumi, Z. Journal of Electroanalytical Chemistry 1998, 458, 175.
(8) Markovic, N. M.; Gasteiger, H. A.; Ross, P. N. The Journal of Physical Chemistry 1995, 99, 3411.
(9) Chen, H., Liu, Y., Yang, F., Wei, M., Zhao, X., Ning, Y.,Bao, X. Active phase of FeOx/Pt catalysts in low-temperature CO oxidation and preferential oxidation of CO reaction. The Journal of Physical Chemistry C, (2017) 121(19), 10398-10405.
(10) Li, Y., Zhao, X., Cui, Y., Yang, F., & Bao, X. Oxidation-induced structural transition of two-dimensional iron oxide on Au(111). Journal of Physics D: Applied Physics, (2021) 54(20), 204003.
(11) Merte, L. R. Tip-dependent scanning tunneling microscopy imaging of ultrathin FeO films on Pt(111). The Journal of Physical Chemistry C, (2011). https://doi.org/10.1021/jp109581a
(12) Fu, Q.; et al. Interface-Confined Ferrous Centers for Catalytic Oxidation. Science 2010, 328, 1141−1144.
(13) Guo, X.; Fu, Q.; Ning, Y.; Wei, M.; Li, M.; Zhang, S.; Jiang, Z.; Bao, X. Ferrous Centers Confined on Core−Shell Nanostructures for Low-Temperature CO Oxidation. J. Am. Chem. Soc. 2012, 134, 12350−12353.
(14) Cao, L. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature, (2019).https://doi.org/10.1038/s41586-018-0869-5
(15) Lee, S. The effects of iron oxide overlayers on Pt for CO oxidation. Catalysis Communications, (2022). 172, 106549.
(16) Guan,J.Intermetallic FePt@PtBi core–shell nanoparticles for oxygen reduction electrocatalysis. Angewandte Chemie,(2021).
(17) A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York : Wiley, 2001
(18) F.J. Sarabia, P. Sebastián-Pascual, M.T.M. Koper, V. Climent, J.M. Feliu, Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media, ACS Applied Materials & Interfaces, 11 (2019) 613-623.
(19) D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials, Nano Energy, 29 (2016) 29-36.
(20) C. Wang, H. Tissot, M. Soldemo, J. Lu, J. Weissenrieder, Inverse single-site Fe(OH)x/Pt(111) model catalyst for preferential oxidation of CO in H2, Nano Research, 15 (2022) 709-715.
(21) Z. Jiang, W. Wan, Z. Lin, J. Xie, J.G. Chen, Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural, ACS Catal., 7 (2017) 5758-5765.
(22) S. K. Shaikhutdinov, Y. Joseph, C. Kuhrs, W. Ranke, W. Weiss, Structure and reactivity of iron oxide surfaces, Faraday Discuss., 114 (1999) 363-380.
(23) I. Diez-Perez, P. Gorostiza, F. Sanz, C. Müller, First Stages of Electrochemical Growth of the Passive Film on Iron, J. Electrochem. Soc., 148 (2001) B307-B313.
(24) I. Dı́ez-Pérez, P. Gorostiza, F. Sanz, Direct Evidence of the Electronic Conduction of the Passive Film on Iron by EC-STM, J. Electrochem. Soc., 150 (2003) B348.
(25) R.M. Rynders, R.C. Alkire, Use of In Situ Atomic Force Microscopy to Image Copper Electrodeposits on Platinum, J. Electrochem. Soc., 141 (1994) 1166-1173.
(26) K.-D. Schierbaum, Ordered ultra-thin cerium oxide overlayers on Pt(111) single crystal surfaces studied by LEED and XPS, Surf. Sci., 399 (1998) 29-38.
(27) T. Schedel-Niedrig, W. Weiss, R. Schlögl, Electronic structure of ultrathin ordered iron oxide films grown onto Pt(111), Phys. Rev. B, 52 (1995) 17449-17460.
(28) G.H. Vurens, M. Salmeron, G.A. Somorjai, Structure, composition and chemisorption studies of thin ordered iron oxide films on Pt(111), Surf. Sci., 201 (1988) 129-144.
(29) H. Liu, A. Zakhtser, A. Naitabdi, F. Rochet, F. Bournel, C. Salzemann, C. Petit, J.-J. Gallet, W. Jie, Operando Near-Ambient Pressure X-ray Photoelectron Spectroscopy Study of the CO Oxidation Reaction on the Oxide/Metal Model Catalyst ZnO/Pt(111), ACS Catal., 9 (2019) 10212-10225.
(30) M. Ritter, W. Ranke, W. Weiss, Growth and structure of ultrathin FeO films on Pt(111) studied by STM and LEED, Phys. Rev. B, 57 (1998) 7240-7251.
(31) Y. Li, X. Zhao, Y. Cui, F. Yang, X. Bao, Oxidation-induced structural transition of two-dimensional iron oxide on Au(111), J. Phys. D: Appl. Phys., 54 (2021) 204003.
(32) G.S. Parkinson, Iron oxide surfaces, Surf. Sci. Rep., 71 (2016) 272-365.
(33) W. Weiss, W. Ranke, Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers, Prog. Surf. Sci., 70 (2002) 1-151.
(34) Z.-L. Wu, Z.-H. Zang, S.-L. Yau, Electrodeposition of Copper at Well-Defined Pt(111) and Rh(111) Electrodes in Sulfuric Acid Solutions: Studying with In Situ Scanning Tunneling Microscopy, Langmuir, 16 (2000) 3522-3528.
(35) Z.-L. Wu, S.-L. Yau, Examination of Underpotential Deposition of Copper on Pt(111) Electrodes in Hydrochloric Acid Solutions with in Situ Scanning Tunneling Microscopy, Langmuir, 17 (2001) 4627-4633.
(36) C.-H. Shue, S.-L. Yau, In Situ Scanning Tunneling Microscopy of Underpotential Deposition of Copper at Pt(100) Electrodes Coated with an Iodine Monolayer, J. Phys. Chem. B, 105 (2001) 5489-5496.
(37) W. Chen, P. Yen, Y. Kuo, S. Chen, S. Yau, Epitaxial Electrodeposition of Nickel on Pt(111) Electrode, J. Phys. Chem. C, 116 (2012) 21343–21349.
(38) F.J. Sarabia, V. Climent, J.M. Feliu, Underpotential deposition of Nickel on platinum single crystal electrodes, J. Electroanal. Chem., 819 (2018) 391-400.
(39) M.B. Rooney, D.C. Coomber, A.M. Bond, Achievement of Near-Reversible Behavior for the [Fe(CN)6]3-/4- Redox Couple Using Cyclic Voltammetry at Glassy Carbon, Gold, and Platinum Macrodisk Electrodes in the Absence of Added Supporting Electrolyte, Anal. Chem., 72 (2000) 3486-3491.
(40) M. Stieble, K. Jüttner, Surface blocking in the redox system Pt/[Fe(CN)6]3−,[Fe(CN)6]4−: An ac impedance study, J. Electroanal. Chem., 290 (1990) 163-180.
(41) Y. Joseph, C. Kuhrs, W. Ranke, M. Ritter, W. Weiss, Adsorption of water on FeO(111) and Fe3O4(111): identification of active sites for dissociation, Chem. Phys. Lett., 314 (1999) 195-202.
(42) Y. Tang, H. Qin, K. Wu, Q. Guo, J. Guo, The reduction and oxidation of Fe2O3(0001) surface investigated by scanning tunneling microscopy, Surf. Sci., 609 (2013) 67-72.
(43) H. Zeuthen, W. Kudernatsch, G. Peng, L.R. Merte, L.K. Ono, L. Lammich, Y. Bai, L.C. Grabow, M. Mavrikakis, S. Wendt, F. Besenbacher, Structure of Stoichiometric and Oxygen-Rich Ultrathin FeO(111) Films Grown on Pd(111), J. Phys. Chem. C, 117 (2013) 15155-15163.
(44) L.R. Merte, L.C. Grabow, G. Peng, J. Knudsen, H. Zeuthen, W. Kudernatsch, S. Porsgaard, E. Lægsgaard, M. Mavrikakis, F. Besenbacher, Tip-Dependent Scanning Tunneling Microscopy Imaging of Ultrathin FeO Films on Pt(111), J. Phys. Chem. C, 115 (2011) 2089-2099.
(45) H.F. Jurca, A. Damian, C. Gougaud, D. Thiaudière, R. Cortès, F. Maroun, P. Allongue, Epitaxial Electrodeposition of Fe on Au(111): Structure, Nucleation, and Growth Mechanisms, J. Phys. Chem. C, 120 (2016) 16080-16089.
(46) E. Herrero, L.J. Buller, H.D. Abruña, Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials, Chem. Rev., 101 (2001) 1897-1930.
(47) M.P. Ryan, R.C. Newman, G.E. Thompson, An STM Study of the Passive Film Formed on Iron in Borate Buffer Solution, J. Electrochem. Soc., 142 (1995) L177.
(48) M.A. van Spronsen, J.W.M. Frenken, I.M.N. Groot, Observing the oxidation of platinum, Nat. Commun., 8 (2017) 429.
(49) L.R. Merte, Y. Bai, H. Zeuthen, G. Peng, L. Lammich, F. Besenbacher, M. Mavrikakis, S. Wendt, Identification of O-rich structures on Pt(111)-supported ultrathin iron oxide films, Surf. Sci., 652 (2016) 261-268.
(50) F. Ringleb, Y. Fujimori, H.-F. Wang, H. Ariga, E. Carrasco, M. Sterrer, H.-J. Freund, L. Giordano, G. Pacchioni, J. Goniakowski, Interaction of Water with FeO(111)/Pt(111): Environmental Effects and Influence of Oxygen, J. Phys. Chem. C, 115 (2011) 19328-19335.
(51) A.M. Funtikov, U. Stimming, R. Vogel, Anion adsorption from sulfuric acid solutions on Pt(111) single crystal electrodes, J. Electroanal. Chem., 428 (1997) 147-153.
(52) N. Li, J. Lipkowski, Chronocoulometric studies of chloride adsorption at the Pt(111) electrode surface, J. Electroanal. Chem., 491 (2000) 95-102.
(53) Ruqia, B., & Choi, S. I. Pt and Pt–Ni (OH)2 electrodes for the hydrogen evolution reaction in alkaline electrolytes and their nanoscaled electrocatalysts. ChemSusChem, (2018) 11(16), 2643-2653. |