博碩士論文 108622604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.226.28.197
姓名 費安妲(Fanda Fitrianditha)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣宜蘭平原使用背景噪聲波場求取淺部剪力波速度構造: 使用相位交相關、模擬和反演的研究
(Ambient Wavefield Studies by Phase Cross-Correlation, Simulation and Inversion of Ilan Plain, Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-31以後開放)
摘要(中) 宜蘭平原是沖繩海槽最西端開裂的產物。地殼構造上的活動影響了宜蘭平原內盆地的沉積盆地形貌,形成了一個三角形狀的盆地。蘭陽溪將該盆地分為北側和南側兩部分。ILAN2014 的主(兩天)、被動式(約五個月)大型震測實驗計畫於2014 年8 月14 日至2015 年 1 月14 日期間執行。在宜蘭平原共部署了163 個臨時測站,以覆蓋宜蘭平原的整個區域,
站間距從1 公里到4 公里不等。在建立所有兩測站間的經驗格林函數(Empirical Green′s Functions,EGFs) 的過程時,資料處理的第一步驟先將兩個測站間的長時記錄先利用相位 交互相關 (Phase Cross Correlation,PCC) 技術提取可能包含地震事件的背景噪聲波形資料。測 站間的相位相關信號的提取特別強調以瞬時相位資訊為主要的檢測機制,PCC 對波形的相 位相似性很敏感,即使對於小的地震或背景噪聲事件都能偵測得到,但此種保有原振幅的 資料處理方法不會因含有強振幅度事件而造成對相位相似的弱信號的提取產生偏差。故而 可以提取含極多地震或背景噪聲的事件訊號。此技術可簡稱為「保幅但因對振幅大小影響 不敏感而不產生提取偏差」的特殊處理手段。兩站間的長時PCC 時間記錄,再透過時間尺 度相位加權疊加(ts‐PWS)演算法進行資料的進一步疊加,由於 Ts‐PWS 在檢測幅度和相 位方面具有不受時變影響的特性(近似平移不變性),且計算成本較低,因此 Ts‐PWS 可以強 化對真實信號提供更穩定的測量與提取機制。其目的為提升訊號雜訊比以進行信號增強與 壓制低相關係數的訊號與波形。以一小時時段為主的PCC 波道資料在經加權疊加後即可形 成兩測站間的單一波道的EGF。將以某測站為主並視為虛擬波源 (Virtual Source, VS) 對所有 其他測站(此情況下則為虛擬接收測站;Virtual Receiver, VR)處理得到的EGF 按兩站的站間距 以聚集方式排列形成EGF 道集(trace gather)或稱為疊後相關係數時間道集(correlogram gather) 。以每個 VS 測站位置為中心所形成的相關道集波形資料可瞭解由VS 到VR 間的背 景噪聲波傳現象。不同的VS 測站的疊後相關係數時間道集可顯示出其個別波傳特性、且 具有個別明顯且獨特的波形,相位變化,到時與正常时間遷移(Normal Time Moveout, 时間 動態遷移)特徵。
環境噪聲數據通常歸因於一次或二次微震的產生機制。主要微震是海浪與海底之間 作用力的直接耦合效應所造成。二次微震是海浪一旦撞擊海岸,反射回海洋並與另一波傳 入的海浪相互作用,然後產生第二次反射波再次撞擊海岸。 ILAN2014 觀測計畫共部署有 163 名接收站,按資料與地質特性我將所有資料分為五組分別進行分析。透過許多數值模
型設置進行的許多模擬和分析,根據蘇柏立等人(2019) 所提出的模型。 我針對沿海岸線進 行了三種不同的環境噪聲激發源情境模式模擬,在該場景下以分析主要噪聲源的可能傳播 方向。噪聲波場情境的模擬主要集中於使用譜元法(SEM)探討沿著不規則且高度變化的海 岸線幾何形狀和海‐陸界面發生的聲‐彈性震波傳遞耦合現象。 使用構建的合成 PCC 波道資 料擬合真實數據的EGF 相關道集波形資料的到時與因果或非因果时間動態遷移特徵,分析 與模擬結果顯示噪聲源的產生機制主要是以由北向南方向的二次微震聲源波傳特徵為主。 另外,我還進行了另一項利用有限差分法 (FDM) 進行陸上環境波場模擬的嘗試。 通過許 多系統化的受控模擬案例測試,來瞭解噪聲源被激發的可能影響因素。 可能影響因素包 括激活源數量、源持續時間、頻率源分佈、可能的噪聲源有不同的集中深度以及可能的噪 聲源被限制在特定深度或受高速度梯度區的影響等以匹配真實數據特徵。針對沿著蘭陽溪 河岸沿線所佈設的測線線型陣列收集到的真實EGF 相關道集波形資料數據,論文中討論了 進行不同合成的PCC 波道資料情境模擬結果與其可能的生成過程,研究結果顯示特定環境 噪聲源集中在深度3.8‐4.1 km 的高速度梯度變化區內可擬合真實資料的特徵。
論文中我還針對群速度和相速度進行頻散分析。由群速度和相速度分佈圖顯示沿著 海岸線的接收站的傳播速度比宜蘭平原內部的接收站相對較低。其他地區與海岸線地區相 比,表面波傳播速度相對較高,特別是位於宜蘭平原邊緣的站點,由於地形造成的高程變 化和地質條件的改變,群速度和相速度的側向變化更為明顯。表面波反演是利用選取的頻 散曲線數據,主要是使用速度‐週期數據對來進行反演。環境噪聲層析成像反演主要是基 於環境噪聲的頻散特性資訊,其中涵蓋了拾取速度、週期、振幅及其相關的不確定性資訊 等。 為了反演剪切波速度結構,Fang 等人(2015)提出了基於以小波為基礎的的稀疏資料制 約演算法進行淺部剪力波速構造的成像。我使用了三種不同的一維初始速度剖面模型,其
中包括使用了自行定義的線性增加Vs 波速度模型、黃有志(Huang, 2003)的平均一維速度與 將黃有志(Huang, 2003)和根據蘇柏立等人(2019) 的所提出的大尺度數值模型來建立組合速 度。進行反演時,第一種和第二種一維初始速度剖面模型,反演過程僅允許最多十次疊代 運算。為了保證能夠得到穩定的解與較深的偵測深度,第三種初始速度剖面在執行逆推時 將反演疊代運算次數設置為35 次。第二和第三種初始速度剖面模型都對深度的測深及剪 力波速分佈估計提供了相當有用的建議。總體而言,宜蘭平原北部地區速度相對南區為低、盆地位置偏北、沉積層厚、受蘭陽溪控制與貢獻較多。宜蘭平原南部地區速度高、側向速 度變化較劇烈、剪力波的波速變化範圍廣、高與低速區相對明顯。關於盆地深度的估計可 以達到1.2‐1.3 km、1.7 km 甚至可以檢測到高達2.0 km 或~2.5 km 的深度,這些建議的結 論需要緊密的根據Vs 值定義與分佈與速度結構的特徵來進行約束。許多與潛在的地熱異 常區與Vs 波速的分佈特徵極為密切相關,透過逆推所得的Vs 波速影像可直接以視覺檢測 來尋找較低的Vs 區塊。檢測時可在每個水平速度切片中集中注意嵌入在不同深度的高Vs 速度背景中的極低或低得多的Vs 速度特徵。此剪力波的低速帶(LVZ 區塊)在南部較深處 有相當大片區域的分佈。儘管某些測站可能無法提供足夠的探測深度,解決方案則需更多 的測站資料與積極小心的態度進行資料收集、處理與逆推解釋。目前可檢測到的地熱異常 可以直接從宜蘭平原的Vs 速度分佈圖像中觀察到。剪力波層析成像的手段提供相當正面 的結果,並且顯示出相當明顯的特徵。確切的位置及其解釋可能需要以後積極的且儘可能 進行更仔細的研究和驗證。
摘要(英) Ilan Plain is a product of the opening of the westmost Okinawa trough. The opening activity also influences the basin shape of Ilan Basin and Ilan Plain that created a triangular-shaped basin. Lanyang River divided the basin into northern and southern parts. ILAN2014 experiment utilized total of 163 temporary stations deployed in Ilan Plain during Aug. 14, 2014 to Jan. 14, 2015, with station spacing varying from 1 to 4 km, to cover the whole study area. The empirical Green’s functions (EGFs) of all available virtual source (V.S) to other receiver pairs were performed via Phase Cross Correlation (PCC) technique before stack. The instantaneous phase information of coherent signals were detected between stations. PCC is sensitive to waveform similarity even for small events but less sensitive to strong amplitude features (amplitude unbiased). Then, the PCC results are further stacked by time-scale Phase Weighted Stacking (ts-PWS) strategy for signal enhancement. Ts-PWS gives more stable measurements for real signals due to its near shift- or time-invariant property on detecting magnitude and phase with less computational cost. Stacked correlogram gathers show obvious and distinct features at each V.S location.
Ambient noise data is generally attributed to primary or secondary microseisms. The primary microseism is the direct coupling between ocean waves and seafloor. The secondary microseism is the ocean waves once hits the coast, reflect back to the ocean and interacts with another incoming ocean waves and then generate second reflected wave which strike the coast again. A total of 163 receivers of ILAN2014 observations were divided into five groups. Many simulations and analyses through many model setup including the model proposed by Su et al, 2019 were used. Three different source excitation scenario along the coastline were performed to analyze the possible propagation direction of the predominantly noise sources. Simulations focused mainly on the coupled acoustic-elastic wave propagation phenomena occurred along the irregular and highly varying sea-land coastline geometry and interface using Spectral Element Method (SEM). The north to south wave propagation simulations with constructed synthetic PCC gather resemble the real data gather move-out and features on the causal/acausal arrivals. Another attempt on ambient wavefeld simulations onshore utilized Finite Difference Method (FDM) were also performed. A systematic noise source excitation influence factors were tested through many controlled simulations cases. The influence of number of activated sources, source duration, frequency source distribution, possible concentration at various depths, and possible source of noises being confined in a specific depth to match real data feature. A specific source at depth 3.8-4.1 km resemble the real data phase cross-correlation gather along the Lanyang River array were studied and discussed its possible generation processes.
The dispersion analysis on both group and phase velocity were also performed. Both group and phase velocity distribution maps show that receiver stations along the coastline have relatively lower propagation velocities than receivers in the inner part of the Ilan Plain. Other areas show relatively higher surface wave propagation velocity when compared with the coastline area, especially for stations locate at the edge of Ilan Plain with more obvious elevation changes created by the elevated topography and geological site conditions. The last step is to use the picked dispersion curve data information mainly on velocity-period data pair for the inversion. Ambient noise tomographic inversion is based on dispersion properties cover the picked velocity, period, amplitude and its associate uncertainty information were used. In order to invert shear wave velocity structure, the wavelet-based sparsity-constrained method by Fang et al. (2015) is used. Three different initial model including 1D linearly increased velocity model, average 1D velocity from Huang (2003) and combined velocity of Huang (2003) and Su et al. (2019) were used to performed the inversion. The first and second inversion approaches only allow maximum of ten iteration. To ensure stable solution can be obtained, the third approach set the inversion iterations to reach 35 iteration. Both second and third approaches provide useful suggestions on the estimated Vs distribution at various depth. Overall, the estimated velocity structure features regarding basin depth can reach 1.2-1.3 km, 1.7 km or even deeper and up to 2.0 km or ~2.5 km can be detected depends on the constrains defined by the Vs values. Many Vs distribution features which are strongly related to geothermal anomaly can be visually detectable by the lower Vs or even extremely or much lower Vs velocity features imbedded in the high Vs velocity background at various depths can be visually detected. A fairly large distribution of LVZ zone in the southern. Ilan Plain can be inspected directly from shear wave velocity distribution images. Although some station may not provide enough depth solution, however detectable geothermal anomalies are very positive and show fairly distinct features. The exact location and its interpretations may require more careful study and verification later whenever it is possible.
關鍵字(中) ★ 環境雜訊
★ 相位交叉相關
★ 相位加權疊加
★ 雜訊波場模擬
★ 頻散分析
★ 淺層地 表構造
★ 表面波反演
★ 剪力波層析成像
關鍵字(英) ★ Ambient Noise
★ Phase Cross Correlation
★ Phase-weighted Stack
★ Ambient Wavefield Simulation
★ Near-surface Velocity Structure
★ Dispersion Analysis
★ Surface-wave Inversion
★ Tomography
論文目次 Table of Contents

NCU Authorization for Thesis/Dissertation iii
Advisor’s Recommendation Letter iv
Verification Letter from the Oral Examination Committee v
摘要 vi
ABSTRACT viii
Acknowledgement x
Table of Contents xi
List of Figure xiv
List of Table xxiv
Chapter 1 1
1.1 Seismic Ambient Noise 1
1.2 Microseism 3
1.3 Geological Setting of Ilan Plain 4
1.4 Previous Studies 7
1.5 Objectives of This Study 12
1.6 Thesis Structure 13
References 14
Chapter 2 33
2.1 Continuous Recording of ILAN2014 Dataset 33
2.2 Station Performance by PSDPDF Spectral Characteristic Study in Ilan Plain 34
2.3 Single-Station Data Preparation 42
2.4 Ambient Noise Cross-Correlation 48
2.4.1 Phase Cross-Correlation (PCC) 50
2.4.2 Geometrically Normalized Cross-Correlation (CCGN) 52
2.5 Time-Scale and Time-Frequency Phase Weighted Stack (ts-PWS and tf-PWS) 61
2.6 Key Data Processing Results and Dispersion Measurements 75
References 87
Chapter 3 137
3.1 The 2-D Spectral Elements Method (SEM) Simulation 137
3.1.1 Spectral Elements Method (SEM) 138
3.1.2 Coupled Elastic-Acoustic Simulations - Land-Ocean Interface in Ilan Plain 142
3.2 The 2-D Finite Difference Simulations 148
3.2.1 Simulate the Effects Caused by the Number of Noise Sources 153
3.2.2 Simulate the Effects Caused by the Source Duration 155
3.2.3 Simulate the Effects Controlled by the Frequency Range 157
3.2.4 Simulate the Effects Caused by the Depth Dependent Source Excitation 159
3.3 Simulate Real Data: Effects Caused by the Scattering within a Narrow Layer 160
References 167
Chapter 4 228
4.1 Dispersion Curves 233
4.2 Surface wave inversion 235
4.2.1 The forward Problem 235
4.2.2 The Inverse Problem 237
4.2.3 Wavelet-based sparsity-constrained inversion 239
4.3 Surface Wave Inversions Under Different Constraints 244
4.3.1 Linearly Increased 1D Initial Model - Extremely Low Shear Wave Velocity 245
4.3.2 Average 1D Initial Model Suggested by Huang (2009) 249
4.3.3 Composite 1D Initial Model of Huang (2009) and Su et al. (2019) 252
References 263
Chapter 5 370
5.1 ILAN2014 Passive Ambient Noise Experiment 371
5.2 Data Preparation, Processing and Interpretations 373
5.3 Understand Ambient Wavefield Generation and Propagation by Numerical Simulations 377
5.4 Ambient Wavefield Tomographic Inversion 388
5.5 Discussions and Future Possible Improvements on Processing, Simulation and Inversion 394
5.6 Conclusions 401
References 405
Appendix A – Station Information 411
Appendix B – Earthquake Recorded in ILAN2014 Array 415
Appendix C – Continuous Recording Information 416
Appendix D – Probability Density Function of Power Spectral Density (PSDPDF) of All The Station 417
Appendix E- Instrument Response Correction Report 419
Appendix F - All results of Phase weighted Stack from every virtual source plotted in gather-wise 460
參考文獻 Addison, P.S., Watson, J.N. & Feng, T. (2002). Low-oscillation complex wavelets, J. Sound Vib., 254(4), 733–762.
Aki, K., and PG Richards. (1980). "Quantitative Seismology: Theory and Methods WH Freeman and Company." San Francisco, California Print.
Anderson and McMechan, (1988). Automatic editing of noisy seismic data. Geophysical Prospection, 37, 875-892.
Anderson and McMechan, (1988). Weighted stacking of seismic data using amplitude-decay rates and noise amplitudes. Geophysical Prospection, 38, 365-380.
Anderson and McMechan, (1990). Noise-adaptive filtering of seismic shot records. Geophysics, 53, 638-649.
Ardhuin, F., Gualtieri, L., & Stutzmann, E. (2018). Physics of ambient noise generation by ocean waves. In Nakata, N., Gualtieri, L., and Fichtner, A. (Eds.), Seismic Ambient Noise (pp69-108). Cambridge, UK: Cambridge University Press.
Arogundade, S. M. (2016). Numerical Modeling of Ambient Noise Seismic Interferometry (Master thesis). Michigan: Michigan Technological University.
Aster, R.C., Borchers, B. & Thurber, C.H., 2013. Parameter Estimation and Inverse Problems, Academic Press.
Behm M., Bruckl E., Chwatal W., Thybo H. (2007). Application of stacking and inversion technique to three-dimensional wide-angle reflection and refraction seismic data of the Eastern Alps.
Behm, M., (2006). Accuracy and resolution of a 3D seismic model of the Eastern Alps. Ph.D. thesis, Vienna University of Technology,Vienna.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., and Yang, Y., (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal. International, 169, 1239–1260
Boschi, L. & Ekstr¨om, G., 2002. New images of the Earth’s upper mantle from measurements of surface wave phase velocity anomalies, J. geophys. Res.: Solid Earth (1978–2012), 107(B4), 2059, doi:10.1029/2000JB000059.ESE–1.
Brocher, T.M., 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust, Bull. seism. Soc. Am., 95(6), 2081–2092.
Burky, A. L., Irving, J. C. E., Simons, F. J. (2021). Instrument response removal and the 2020 MLg 3.1 Marlboro, New Jersey, Earthquake, Seismological Research Letter, 92, 6, 3865-3872. doi:10.1785/0220210118.
Campillo M., Roux P., & Shapiro N.M. (2021) Seismic, Ambient Noise Correlation. In Gupta H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series (pp1557-1562). Springer, Cham. https://doi.org/10.1007/978-3-030-58631-7_218
Campillo, M., & Paul, A., (2003). Long-range correlations in the diffuse seismic coda. Science, 299, 547–549.
Carcione, J. M., and H. B. Helle, 2004, The physics and simulation of wave propagation at the ocean bottom: Geophysics, 69, 825–839, doi: https://doi.org/10.1190/1.1759469.
Cessaro, R. (1994) Sources of primary and secondary microseisms. Bull. Seismol. Soc. Am. 84, 142–148.
Charl´ety, J., Voronin, S., Nolet, G., Loris, I., Simons, F.J., Sigloch, K. & Daubechies, I.C., 2013. Global seismic tomography with sparsity constraints: comparison with smoothing and damping regularization, J. geophys.Res.: Solid Earth, 118(9), 4887–4899.
Chen, H. W., (2020) Seismic Illumination Analyses without Ray, Taiwan Geosciences Assembly (TGA).
Chen, K. X., Chen, P. F., Chen, L. W., Yao, H., Fang, H., & Su, P. L. (2016). South Ilan Plain High‐Resolution 3‐D S‐Wave velocity from ambient noise Tomography. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 375–385. https://doi.org/10.3319/TAO.2016.01.29.02(TEM) .
Chen, Y., & Saygin, E. (2020). Empirical Green’s function retrieval using ambient noise source-receiver interferometry. Journal of Geophysical Research: Solid Earth, 125, e2019JB018261. https://doi.org/10.1029/2019JB018261
Chiang, S.-C. (1976). Seismic prospecting in the Ilan Plain. Mineral Technology, 215–221 (in Chinese).
Chiao, L.-Y. & Liang, W.-T., 2003. Multiresolution parameterization for geophysical inverse problems, Geophysics, 68(1), 199–209.
Claerbout, J. (1968), Synthesis of a layered medium from its acoustic transmission response: Geophysics, 33, 264–269.
Currie,W.S. (1982). Seismic velocity determination using random and nonlinear processes, Technical Program Abstracts and Biographies, SEG.
Curtis, A., Gerstoft, P., Sato, H., Snieder, R., & Wapenaar, K. (2006). Seismic interferometry—Turning noise into signal. The Leading Edge, 25(9), 1082–1092. https://doi.org/10.1190/1.2349814
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J. et al. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogeny. Nature, 426, 648–651.
Dahlen, F.A. & Tromp, J., 1998. Theoretical Global Seismology, Princeton Univ. Press, Princeton, New Jersey.
Dantas O. A. B., Nascimento, A. F., Schimmel, M. (2018). Retrieval of body-wave reflections using ambient noise interferometry using small-scale experiment, Pure Appl. Geophys. 175, 2009-2022, https://doi.org/10.1007/s00024-018-1794-0. 249p.
Das, R. & Rai S. S. (2016). Seismic interferometry and ambient noise tomography: theoretical background and application in south India. J. Phys., 759(2016)012006, doi:10.1088/1742-6596/759/1/012006.
Daubechies I. (1991) The wavelet transform: a method for timefrequency localization. In: Haykin, editor. Advances in spectrum analysis and array processing, 1. Prentice-Hall. p. 366—417.
Daubechies, I. (1992). Ten Lectures on Wavelets, CBMS-NSF, SIAM Lecture Series.
Daubechies, I., 1992. Ten Lectures on Wavelets, Vol. 61, SIAM.
Debayle, E. & Sambridge, M., 2004. Inversion of massive surface wave data sets: model construction and resolution assessment, J. geophys. Res.: Solid Earth (1978–2012), 109(B2), doi:10.1029/2003JB002652.
Durand, S., Montagner, J. P., Roux, P., Brenguier, F., Nadeau, R. M., & Ricard, Y. (2011). Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake. Geophys. Res. Lett., 38(13), L13303.
Dziewonski, A., Bloch, S. & Landisman, M. (1969). A technique for the analysis of transient seismic signals, Bull. Seism. Soc. Am., 59(1), 427–444.
Embree, P. (1968). Diversity seismic record stacking method and systems, USP atent3398396.
Fandy Adji Fachtony, (2021) Constrained Wavefield Inversion and Simulation for Deep Structure Imaging along TAIGER T6 Line in Northern Taiwan, MSc Thesis. National Central University, Dept. of Earth Science, Inst. of Geophysics.
Fang, H. & Zhang, H., 2014. Wavelet-based double-difference seismic tomography with sparsity regularization, Geophys. J. Int., 199(2), 944–955.
Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application. Geophysical Journal International, 201, 1251-1263. doi: 10.1093/gji/ ggv080
Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application. Geophysical Journal International, 201, 1251-12
Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application. Geophysical Journal International, 201, 1251-12
Feng, M.&An, M., 2010. Lithospheric structure of the Chinese mainland determined from joint inversion of regional and teleseismic Rayleigh-wave group velocities, J. geophys.
Fichtner A., (2010). Full Seismic Waveform Modelling and Inversion, Advances in Geophysical and Environmental Mechanics and Mathematics, Springer Berlin Heidelberg.
Fichtner, A. & Tsai, V. (2018). Theoretical Foundations of Noise Interferometry, In Nakata, N., Gualtieri, L., and Fichtner, A. (Eds.), Seismic Ambient Noise (pp109-136). Cambridge, UK: Cambridge University Press.
Gabor, D. (1946), Theory of communication, J. Inst. Electr. Eng., 93, 429–457.
Gal, M. & Reading, A. M. (2018). Beamforming and polarization analysis. In Nakata, N., Gualtieri, L., and Fichtner, A. (Eds.), Seismic ambient noise (pp30-64). Cambridge, UK: Cambridge University Press.
Gambardella, G. (1971). A contribution to the theory of short-time spectral analysis with nonuniform bandwidth filters, IEEE Trans. Circuit Theory, 18(4), 455–460.
Gardner, G. H. F., Gardner, L. W., & A. R. Gregory, (1974). Formation velocity and density—the diagnostic basics for stratigraphic traps, Geophysics 39: 770-780. https://doi.org/10.1190/1.1440465
Goldstein et al., 2003 Goldstein, P., D. Dodge, M. Firpo, and Lee Minner (2003). SAC2000: Signal processing and analysis tools for seismologists and engineers, Invited contribution to the IASPEI International Handbook of Earth-quake and Engineering Seismology, W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger (Editors), Academic Press, London.
Gualtieri, L., Stutzmann, E., Capdeville, Y., Ardhuin, F., Schimmel, M., Mangeney, A., & Morelli, A. (2013). Modeling secondary microseismic noise by normal mode summation. Geophysical Journal International, 193(3), 1732–1745. https://doi.org/10.1093/gji/ggt090
Gualtieri, L., Stutzmann, E., Juretzek, C., Hadziioannou, C., and Ardhuin, F. (2018). Primary microseisms: global-scale modeling and the importance of distant sources, AGU Fall Meeting 2018.
Gualtieri, L., Stutzmann, E., Juretzek, C., Hadziioannou, C., & Ardhuin, F. (2019). Global scale analysis and modelling of primary microseisms. Geophysical Journal International, 218(1), 560– 572. https://doi.org/10.1093/gji/ggz161
Hamed, A. A., Shomali, Z. H., Moradi, D. (2021). On the strength of the phase cross-correlation in retrieving the Green’s function information in a region affected by persistent aftershock sequences, J. Seismology, 25: 987-1003, https://doi.org/10.1007/s10950-021-10008-1
Hanasoge, S. M. and Branicki, M. (2013). Interpreting cross-correlation of one-bit filtered seismic noise. Geophysical Journal International, 192 (doi:10.1093/gji/ggs015), 295–309.
Haney, M. M., Power, J., West, M. Michaels, P. (2012). Causal instrument correlations for short-period and broadband seismometers, Seismological Research Letter, 83, 5, 834-845. Doi:10.1785/0220120031.
Havskov, J., Alguacil, G. (2004). Correction for instrument response. In: Havskov, J., Alguacil, G. (eds) Instrumentation in Earthquake Seismology. Modern Approaches in Geophysics, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2969-1_6
Heilmann, PhD dissertation, 2007. CRS-stack based seismic reflection imaging for land data in time and depthdomains. University (TH) Karlsruhe.
Ho, C.-S. (1986). Geological Map of Taiwan. 1: 500,000. Taipei, Taiwan: Central Geological Survey, MOEA.
Ho, C.-S. (1988). An Introduction to the Geology of Taiwan: Explanatory Text of the Geology Map of Taiwan, 2nd edn, 192. Taipei, Taiwan: Ministry of Economic Affairs.
Hou, C. S., Hu, J. C., Ching, K. E., Chen, Y. G., Chen, C. L., Cheng, L. W., Tang, C. L, Huang, S. H., & Lo, C. H., (2009). The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough. Tectonophysics, 466, 344-355, doi: 10.1016/j.tec¬to.2007.11.022
Hou, C. S., Hu, J. C., Ching, K. E., Chen, Y. G., Chen, C. L., Cheng, L. W., Tang, C. L, Huang, S. H., & Lo, C. H., (2009). The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough. Tectonophysics, 466, 344-355, doi: 10.1016/j.tec¬to.2007.11.022
http://geodynamics.org/cig/software/specfem2d/
http://www.aml.engineering.columbia.edu/ntm/pgIndex.html
https://www.mathworks.com/discovery/wavelet-transforms.html
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction‐collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Huang, Y. C, (2009) Multi-scale ambient seismic noise study in the Taiwan region. PhD Thesis. National Central University, Dept. of Earth Science.
Huang, Y. C, (2009) Multi-scale ambient seismic noise study in the Taiwan region. PhD Thesis. National Central University, Dept. of Earth Science.
Huang, Y. C., Yao, H, Huang, B. S., van der Hilst, R. D., Wen, K. L., Huang, W. G., Chen, C. H. (2010). Bulletin of the Seismological Society of America, Vol. 100, No. 5A, pp.2250–2263, October 2010, doi:10.1785/0120090319.
Igel H., (2017). Computational Seismology: A Practical Introduction, Oxford University Press
J. P. Castagna, M. L. Batzle, and R. L. Eastwood, (1985). Relationships between compressional‐wave and shear‐wave velocities in clastic silicate rocks, Geophysics 50: 571-581. https://doi.org/10.1190/1.1441933.
Kanamori, H., Lee, W. H., & Ma, K. F. (2012). The 1909 Taipei earthquake—implication for seismic hazard in Taipei. Geophysical Journal International, 191(1), 126–146. https://doi.org/10.1111/j.1365‐246X.2012.05589.x
Kanasewich, E. R., Hemmings, C. D. and Alpaslan, T. (1973). Nth-root stack nonlinear multi-channel filter. Geophysics, 38, 327-338.
Kang, C.-C., Chang, C.-P., Siame, L. & Lee, J.-C. (2015). Present-day surface deformation and tectonic insights of the extensional Ilan Plain, NE Taiwan. Journal of Asian Earth Science, 105, 408–417. http://dx.doi.org/10.1016/j.jseaes.2015.02.013
Kang, C.-C., Chang, C.-P., Siame, L. & Lee, J.-C. (2015). Present-day surface deformation and tectonic insights of the extensional Ilan Plain, NE Taiwan. Journal of Asian Earth Science, 105, 408–417. http://dx.doi.org/10.1016/j.jseaes.2015.02.013
Karason, H. & Van Der Hilst, R.D., 2000. Constraints on mantle convection from seismic tomography, in The History and Dynamics of Global Plate Motions, pp. 277–288, eds Richards, M.A., Gordon, R.G. & van der Hilst, R.D., John Wiley and Sons.
Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., & Jones, C. (2008). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 464(2091), 777–793.
Komatitsch, D., & Vilotte, J. P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structure. Bulletin of the Seismological Society of America, 88(2), 368-392.
Kovaˇcevi´c, J. & Chebira, A. (2007a). Life beyond bases: the advent of frames (part I), IEEE Signal Process. Mag., 24(4), 86–104.
Kovaˇcevi´c, J. & Chebira, A. (2007b). Life beyond bases: the advent of frames (part II), IEEE Signal Process. Mag., 5(24), 115–125
Kuo‐Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three‐dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research, 117, B06306. https://doi.org/10.1029/2011JB009108
Lai, K. Y., Chen, Y. G., Wu, Y. M., Avouac, J. P., Kuo, Y. T., Wang, Y., Chang, C. H., Lin K. C. (2009). The 2005 Ilan earthquake doublet and seismic crisis in northeastern Taiwan: evidence for dyke intrusion associated with on-land propagation of the Okinawa Trough., Geophys. Res. Lett., 36, doi:10.1111/j.1365-246X.2009.04307.x.
Lai, K.-Y., Chen, Y.-G.,Wu, Y.-M., Avouac, J., Kuo, Y.-T.,Wang, Y., Chang, C.-H. & Lin, K.-C. (2009). The 2005 Ilan earthquake doublet and seismic crisis in northeastern Taiwan: evidence for dyke intrusion associated with on-land propagation of the Okinawa Trough, Geophysical Journal International, 179, 678–686.
Levshin, A. L., Yanovskaya, T. B., Lander, A. V., Bukchin, B. G., Barmin, M. P., Ratnikova, L. I., & Its, E. N. (Ed. V.I. Keilis-Borok). (1989). Seismic surface waves a laterally inhomogeneous Earth. New York: Springer.
Liang, C. & Langston, C.A., 2009. Wave gradiometry for USArray: Rayleigh waves, J. geophys. Res.: Solid Earth (1978–2012), 114(B2), doi:10.1029/2008JB005918.63. doi: 10.1093/gji/ ggv080
Lilly, J.M. & Olhede, S.C. (2009). Higher-order properties of analytic wavelets, IEEE Trans. Signal Process., 57(1), 146–160.
Lilly, J.M. & Olhede, S.C. (2012). Generalized morsewavelets as a superfamily of analytic wavelets, IEEE Trans. Signal Process., 60(11), 6036–6041.
Lin, C.-P., Chang, T.-S., (2004). Multi-station analysis of surface wave dispersion. Soil Dyn. Earthq. Eng. 24, 877–886.
Lin, C.-P., Lin, C.-H., (2007). Effect of lateral heterogeneity on surface wave testing: numer-ical simulations and acountermeasure. Soil Dyn. Earthq. Eng. 27, 541–552.
Lin, F.-C. & Ritzwoller, M.H., 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure, Geophys. J. Int., 186(3), 1104–1120.
Lin, F.-C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173, 281–298.
Lin, F.-C., Ritzwoller, M.H. & Snieder, R., 2009. Eikonal tomography: surface wave tomography by phase front tracking across a regional broadband seismic array, Geophys. J. Int., 177(3), 1091–1110.
Liu X. & Ben-Zion Y. (2016). Estimating correlations of neighbouring frequencies in ambient seismic noise, Geophys. J. Int., 206(2), 1065–1075.
Liu X., & Ben-Zion Y. (2018). Analysis of non-diffuse characteristics of the seismic noise field in southern California based on correlations of neighboring frequencies, Geophys. J. Int., 212, 798–806..10.1093/gji/ggx441
Liu, C.C. (1995). The Ilan plain and the southwestward extending Okinawa Trough, Journal of the Geological Society of China, 38, 229–242
Liu, X., Beroza, G. C., & Nakata, N. (2019). Isolating and suppressing the spurious non-diffuse contributions to ambient seismic field correlations. Journal of Geophysical Research: Solid Earth, 124, 9653– 9663. https://doi.org/10.1029/2019JB017297
Longuet-Higgins, M. S. (1950). A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London. Series A, 243(857), 1–35.
Lu, C.-Y., Angelier, J., Chu, H.-T., & Lee, J.-C. (1995). Contractional, transcurrent, rotational and extensional tectonics: examples from Northern Taiwan. Tectonophysics 125, 129–146.
Mallat, S., (2008). A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press.
McNamara, D. & Boaz, R., (2018). Visualization of the Ambient Seismic Noise Spectrum, In Nakata, N., Gualtieri, L., and Fichtner, A. (Eds.), Seismic Ambient Noise (pp1-27). Cambridge, UK: Cambridge University Press.
McNamara, D. E., & Buland, R. P., (2004). Ambient noise levels in the continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527.
Mihaylov, A. and Naggar, H. E. (2021). A comparison of instrument response methods: Post-processing and real-time methods, Results in Geophysical Sciences 8 (2021) 100033, https://doi.org/10.1016/j.ringps.2021.100033
Mohamed, R. and Koichi, N. (2006). The effect of different CMP stacking techniques on singal-to-noise ratio of seismic data: Two examples form Osaka and Nara, Japan., Journal of Geosciences, Osaka City University.
Muirhead, K. (1968), Eliminating false alarms when detecting seismic events automatically, Nature. 217, 533-534.
Naess, O. E. and Bruland, L. (1985). Stacking methods other than simple summation. Developments in geophysical exploration methods 6, pp.198-223. Edited by A. A. Fitch, Elsevier Applied Science Publishers, London.
Nakamura, M. (2004). Crustal deformation in the central and southern Ryukyu Arc estimated from GPS data. Earth and Planetary Science Letters, 217, 389–398.
Nishida, K. (2017). Ambient seismic wave field. The Proceedings of the Japan Academy, Series B, 93(7), 423–448.
Nishida, K., Kawakatsu, H., Fukao, Y., & Obara, K. (2008). Background Love and Rayleigh waves simultaneously generated at the Pacific Ocean floors. Geophysical Research Letters, 35(16), L16307.
Nishizawa, A., Kaneda, K., Oikawa, O., Horiuchi, D., Fujioka, Y., Okada, C. (2009). Seismic structure of rifting in the Okinawa Trough, an active backarc basin of the Ryukyu (Nansei‑Shoto) island arc–trench system. Earth, Planets and Space, 71, 21. https://doi.org/10.1186/s40623-019-0998-6
Nolet, G. (1990). Partitioned waveform inversion and twodimensional structure under the network of autonomously recording seismographs. J. Geophys. Res. 95, 8499–8512.
Paige, C.C. & Saunders, M.A., 1982. LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software (TOMS), 8(1), 43–71.
PDF, https://en.wikipedia.org/wiki/Probability_density_function
Pedersen, H. A., Kr¨uger, F. and the SVEKALAPKO Seismic Tomography Working Group, (2007). Influence of the seismic noise characteristics on noise correlations in the Baltic shield, Geophys. J. Int., 168, 197–210.
Pedersen, H. A., Leroy, N., Zigone, D., Vallee, M., Ringler, A. T., Wilson, D. C. (2019). Using component ratio to detect metadata and instrument problems of seismic stations: Examles form 18 yr of GEOSCOPE data, Seismological Research Letter, Early Edition.
Peterson, J. (1993). Observations and modeling of seismic background noise. U.S. Geol. Surv. Tech. Rept., 93-322, 1–95.
Pollitz, F. & Snoke, J.A., 2010. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surfacewave tomography, Geophys. J. Int., 180(3), 1153–1169.
Pollitz, F.F., 2008. Observations and interpretation of fundamental mode Rayleigh wavefields recorded by the Transportable Array (USArray), J. geophys. Res.: Solid Earth (1978–2012), 113(B10), doi:10.1029/2007JB005556.
ProMAX, (1999). A commercial seismic data processing software and reference manual. Landmark Graphics Corporation.
Pruett, R. c. (1982). Long period multiple reflection suppression and enhanced velocity discrimination using a weighted stack, Arco Oil and Gas. SEG Technical Program Abstracts Expanded Abstract. https://doi.org/10.1190/1.1807551.
Rauch, D., (1980). Experimental and theoretical studies of seismic interface waves in coastal waters, in Bottom-Interacting Ocean Acoustics, pp. 307– 327, eds Kupermann, W.A. & Jensen, F.B., Plenum Press.
Rawlinson, N. & Sambridge, M. (2004). Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophysical Journal International, 156, 631-647. doi: 10.1111/j.1365-246X.2004.02153.x
Reyes, C. G. and West, M. E. (2011). The waveform suite: A robust platform for manipulating waveforms in Matlab, Seismol. Res. Lett., 82 (1), 104-110, 2011. doi: 10.1785/gssrl.82.1.104
Ritzwoller, M. H., Shapiro, N. M., Levshin, A. L., and Leahy, G. M. 2001. Crustal and upper mantle structure beneath Antarctica and surrounding oceans. J. Geophys. Res. Solid Earth, 106(B12), 30645–30670.
Robertsson, J. O. A., Blanch, J. O., & Symes, W. W. (1994). Viscoelastic finite-difference modeling: Geophysics, 59, 1444–1456, doi: 10.1190/1.1443701.
Robertsson, J. O. A., Blanch, J. O., & Symes, W. W. (1994). Viscoelastic finite-difference modeling: Geophysics, 59, 1444–1456, doi: 10.1190/1.1443701.
Roma Widiyansari, (2018). Body- and Surface-waves Wavefield Inversion in Southern Taiwan: Application to TAIGER T4b Wide Angle Refraction/Reflection Data. MSc Thesis. National Central University, Dept. of Earth Science, Inst. of Geophysics. 267p.
Roux, P., Sabra, K., Gerstoft, P., & Kuperman, W. (2005). P-waves from cross correlation of seismic noise. Geophys. Res. Lett., 32, L19303.
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., and Fehler, M. C., (2005). Extracting timedomain Green’s function estimates from ambient seismic noise. Geophys. Res. Lett., 32(3), L03310.
Saito, T., (2010). Love-wave excitation due to the interaction between a propagating ocean wave and the sea-bottom topography. Geophys. J. Int. 182, 1515–1523.
Scales, J.A., Gersztenkorn, A. & Treitel, S., 1988. Fast Lp solution of large, sparse, linear systems: application to seismic travel time tomography, J. Comput. Phys., 75(2), 314–333.
Scherzer, O., 1993. The use of Morozov’s discrepancy principle for Tickhonov regularization for solving nonlinear ill-posed problems, Computing, 51(1), 45–60.
Schimmel, M. & Gallart, J. (2005). The inverse S-transform in filters with time-frequency localization, IEEE Trans. Signal Process., 53(11), 4417–4422.
Schimmel, M. & Gallart, J. (2007). Frequency-dependent phase coherence for noise suppression in seismic array data, J. geophys. Res., 112, B04303, doi:10.1029/2006JB004680.
Schimmel, M. & Paulssen, H., (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks, Geophys. J. Int., 130(2), 497–505.
Schimmel, M. (1999). Phase cross-correlations: Design, comparisons, and applications, Bulletin of the Seismological Society of America, 89, no. 5, 1366–1378.
Schimmel, M., Stutzmann, E.&Gallart, J. (2011). Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale, Geophys. J. Int., 184(1), 494–506.
Schuster, G.T., (2009). Seismic Interferometry.Cambridge, UK: Cambridge University Press.
Shapiro, N. (2018). Applications with surface waves extracted from ambient seismic noise. In Nakata, N., Gualtieri, L., and Fichtner, A. (Eds.), Seismic Ambient Noise. Cambridge, UK: Cambridge University Press.
Shapiro, N. M., M. Campillo, L. Stehly, M.H. Ritzwoller (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615-1618, doi: 10.1126/science.110833.
Shearer, P.M., 1997. Improving local earthquake locations using the L1 norm and waveform cross correlation: application to the Whittier Narrows, California, aftershock sequence, J. geophys. Res.: Solid Earth (1978–2012), 102(B4), 8269–8283.
Shin, T. C., Chang, C. H., Pu, H. C., Lin, H. W., & Leu, P. L. (2013). The Geophysical Database Management System in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 24, 11–18. https://doi.org/10.3319/TAO.2012.09.20.01(T
Shyu, J.B.H., Sieh, K., Chen, Y.G. & Liu, C.S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes, Journal of Geophysical Research, 110, B08402. doi:10.1029/2004JB003251.
Simons, F.J. et al., 2011. Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity, Geophys. J. Int., 187(2), 969–988.
Simons, F.J., Zielhuis, A., and Van der Hilst, R.D. (1999). The deep structure of the Australian continent inferred from surface wave tomography, Lithos, 48/1-4, 17-43.
Sinha, S., Routh, P.S., Anno, P.D. & Castagna, J.P., (2005). Spectral decomposition of seismic data with continuous-wavelet transform, Geophysics, 70(6), P19–P25.
Snieder, R. & Wapenaar, K. (2010). Imaging with ambient noise. Physics Today, 63(9), 44–49.
Snieder, R., Duran, A., & Obermann, A. (2018). Locating velocity changes in elastic media with coda wave interferometry. In Nakata, N., Gualtieri, L., and Fichtner, A. (Eds.), Seismic Ambient Noise (pp188-216). Cambridge, UK: Cambridge University Press.
Snieder, R., E. Slob, and K. Wapenaar, 2010, Lagrangian Green’s function extraction, with applications to potential fields diffusion, and acoustic waves: New Journal of Physics, 12, 063013-1–063013-24.
Snieder,R., (2004). Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase, Phys. Rev. E, 69, 046610, doi:10.1103/PhysRevE.69.046610.
Spakman, W. & Bijwaard, H., 2001. Optimization of cell parameterizations for tomographic inverse problems, Pure appl. Geophys., 158(8), 1401–1423.nieder, R. & Wapenaar, K. (2010). Imaging with ambient noise. Physics Today, 63(9), 44–49.
Spetzler, J. and Sniefer, R. (2004). Tutorial, The Fresnel volume and transmitted waves, Geophysics, 69(3): P.653–663, DOI: 10.1190/1.1759451
Stehly L. Campillo M., & Shapiro N. M. (2006). A study of the seismic noise from its long‐range correlation properties, J. Geophys. Res. 111, no. 10, doi: https://doi.org/10.1029/2005JB004237
Stockwell, R.G., Mansinha, L. & Lowe, R.P., (1996). Localization of the complex spectrum: The S transform, IEEE Trans. Signal Process., 44(4), 998–1001.
Su, P. L., Chen, P. F., & Wang, C.Y. (2019). High‐resolution 3‐D P wave velocity structures under NE Taiwan and their tectonic implications. Journal of Geophysical Research, 124, 11,601–11,614. https://doi.org/ 10.1029/2019JB018697
Su, Z., Hu, J. C., Wang, E., Li, Y., Yang, Y., & Wang, P. L. (2018). Monitoring interseismic activity on the Ilan Plain (NE Taiwan) using Small Baseline PS-InSAR, GPS and leveling measurements: partitioning from arc-continent collision and backarc extension, Geophysical Journal International. 212, 264–283. https://doi.org/10.1093/gji/ggx394
Taner, M.T., Koehler, F.&Sheriff, R., (1979). Complex seismic trace analysis, Geophysics, 44(6), 1041–1063.
Tanimoto, T., Hadziioannou, C., Igel, H., Wassermann, J., Schreiber, U. and Gebauer, A. (2015) Estimate of Rayleigh-to-Love wave ratio inthe secondary microseism by colocated ring laser and seismograph. Geophys. Res. Lett. 42, 2650–2655.
Teng, L.S. (1992). Geotectonic evolution of Tertiary continental margin basins of Taiwan. Petroleum Geology of Taiwan, 27, 1–19.
Thorbecke J.W. & Draganov D. (2011). Finite-difference modeling experiments for seismic interferometry, Geophysics, 76(6), H1–H18. 10.1190/geo2010-0039.1
Thurber, C. H., Zeng, X., Thomas, A. M., & Audet, P. (2014). Phase-weighted stacking applied to low-frequency earthquakes. Bulletin of the Seismological Society of America, 104(5), 2567–2572.
Tong, L. T., Ouyang, S., Guo, T. R., Lee, C. R., Hu, K. H., Lee, C. L., & Wang, C. J. (2008). Insight into the geothermal structure in Chingshui, Ilan, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19, 413-424. doi: 10.3319/TAO.2008.19.4.413(T)
Ventosa s., Schimmel, M., Stutzmann, E. (2019). Towards the processing of large data volumes with phase cross-correlation. Seismol. Res. Lett. 90, no. 2A, 1663–1669, doi:10.1785/0220150192.
Ventosa, S., Schimmel, M., & Stutzmann, E. (2017). Extracting surface waves, hum and normal modes: Time-scale phase-weighted stack and beyond, Geophysical Journal International, 211, no.1, 30–44, doi:10.1093/gji/ggx284.
Vetterli, M. & Kovaˇcevi´c, J. (1995). Wavelets and Subband Coding, Prentice-Hall.
Virieux, J., (1986). P-Sv wave propagation in heterogeneous media velocity-stress finite-difference method: Geophysics, 51, 889–901, doi:10.1190/1.1442147.
Wang, B., Doust, H., & Liu, J. (2019). Geology and Petroleum Systems of the East China Sea Basin. Energies 2019, 12, 4088. doi:10.3390/en12214088
Wapenaar, K. & Snieder, R. (2007). Chaos tamed. Nature, 447, 643.
Wapenaar, K., Draganov, D., Snieder, R., Campman, X., & Verdel, A. (2010a). Tutorial on seismic interferometry, part I. Geophysics, 75(5), 75A195–75A209.
Wapenaar, K., Draganov, D., Snieder, R., Campman, X., Verderl A. (2010). Tutorial on seismic interferometry: Part 1 – Basic principles and application, Geophysics 75(5):75A195-75209, DOI: 10.1190/1.3457445.
Wapenaar, K., Slob, E., Snieder, R., & Curtis, A (2010b) Tutorial on seismic interferometry, part II. Geophysics, 75(5), 75A211–75A227.
Wapenaar, K., Slob, E., Snieder, R., Curtis, A. (2010). Tutorial on seismic interferometry: Part 2 – Underlying theory and new advances, Geophysics 75(5): P.75A211–75A227, DOI: 10.1190/1.3463440.
Watt, T. and Bendar, L B. (1983). Role of the alpha-trimmed mean in combining and analyzing seismic common-depth-point gathers, Technical Program Abstracts and Biographies, SEG, Las Vegas.
Yao H. Xu G. Zhu L. Xiao X. (2005). Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions, Phys. Earth planet. Inter., 148, 39–54.
Yao, H. (2009). Ambient Noise Interferometry and Surface-Wave Array Tomography in Southeastern Tibet. Ph.D. Dissertation. Massachusetts Institute of Technology.
Yao, H. (2015). Manual for EGFAnalysisTimeFreq Dispersion Software
Yao, H., Gouedard, P., McGuire, J., Collins, J. and van der Hilst, R.D. (2011). Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves, Comptes Rendues Geoscience de l′Académie des Sciences, doi:10.1016/j.crte.2011.04.004
Yao, H., van der Hilst, R. D., & de Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps. Geophysical Journal International., 166, 732-744, doi: 10.1111/j.1365-246X.2006.03028.x.
Yao, H., Xu, G., Zhu L., & Xiao, X. (2005). Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions. Physics of the Earth and Planetary Interiors. 148, 39-54. doi: 10.1016/j.pepi.2004.08.006
Yeh, Y.-H., Barrier, E.C.-H., Lin, C.-H., & Angelier, J. (1991). Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes. Tectonophysics, 200, 267–280.
Zhang, H. & Thurber, C., 2005. Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: application to Parkfield, California, J. geophys. Res.: Solid Earth (1978–2012), 110(B4), doi:10.1029/2004JB003186.
Zhou, Z.; Zhao, J.; Yin, P. (1989). Characteristics and tectonic evolution of the East China Sea. In Chinese Sedimentary Basins; Zhu, X., Ed.; Sedimentary Basins of the World; Elsevier Science: Amsterdam, The Netherlands; Volume 1, pp. 165–179.
Zielhuis A., van der Hilst R.D. (1996). Upper-mantle shear velocity beneath eastern Australia from inversion of waveforms from skippy portable arrays, Geophys. J. Int., 127(1), 1–16. 10.1111/j.1365-246X.1996.tb01530.x
指導教授 陳 浩維(How-Wei Chen) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明