姓名 |
呂理弘(Li-Hung Lu)
查詢紙本館藏 |
畢業系所 |
化學工程與材料工程學系 |
論文名稱 |
基於動態鍵的多功能丙烯酸交聯劑 (Multifunctional Acrylic Cross-Linker Based on Dynamic Bonds)
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2028-7-31以後開放)
|
摘要(中) |
交聯(Cross-link)是一種利用共價鍵將聚合物鏈相互連結的反應,藉由交聯反應,能 夠形成三維立體網狀結構,此反應在日常生活中無處不在,例如:生物學中蛋白質之間的 生物偶聯作用、高透氧水凝膠隱形眼鏡、硫化橡膠輪胎等等。化學共價交聯鍵結雖然具 有穩定的機械性質及熱性能,但是此鍵結一旦形成便難以被打斷,使得輪胎等化學交聯 產品受到外部破壞以致裂紋產生,損壞的產品不但無法繼續使用,同時也無法被回收, 不僅僅造成材料上的浪費,更是對地球環境的一大破壞。因此,若能製備出一種具有可 逆鍵結的交聯劑,便可以利用可逆鍵結的特性,製備出具有自修復、可回收等功能的三 維結構聚合物材料。在此研究中,使用了芳香族雙硫鍵及氫供體/受體作為交聯劑中的可 逆鍵結,其優秀的自癒合能力及可回收能力,皆歸因於雙硫鍵的低鍵能,當材料結構中 其餘鍵結完全斷裂前,雙硫鍵會先行斷裂,但由於其特殊的鍵結交換能力,最終將會重 新鍵結成雙硫鍵,而此過程甚至不需要給與外部刺激就可以實現,因此在眾多可逆鍵結 中,雙硫鍵結構是具有潛力的材料候選人之一。 本研究中合成出三種芳香族雙硫鍵交聯 劑,並將其命名為 Bis[4-(methacrylyl-2-methyl-isocyanato-isophorone)phenyl] disulfide (MIS) 、 Bis[4-(acrylyl-2-methyl-isocyanato-isophorone)phenyl] disulfide (AIS) 及 Bis[4- (methacrylyl-2-methylamide-isocyanato-isophorone) benzyl amide] disulfide (MUS)。其中, MIS 側基為甲基丙烯酸酯, AIS 側基為丙烯酸酯, MUS 側基為甲基丙烯醯胺, 選用了疏 水性的丙烯酸丁酯(Butyl acrylate, BA)作為反應單體,與這三種雙硫鍵交聯劑以及商業用 交聯劑聚乙二醇二甲基丙烯酸酯( Polyethylene glycol dimethacrylate)進行反應,成功合 成了四種彈性體,分別命名為 MIS-BA、 AIS-BA、 MUS-BA 和 PEGDMA-BA。此外,還 製備了以丙烯酸丁酯為單體的聚合物 Poly Butyl acrylate (PBA),以便與交聯劑製備的熱 固性材料進行性質比較。 通過核磁共振光譜儀(NMR)對 MIS、 AIS 和 MUS 的分子結構 進行了鑑定。 使用衰減全反射式傅立葉轉換紅外線光譜儀(ATR-FTIR)和 X 射線光電子 能譜儀(XPS)分析了彈性體表面的元素組成。 此外,利用熱重量分析儀(TGA)比較了 MUS、 AIS 和 MUS 交聯劑之間的熱穩定性,並通過差示掃描量熱分析儀(DSC)和動態熱II 機械分析儀(DMA)鑑定並比較了 MIS-BA、 AIS-BA、 MUS-BA、 PEGDMA-BA 和 PBA 之 間的熱性質差異。 在彈性體的動態鍵結性能鑑定中,我們利用光學顯微鏡(OM)觀察室溫 下彈性體表面劃痕的癒合情形,並使用萬能拉力機檢測彈性體的機械性質和斷裂後的癒 合性能,最終透過核磁共振光譜儀(NMR)鑑定了彈性體在二硫蘇糖醇(DTT)溶液中的還 原情形。 |
摘要(英) |
Cross-linking is a process that utilizes covalent bonding to link together polymer chains, resulting in the formation of a three-dimensional network structure. The reaction occurs ubiquitously in daily life, including biological coupling between proteins in biology, high oxygen permeability hydrogel contact lenses, and vulcanized rubber tires. Although chemical covalent crosslinking bonds offer stable mechanical and thermal properties, they exhibit low flexibility and are challenging to break once formed. As a result, products such as tires that undergo external damage may develop cracks, rendering them unusable and non-recyclable. To address this issue, the use of cross-linkers with reversible bonding presents a promising approach that can generate a three-dimensional structured polymer material with self-healing and recyclable properties. The study employed aromatic disulfide bonds along with hydrogen donors/acceptors as reversible bonds in the cross-linker, which exhibit excellent self-healing and recycling capabilities due to their low bonding energy. Among the various reversible bonds, the disulfide bond structure shows great potential. In this study, three aromatic disulfide cross-linkers were synthesized and named as Bis[4-(methacrylyl-2-methyl-isocyanatoisophorone)phenyl] disulfide (MIS), Bis[4-(acrylyl-2-methyl-isocyanato-isophorone)phenyl] disulfide (AIS), and Bis[4-(methacrylyl-2-methylamide-isocyanato-isophorone)benzyl amide] disulfide (MUS). The MIS side group is methacrylate, the AIS side group is acrylate, and the MUS side group is methacrylamide. A hydrophobic monomer, Butyl Acrylate (BA), was chosen as the reactive monomer. It was reacted with the three disulfide cross-linkers and a commercial cross-linker, Polyethylene Glycol Dimethacrylate (PEGDMA), resulting in the synthesis of four elastomers named MIS-BA, AIS-BA, MUS-BA, and PEGDMA-BA. Additionally, a polymer, Poly Butyl Acrylate (PBA), was prepared using BA as the monomer for property comparison with the crosslinked thermosetting materials.The molecular structures of MIS, AIS, and MUS were identified using Nuclear Magnetic Resonance spectroscopy (NMR). The elementalIV composition of the elastomer surfaces was analyzed using Attenuated Total Reflection Fouriertransform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The thermal stability of MUS, AIS, and MUS cross-linkers was compared using Thermogravimetric analysis (TGA). Differential scanning calorimetry (DSC) and Dynamic mechanical analysis (DMA) were employed to identify and compare the thermal properties of MIS-BA, AIS-BA, MUS-BA, PEGDMA-BA, and PBA. In the evaluation of the dynamic bonding performance of the elastomers, Optical Microscopy (OM) was used to observe the healing of surface scratches at room temperature. Mechanical properties and post-fracture healing performance were assessed using a Universal Testing machine. Finally, the reduction of the elastomers in Dithiothreitol (DTT) solution was identified using Nuclear Magnetic Resonance spectroscopy (NMR) spectroscopy. |
關鍵字(中) |
★ 熱固型材料 ★ 彈性體 ★ 可逆鍵結 ★ 雙硫鍵 ★ 鍵交換反應 ★ 二硫化物複分解 ★ 動態鍵結 ★ 氫鍵 ★ 自癒合材料 ★ 可回收材料 |
關鍵字(英) |
★ Thermoset Materials ★ Elastomers ★ Reversible bonding ★ Disulfide bond ★ Bond exchange reactions ★ Disulfide Metathesis ★ Dynamic bonding ★ Hydrogen bond ★ Self-Healing materials ★ Recyclable materials |
論文目次 |
中文摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 X
表目錄 XII
化學品名詞代稱 XIII
產物名詞代稱 XIV
一、文獻回顧 1
1-1 塑料環境危機 1
1-1-1 聚合物塑料汙染 2
1-1-2 綠色材料興起 3
1-2 丙烯酸酯交聯劑 4
1-2-1 丙烯酸酯材料應用 5
1-2-2 傳統丙烯酸酯材料議題 6
1-3自癒材料之發展 7
1-3-1 外在型自癒材料-微膠囊包埋修復 11
1-3-2 內部型自癒材料 12
1-3-3 外在型自癒材料-中空纖維修復 13
1-3-4 結合型自癒材料 14
1-4 可回收材料之發展 15
1-4-1 熱解式回收 16
1-4-2 機械式回收 17
1-4-3 化學式回收 18
二、研究目的 19
三、實驗藥品與實驗方法 20
3-1 實驗藥品 20
3-2 實驗設備 21
3-3 材料製備 22
3-3-1 Bis[4-(methacrylyl-2-methyl-isocyanato-isophorone)phenyl] disulfide, (MIS)交聯劑合成 22
3-3-2 Bis[4-(acrylyl-2-methyl-isocyanato-isophorone)phenyl] disulfide, (AIS)交聯劑合成 23
3-3-3 Bis[4-(methacrylyl-2-methylamide-isocyanato-isophorone) benzyl amide] disulfide, (MUS)交聯劑合成 24
3-3-4 彈性體 / 聚合物製備 25
3-4 實驗方法 26
3-4-1 液態核磁共振光譜儀鑑定(1H NMR) 26
3-4-2 熱重量分析(TGA) 26
3-4-3 差示掃描量熱分析(DSC) 26
3-4-4 動態熱機械分析(DMA) 27
3-4-5 衰減全反射式傅立葉轉換紅外線光譜儀分析(ATR-FTIR) 27
3-4-6 X射線光電子能譜儀分析(XPS) 28
3-4-7 自癒合性能-劃痕測試 29
3-4-8 自癒合性能-拉伸測試 29
3-4-9 可回收性能測試 29
四、結果與討論 30
4-1 交聯劑性質鑑定與交聯性能對材料之影響 30
4-1-1 Bis[4-(methacrylyl-2-methyl-isocyanato-isophorone)phenyl] disulfide, (MIS)交聯劑1H NMR光譜鑑定 30
4-1-2 Bis[4-(acrylyl-2-methyl-isocyanato-isophorone)phenyl] disulfide, (AIS)交聯劑1H NMR光譜鑑定 32
4-1-3 Bis[4-(methacrylyl-2-methylamide-isocyanato-isophorone) benzyl amide] disulfide, (MUS)交聯劑1H NMR光譜鑑定 34
4-1-4 交聯性能對聚合物之影響 36
4-2 彈性體表面組成分析 37
4-2-1 彈性體表面衰減全反射式傅立葉轉換紅外線光譜儀分析(ATR-FTIR) 37
4-2-2 彈性體表面X射線光電子能譜儀分析(XPS) - 硫譜 39
4-2-3 彈性體表面X射線光電子能譜儀分析(XPS) – 氮譜 42
4-3 交聯劑 / 彈性體熱性質分析 44
4-3-1 熱重量分析(TGA) 44
4-3-2 差示掃描量熱分析(DSC) 46
4-3-3 動態熱機械分析(DMA) 49
4-4 彈性體動態鍵結性能鑑定 51
4-4-1 自癒性能之光學顯微鏡分析 51
4-4-2 機械 / 自癒性能之拉伸試驗分析 54
4-4-3 可回收性能評估 60
五、結論 66
六、未來展望 67
七、參考文獻 68 |
參考文獻 |
1 Zhu MSQ et al. (2020) Research progress in bio-based self-healing materials. Eur Polym J 129: 19
2 Lange JP. (2021) Managing Plastic Waste-Sorting, Recycling, Disposal, and Product Redesign. ACS Sustain Chem Eng 9: 15722-15738
3 Khan A et al. (2020) Covalent Adaptable Network and Self-Healing Materials: Current Trends and Future Prospects in Sustainability. Polymers 12: 13
4 Adeniran AA et al. (2022) A Review of the Literature on the Environmental and Health Impact of Plastic Waste Pollutants in Sub-Saharan Africa. Pollutants 2: 531-545
5 Al Qahtani S et al. (2022) Environmental impact assessment of plastic waste during the outbreak of COVID-19 and integrated strategies for its control and mitigation. Rev Environ Health 37: 585-596
6 Knoema. The Main Sources of Plastic Waste in the Ocean 2021 [https://knoema.com/infographics/qjigabe/the-main-sources-of-plastic-waste-in-the-ocean] 6 June 2023)
7 Prata JC et al. (2020) Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ 702: 9
8 Quan L et al. (2022) Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers 14: 20
9 K ADV et al. (2021) Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Polymers 13: 47
10 Thuruthel TG et al. (2021) Soft Self-Healing Fluidic Tactile Sensors with Damage Detection and Localization Abilities. Sensors 21: 12
11 Yang ZP et al. (2022) Functional Epoxy Elastomer Integrating Self-Healing Capability and Degradability for a Flexible Stretchable Strain Sensor. ACS Appl Mater Interfaces 14: 44878-44889
12 Yeasmin R et al. (2023) A Skin-like Self-healing and stretchable substrate for wearable electronics. Chem Eng J 455: 13
13 Marinow A et al. (2023) Self-Healing Polymer Electrolytes for Next-Generation Lithium Batteries. Polymers 15: 55
14 Zhou SP et al. (2022) Highly conductive self-healing polymer electrolytes based on synergetic dynamic bonds for highly safe lithium metal batteries. Chem Eng J 442: 9
15 Ahmed EM. (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6: 105-121
16 Ceylan G et al. (2023) The Effects of Cross-Linking Agents on the Mechanical Properties of Poly (Methyl Methacrylate) Resin. Polymers 15: 2387
17 Gao H et al. (2021) Self-healable and reprocessable acrylate-based elastomers with exchangeable disulfide crosslinks by thiol-ene click chemistry. Polymer 212: 11
18 Corsaro C et al. (2022) Acrylate and Methacrylate Polymers′ Applications: Second Life with Inexpensive and Sustainable Recycling Approaches. Materials 15: 30
19 Petrila L-M et al. (2021) Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. Materials 14: 4152
20 Ouni OA et al. (2021) DNA Polyelectrolyte Multilayer Coatings Are Antifouling and Promote Mammalian Cell Adhesion. Materials 14: 14
21 Lee J et al. (2023) 3D bioprinting using a new photo-crosslinking method for muscle tissue restoration. npj Regen Med 8: 14
22 Ma SQ and Webster DC. (2018) Degradable thermosets based on labile bonds or linkages: A review. Prog Polym Sci 76: 65-110
23 Jiang J et al. (2022) From plastic waste to wealth using chemical recycling: A review. J Environ Chem Eng 10: 10
24 Elliss H et al. (2022) Fully Degradable Polyacrylate Networks from Conventional Radical Polymerization Enabled by Thionolactone Addition. Macromolecules 55: 6695-6702
25 Utrera-Barrios S et al. (2023) Self-healing elastomers: A sustainable solution for automotive applications. Eur Polym J 112023
26 Ikura R et al. (2022) Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Mater 14: 17
27 Utrera-Barrios S et al. (2020) Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater Horizons 7: 2882-2902
28 Xiao LQ et al. (2020) Self-healing supramolecular waterborne polyurethane based on host-guest interactions and multiple hydrogen bonds. React Funct Polym 148: 12
29 Yang YM et al. (2016) Density functional theory calculations on S-S bond dissociation energies of disulfides. J Phys Org Chem 29: 6-13
30 Azcune I and Odriozola I. (2016) Aromatic disulfide crosslinks in polymer systems: Self-healing, reprocessability, recyclability and more. Eur Polym J 84: 147-160
31 Yin ZH et al. (2020) Improved self-healing properties and crack growth resistance of polydimethylsiloxane elastomers with dual-capsule room-temperature healing systems. Colloid Polym Sci 298: 67-77
32 Zhao BJ et al. (2019) Organic-Inorganic Linear Segmented Polyurethanes Simultaneously Having Shape Recovery and Self-Healing Properties. ACS Appl Polym Mater 1: 3174-+
33 Lee MW et al. (2018) Self-healing three-dimensional bulk materials based on core-shell nanofibers. Chem Eng J 334: 1093-1100
34 Liu MC et al. (2020) A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding. Eur Polym J 124: 10
35 Morici E and Dintcheva NT. (2022) Recycling of Thermoset Materials and Thermoset-Based Composites: Challenge and Opportunity. Polymers 14: 12
36 Li HQ et al. (2022) Expanding plastics recycling technologies: chemical aspects, technology status and challenges. Green Chem 24: 8899-9002
37 Hao SQ et al. (2021) Recovery of Carbon Fibre from Waste Prepreg via Microwave Pyrolysis. Polymers 13: 15
38 (2021) Guidance for Industry: Use of Recycled Plastics in Food Packaging (Chemistry Considerations). U.S. Food and Drug (FDA)
39 Singh N et al. (2017) Recycling of plastic solid waste: A state of art review and future applications. Compos Pt B-Eng 115: 409-422
40 Zhang YX et al. (2021) Recycling and valorization of glass fibre thermoset composite waste by cold incorporation into a sustainable inorganic polymer matrix. Compos Pt B-Eng 223: 9
41 Kuroyanagi M et al. (2022) Novel degradable acetal-linkage-containing epoxy resins with high thermal stability: synthesis and application in carbon fiber-reinforced plastics. Polym J 54: 313-322
42 Zhou Q et al. (2020) Recyclable High Performance Epoxy Composites Based on Double Dynamic Carbon-Nitrogen and Disulfide Bonds. ACS Appl Polym Mater 2: 1865-1873
43 Zhuo YZ et al. (2020) Ultrafast self -healing and highly transparent coating with mechanically durable icephobicity. Appl Mater Today 19: 10
44 Zhang MY et al. (2019) Self-Healing Mechanism of Microcracks on Waterborne Polyurethane with Tunable Disulfide Bond Contents. ACS Omega 4: 1703-1714
45 Chen JH et al. (2018) Castor oil derived poly(urethane urea) networks with reprocessibility and enhanced mechanical properties. Polymer 143: 79-86
46 Lai Y et al. (2018) Colorless, Transparent, Robust, and Fast Scratch-Self-Healing Elastomers via a Phase-Locked Dynamic Bonds Design. Adv Mater 30: 8
47 Mekaru H et al. (2019) Biodegradability of Disulfide-Organosilica Nanoparticles Evaluated by Soft X-ray Photoelectron Spectroscopy: Cancer Therapy Implications. ACS Appl Nano Mater 2: 479-488
48 Kim SM et al. (2018) Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Adv Mater 30: 8
49 Flamia R et al. (2005) Conformational study and hydrogen bonds detection on elastin-related polypeptides using X-ray photoelectron spectroscopy. Biomacromolecules 6: 1299-1309
50 Shinohara H et al. (2011) XPS and NEXAFS studies of VUV/O-3-treated aromatic polyurea and its application to microchip electrophoresis. IET Nanobiotechnol 5: 136-142
51 Fei YQ et al. (2018) A new kind of single Li-ion polyelectrolyte based on triazolate in a polyurea matrix: syntheses and properties. Res Chem Intermed 44: 7187-7204
52 Liu YY et al. (2020) Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Ind Crop Prod 153: 8
53 Szlachta M et al. (2021) Thermal properties of polyurethane-based composites modified with chitosan for biomedical applications. J Therm Anal Calorim 143: 3471-3478
54 Memon H and Wei Y. (2020) Welding and reprocessing of disulfide-containing thermoset epoxy resin exhibiting behavior reminiscent of a thermoplastic. J Appl Polym Sci 137: 10
55 Kuo CFJ et al. (2019) Synthesis of acrylic hot-melt adhesive based on poly(methyl methacrylate)-b-poly(2-ethylhexyl acrylate) copolymer using atom transfer radical polymerization for a nylon fabric bonding system. Text Res J 89: 5177-5186
56 Oucif A et al. (2022) Poly (hydroxyethyl methacrylate-co-hydroxyethyl acrylate) soft contact lenses for acetazolamide release. Polym Bull 79: 1535-1554
57 Li H et al. (2015) Synthesis and characterization of graft copolymers PnBA-g-PS by miniemulsion polymerization. RSC Adv 5: 45459-45466
58 Antony GJM et al. (2020) Effect of the addition of diurethane dimethacrylate on the chemical and mechanical properties of tBA-PEGDMA acrylate based shape memory polymer network. J Mech Behav Biomed Mater 110: 11
59 Joshi P et al. (2021) Synthesis and characterization of photopolymerizable hydrogels based on poly (ethylene glycol) for biomedical applications. J Appl Polym Sci 138: 13
60 Ramirez D et al. (2017) Effect of cooling induced crystallization upon the properties of segmented thermoplastic polyurethanes. J Polym Eng 37: 471-480
61 Que YH et al. (2021) The Crystallisation, Microphase Separation and Mechanical Properties of the Mixture of Ether-Based TPU with Different Ester-Based TPUs. Polymers 13: 11
62 Bajsic EG et al. (2013) The influence of talc content on the thermal and mechanical properties of thermoplastic polyurethane/polypropylene blends. J Elastomer Plast 45: 501-522
63 Ionita D et al. (2015) Tailoring the hard domain cohesiveness in polyurethanes by interplay between the functionality and the content of chain extender. RSC Adv 5: 76852-76861
64 Mattia J and Painter P. (2007) A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 40: 1546-1554
65 Wiergowska G et al. (2021) Combinations of Freeze-Dried Amorphous Vardenafil Hydrochloride with Saccharides as a Way to Enhance Dissolution Rate and Permeability. Pharmaceuticals 14: 16
66 Canadas JC et al. (2000) Comparative study of amorphous and partially crystalline poly(ethylene-2,6-naphthalene dicarboxylate) by TSDC, DEA, DMA and DSC. Polymer 41: 2899-2905
67 Somdee P et al. (2019) Thermal analysis of polyurethane elastomers matrix with different chain extender contents for thermal conductive application. J Therm Anal Calorim 138: 1003-1010
68 Toader G et al. (2023) Effect of Aromatic Chain Extenders on Polyurea and Polyurethane Coatings Designed for Defense Applications. Polymers 15: 16
69 Stevens MP. (1990) Polymer chemistry: Oxford university press New York
70 Gasperini A et al. (2019) Characterization of Hydrogen Bonding Formation and Breaking in Semiconducting Polymers under Mechanical Strain. Macromolecules 52: 2476-2486
71 Zhang LD et al. (2020) Achievement of Both Mechanical Properties and Intrinsic Self-Healing under Body Temperature in Polyurethane Elastomers: A Synthesis Strategy from Waterborne Polymers. Polymers 12: 20
72 He XJ et al. (2011) Effect of Alkyl Side Chain Length on Relaxation Behaviors in Poly(n-alkyl Acrylates) and Poly(n-alkyl Methacrylates). J Macromol Sci Part B-Phys 50: 188-200
73 Kabiri K et al. (2011) Super alcohol-absorbent gels of sulfonic acid-contained poly(acrylic acid). J Polym Res 18: 449-458
74 Song PA and Wang H. (2020) High-Performance Polymeric Materials through Hydrogen-Bond Cross-Linking. Adv Mater 32: 12
75 Xu CA et al. (2020) Study on the surface properties and thermal stability of polysiloxane-based polyurethane elastomers with aliphatic and aromatic diisocyanate structures. Colloid Polym Sci 298: 1215-1226
76 Gu S et al. (2018) The effect of methyl group on the mechanical properties of hydrophobic association hydrogel. J Polym Sci Pt B-Polym Phys 56: 1505-1512
77 Zhang XN et al. (2022) Influence of the a-Methyl Group on Elastic-To-Glassy Transition of Supramolecular Hydrogels with Hydrogen-Bond Associations. Macromolecules 14
78 Zhang Z et al. (2022) Surpassing the stiffness-extensibility trade-off of elastomers via mastering the hydrogen-bonding clusters. Matter 5: 237-+
79 Wang YY et al. (2021) Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat Commun 12: 10
80 Jian XX et al. (2018) Self-healing polyurethane based on disulfide bond and hydrogen bond. Polym Adv Technol 29: 463-469
81 Yang Y et al. (2015) Chemical and physical aspects of self-healing materials. Prog Polym Sci 49-50: 34-59
82 Xie ZL et al. (2021) Hydrogen Bonding in Self-Healing Elastomers. ACS Omega 6: 9319-9333
83 Hu J et al. (2019) Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple. Polymer 183: 11
84 Mthembu SN et al. (2020) Breaking a Couple: Disulfide Reducing Agents. ChemBioChem 21: 1947-1954
85 Zhou L et al. (2017) Rapid degradation of disulfide-based thermosets through thiol-disulfide exchange reaction. Polymer 120: 1-8
86 Si HW et al. (2020) Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Compos Pt B-Eng 199: 8
87 Hou JQ et al. (2018) Recyclable cross-linked anion exchange membrane for alkaline fuel cell application. J Power Sources 375: 404-411 |
指導教授 |
黃俊仁(Chun-Jen Huang)
|
審核日期 |
2023-7-26 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|