參考文獻 |
1. Kang, B. and G. Ceder, “Battery materials for ultrafast charging and discharging.” Nature, 458(7235), 2009, p. 190-193.
2. Marom, R., et al., “A review of advanced and practical lithium battery materials.” Journal of Materials Chemistry, 21(27), 2011, p. 9938-9954.
3. Aghamohammadi, H., N. Hassanzadeh, and R. Eslami-Farsani, “A review study on the recent advances in developing the heteroatom-doped graphene and porous graphene as superior anode materials for Li-ion batteries.” Ceramics International, 47(16), 2021, p. 22269-22301.
4. Goriparti, S., et al., “Review on recent progress of nanostructured anode materials for Li-ion batteries.” Journal of Power Sources, 257, 2014, p. 421-443.
5. Ji, L., et al., “Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries.” Energy & Environmental Science, 4(8), 2011, p. 2682-2699.
6. Zhang, L., et al., “Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes.” Advanced Functional Materials, 31(1), 2021, p. 2005471.
7. Zhang, X., et al., “A record-high ion storage capacity of T-graphene as two-dimensional anode material for Li-ion and Na-ion batteries.” Applied Surface Science, 527, 2020, p. 146849.
8. Zhang, X., et al., “Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.” Nanoscale, 8(33), 2016, p. 15340-15347.
9. Zhu, Z. and D. Tomanek, “Semiconducting layered blue phosphorus: a computational study.” Phys Rev Lett, 112(17), 2014, p. 176802.
10. Li, Q.F., et al., “Theoretical Prediction of Anode Materials in Li-Ion Batteries on Layered Black and Blue Phosphorus.” Journal of Physical Chemistry C, 119(16), 2015, p. 8662-8670.
11. Mukherjee, S., L. Kavalsky, and C.V. Singh, “Ultrahigh Storage and Fast Diffusion of Na and K in Blue Phosphorene Anodes.” ACS Appl Mater Interfaces, 10(10), 2018, p. 8630-8639.
12. Barik, G. and S. Pal, “Energy Gap-Modulated Blue Phosphorene as Flexible Anodes for Lithium- and Sodium-Ion Batteries.” The Journal of Physical Chemistry C, 123(5), 2019, p. 2808-2819.
13. Tritsaris, G.A., et al., “Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage.” Nano Letters, 13(5), 2013, p. 2258-2263.
14. Zhuang, J., et al., “Silicene: A Promising Anode for Lithium-Ion Batteries.” Advanced Materials, 29(48), 2017, p. 1606716.
15. Seyed-Talebi, S.M., I. Kazeminezhad, and J. Beheshtian, “Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries.” Phys Chem Chem Phys, 17(44), 2015, p. 29689-96.
16. Ghiji, M., et al., “A Review of Lithium-Ion Battery Fire Suppression.” Energies, 13(19), 2020, p. 5117.
17. Nitta, N., et al., “Li-ion battery materials: present and future.” Materials Today, 18(5), 2015, p. 252-264.
18. Zang, X., et al., “Recent Advances of 2D Nanomaterials in the Electrode Materials of Lithium-Ion Batteries.” Nano, 14(02), 2019, p. 1930001.
19. Lian, P., et al., “Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries.” Electrochimica Acta, 55(12), 2010, p. 3909-3914.
20. Chen, D., et al., “Double Transition-Metal Chalcogenide as a High-Performance Lithium-Ion Battery Anode Material.” Industrial & Engineering Chemistry Research, 53(46), 2014, p. 17901-17908.
21. Barik, G. and S. Pal, “Monolayer Transition-Metal Dichalcogenide Mo1–xWxS2 Alloys as Efficient Anode Materials for Lithium-Ion Batteries.” The Journal of Physical Chemistry C, 122(45), 2018, p. 25837-25848.
22. Golias, E., et al., “Band Renormalization of Blue Phosphorus on Au(111).” Nano Letters, 18(11), 2018, p. 6672-6678.
23. Bao, J.N., et al., “Hexagonal Boron Nitride/Blue Phosphorene Heterostructure as a Promising Anode Material for Li/Na-Ion Batteries.” Journal of Physical Chemistry C, 122(41), 2018, p. 23329-23335.
24. Li, Y., W. Wu, and F. Ma, “Blue phosphorene/graphene heterostructure as a promising anode for lithium-ion batteries: a first-principles study with vibrational analysis techniques.” Journal of Materials Chemistry A, 7(2), 2019, p. 611-620.
25. Schrödinger, E., “An Undulatory Theory of the Mechanics of Atoms and Molecules.” Physical Review, 28(6), 1926, p. 1049-1070.
26. Hohenberg, P. and W. Kohn, “Inhomogeneous Electron Gas.” Physical Review, 136(3B), 1964, p. B864-B871.
27. Kohn, W. and L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects.” Physical Review, 140(4A), 1965, p. A1133-A1138.
28. Perdew, J.P. and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation.” Physical Review B, 33(12), 1986, p. 8800-8802.
29. Monkhorst, H.J. and J.D. Pack, “Special points for Brillouin-zone integrations.” Physical Review B, 13(12), 1976, p. 5188-5192.
30. Payne, M.C., et al., “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients.” Reviews of Modern Physics, 64(4), 1992, p. 1045-1097.
31. Furthmüller, J., J. Hafner, and G. Kresse, “Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials.” Physical Review B, 50(21), 1994, p. 15606-15622.
32. BIOVIA, D.S., BIOVIA Material Studio, 8.0, San Diego: Dassault Systèmes, 2014.
33. Clark, S.J., et al., “First principles methods using CASTEP.” Zeitschrift Fur Kristallographie, 220(5-6), 2005, p. 567-570.
34. Xu, S., et al., “Adsorption of Li on single-layer silicene for anodes of Li-ion batteries.” Physical Chemistry Chemical Physics, 20(13), 2018, p. 8887-8896.
35. Segall, M.D., et al., “First-principles simulation: ideas, illustrations and the CASTEP code.” Journal of Physics: Condensed Matter, 14(11), 2002, p. 2717.
36. Vanderbilt, D., “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.” Physical Review B, 41(11), 1990, p. 7892-7895.
37. Perdew, J.P., K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple.” Physical Review Letters, 77(18), 1996, p. 3865-3868.
38. Grimme, S., “Semiempirical GGA-type density functional constructed with a long-range dispersion correction.” Journal of Computational Chemistry, 27(15), 2006, p. 1787-1799.
39. Koma, A., “Van der Waals epitaxy for highly lattice-mismatched systems.” Journal of Crystal Growth, 201, 1999, p. 236-241.
40. Ahammed, R., et al., “ZrS3/MS2 and ZrS3/MXY (M=Mo, W; X, Y=S, Se, Te; X ≠ Y) type-II van der Waals hetero-bilayers: Prospective candidates in 2D excitonic solar cells.” Applied Surface Science, 499, 2020, p. 143894.
41. Dai, X.Y., et al., “Electronic transport properties of phosphorene/graphene (silicene/germanene) bilayer heterostructures: A first-principles exploration.” Ceramics International, 45(9), 2019, p. 11584-11590.
42. Hu, W., et al., “Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers.” Journal of Materials Chemistry C, 4(9), 2016, p. 1776-1781.
43. Ares, P., et al., “Van der Waals interaction affects wrinkle formation in two-dimensional materials.” Proceedings of the National Academy of Sciences, 118(14), 2021, p. e2025870118.
44. Deng, S.K. and V. Berry, “Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications.” Materials Today, 19(4), 2016, p. 197-212.
45. Wang, V., et al., “High-Throughput Computational Screening of Two-Dimensional Semiconductors.” The Journal of Physical Chemistry Letters, 13(50), 2022, p. 11581-11594.
46. Lin, H., et al., “Metallic VS2/blue phosphorene heterostructures as promising anode materials for high-performance lithium ion batteries: A first principles study.” Applied Surface Science, 533, 2020, p. 147478.
47. Schoop, L.M., et al., “Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS.” Nat Commun, 7(1), 2016, p. 11696.
48. Mortazavi, B., et al., “Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation.” Electrochimica Acta, 213, 2016, p. 865-870.
49. Li, Q.F., J.C. Yang, and L. Zhang, “Theoretical Prediction of Blue Phosphorene/Borophene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries.” Journal of Physical Chemistry C, 122(32), 2018, p. 18294-18303.
50. Ubaid, M., A. Aziz, and B.S. Pujari, “Two-dimensional C3N/blue phosphorene vdW heterostructure for Li, Na and K-ion batteries.” New Journal of Chemistry, 45(28), 2021, p. 12647-12654.
51. Wang, Y. and Y. Li, “Ab initio prediction of two-dimensional Si3C enabling high specific capacity as an anode material for Li/Na/K-ion batteries.” Journal of Materials Chemistry A, 8(8), 2020, p. 4274-4282.
52. Reuter, K. and M. Scheffler, “Composition, structure, and stability of RuO2(110) as a function of oxygen pressure.” Physical Review B, 65(3), 2001, p. 035406.
53. Soon, A., et al., “Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation.” Physical Review B, 75(12), 2007, p. 125420.
54. Ge, X.J., K.L. Yao, and J.T. Lu, “Comparative study of phonon spectrum and thermal expansion of graphene, silicene, germanene, and blue phosphorene.” Physical Review B, 94(16), 2016, p. 165433.
55. Togo, A. and I. Tanaka, “First principles phonon calculations in materials science.” Scripta Materialia, 108, 2015, p. 1-5.
56. Ji, Y., et al., “Monolayer germanium monochalcogenides (GeS/GeSe) as cathode catalysts in nonaqueous Li–O2 batteries.” Physical Chemistry Chemical Physics, 19(31), 2017, p. 20457-20462.
57. Li, H., et al., “Hydrogenated borophene/blue phosphorene: A novel two-dimensional donor-acceptor heterostructure with shrunken interlayer distance as a potential anode material for Li/Na ion batteries.” Journal of Physics and Chemistry of Solids, 155, 2021, p. 110108.
58. Kang, K., D. Morgan, and G. Ceder, “First principles study of Li diffusion in I-Li2NiO2 structure.” Physical Review B, 79(1), 2009, p. 014305.
59. Van der Ven, A. and G. Ceder, “First principles calculation of the interdiffusion coefficient in binary alloys.” Phys Rev Lett, 94(4), 2005, p. 045901.
60. Wu, K.-C., C.-M. Hsieh, and B.K. Chang, “First principles calculations on lithium diffusion near the surface and in the bulk of Fe-doped LiCoPO4.” Physical Chemistry Chemical Physics, 24(2), 2022, p. 1147-1155.
61. Poon, J., et al., “Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient.” Chem Sci, 6(5), 2015, p. 2869-2876.
62. Galashev, A.Y. and K.A. Ivanichkina, “Computer Test of a New Silicene Anode for Lithium-Ion Batteries.” Chemelectrochem, 6(5), 2019, p. 1525-1535.
63. Muhammad, N., M.U. Muzaffar, and Z.J. Ding, “Black phosphorene/blue phosphorene van der Waals heterostructure: a potential anode material for lithium-ion batteries.” Physical Chemistry Chemical Physics, 23(32), 2021, p. 17392-17401.
64. Yu, T., et al., “Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery.” Journal of Materials Chemistry A, 5(35), 2017, p. 18698-18706.
65. Wu, F., J. Maier, and Y. Yu, “Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.” Chemical Society Reviews, 49(5), 2020, p. 1569-1614.
66. Topsakal, M., S. Cahangirov, and S. Ciraci, “The response of mechanical and electronic properties of graphane to the elastic strain.” Applied Physics Letters, 96(9), 2010.
67. Kang, J., et al., “Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet.” The Journal of Physical Chemistry C, 115(42), 2011, p. 20466-20470.
68. Yildirim, T., et al., “Towards future physics and applications via two-dimensional material NEMS resonators.” Nanoscale, 12(44), 2020, p. 22366-22385.
69. Şahin, H., et al., “Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations.” Physical Review B, 80(15), 2009, p. 155453.
|