博碩士論文 110329011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.217.4.250
姓名 楊政諭(Cheng-Yu Yang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以微電鍍法製備鎳鈷鐵、鎳鈷鐵鉻合金及其在鹼性環境中之產氧反應行為研究
(Fabrication of Ni-Co-Fe and Ni-Co-Fe-Cr Alloy by Micro-anode Guided Electroplating and Behaviors of Oxygen Evolution Reaction in Alkaline Media)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前電解水產氫為最具潛力的再生能源之一,但整體水分解效率受限於陽極產氧反應之動力學障礙。當今產氧效能較佳的材料為IrO2和RuO2,由於其價格昂貴且含量稀少,使得難以大規模生產。為解決上述問題,本研究以微陽極導引電鍍法(Micro-anode guided electroplating, MAGE)製備鎳鈷鐵三元、鎳鈷鐵鉻四元合金微柱作為陽極之催化電極,並探討其在鹼性環境(1.0 M KOH)中之產氧性能。本製程固定析鍍參數為電壓4.0 V與間距100 μm,並分別改變鍍浴中亞鐵離子濃度(0.03 M~0.06 M)及鉻離子濃度(0.0 mM~2.5 mM)進行析鍍。將所得之合金微柱以SEM觀察表面形貌、EDS分析化學組成、XRD分析晶體結構。接著進行線性掃描伏安法、循環伏安法、計時電位法與電化學阻抗頻譜之電化學測試,探討合金微柱之產氧效能。結果顯示鎳鈷鐵鉻合金比鎳鈷鐵合金有更佳產氧效能,其中具有最佳產氧效能的為Ni21Co33Fe34Cr12 (NCFR20),塔弗斜率60.7 mV/dec為最低,產氧起始電位1.41 V為最低,循環伏安法最大電流密度為1525 mA/cm2,電荷轉移電阻僅51.09 Ω·cm2,且僅需1.50 V就可以維持電流密度在100 mA/cm2。本研究也證實添加鉻元素有利於電荷轉移使催化電極具更佳之產氧效能。
摘要(英) At present, hydrogen production by water electrolysis is one of the most potential renewable energy sources, but the overall water splitting efficiency is limited by the kinetic barrier of oxygen evolution reaction at the anode. IrO2 and RuO2 have better oxygen evolution efficiency nowadays, which are difficult to produce on a large scale due to their high price and scarcity. In this study, Micro-anode guided electroplating (MAGE) was used to prepare nickel-cobalt-iron ternary and nickel-cobalt-iron-chromium quaternary alloy microcolumns as anode catalytic electrodes, and to discuss their performance for oxygen generation in alkaline media (1.0 M KOH). In this process, the bias voltage is fixed at 4.0 V and the gap is 100 μm, and the concentration of ferrous ions (0.03 M~0.06 M) and chromium ions (0.0 mM~2.5 mM) in the electroplating bath are respectively changed for fabrication. The surface morphology of the microcolumns was observed by SEM, the chemical composition was analyzed by EDS, and the crystal structure was analyzed by XRD. Subsequently, different alloy microcolumns were immersed in 1.0 M KOH for electrochemical tests such as linear sweep voltammetry, cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy to observe oxygen evolution efficiency of alloy microcolumns. The results show that nickel-cobalt-iron-chromium alloy has better oxygen evolution efficiency than nickel-cobalt-iron alloy, and Ni21Co33Fe34Cr12 (NCFR20) has the best oxygen evolution performance, with the lowest Tafel slope of 60.7 mV/dec, and the lowest onset potential of oxygen evolution is 1.41 V, the maximum current density of cyclic voltammetry is 1525 mA/cm2, the charge transfer resistance is only 51.09 Ω·cm2, and only 1.50 V is needed to maintain the current density at 100 mA/cm2. This study also confirmed that the addition of chromium is beneficial for the charge transfer, so that the catalytic electrode has a better oxygen evolution efficiency.
關鍵字(中) ★ 微陽極導引電鍍法
★ 鎳鈷鐵合金
★ 鎳鈷鐵鉻合金
★ 產氧反應
★ 非貴金屬電催化劑
關鍵字(英) ★ Micro-anode guided electroplating
★ Nickel-cobalt-iron alloy
★ Nickel-cobalt-iron-chromium alloy
★ Oxygen evolution reaction (OER)
★ Non-precious metal electrocatalyst
論文目次 摘要 vi
Abstract vii
致謝 ix
目錄 x
表目錄 xv
圖目錄 xvii
第一章、前言 1
1-1 研究背景 1
1-2 水電解反應 2
1-3 水電解產氧之電極材料選擇 2
1-4 研究動機與目的 3
第二章、文獻回顧 5
2-1 電鍍原理 5
2-2 合金電鍍 5
2-3 局部電鍍製程之發展 7
2-4 微陽極導引電鍍法之發展 10
2-5 奈米壓痕測試基礎理論 12
2-6 產氧反應機制 14
2-7 3d過渡金屬元素用於產氧反應之相關研究 16
2-7-1 OER電催化劑種類 16
2-7-2 鎳鐵電催化劑 18
2-7-3 鎳鈷鐵電催化劑 18
2-7-4 鎳鐵鉻電催化劑 19
2-7-5 鈷鐵鉻電催化劑 20
2-7-6 鎳鈷鐵鉻電催化劑 20
2-8 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 21
第三章、實驗方法 23
3-1 實驗流程 23
3-2 鍍液配置 23
3-3 微陽極導引電鍍法實驗機台 24
3-4 陽極與陰極製備 24
3-5 合金微柱之表面形貌觀察與成分分析 25
3-6 合金微柱之縱剖面元素分析 25
3-7 合金微柱之晶體結構分析 26
3-8 機械性質測試 26
3-9 電化學產氧測試 27
3-9-1 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 27
3-9-2 循環伏安法(Cyclic Voltammetry, CV) 28
3-9-3 計時電位法(Chronopotentiometry, CP) 28
3-9-4 電化學阻抗頻譜(Electrochemical Impedance Spectroscopy, EIS) 29
3-10 合金微柱之表面分析 29
3-11 合金微柱之水電解反應 30
3-11-1 法拉第效率與定電流氧氣蒐集 30
3-11-2 5×4之微柱陣列產氧 31
3-11-3 微柱陣列之水電解反應 31
第四章、結果 32
4-1 改變硫酸亞鐵濃度之鍍浴對鎳鈷鐵合金微柱之影響 32
4-1-1 表面形貌與柱徑 32
4-1-2 鎳鈷鐵合金微柱成分分析 32
4-1-3 鎳鈷鐵合金微柱之晶體結構 33
4-2 改變硫酸鉻濃度之鍍浴對鎳鈷鐵鉻合金微柱之影響 33
4-2-1 表面形貌與柱徑 34
4-2-2 鎳鈷鐵鉻合金微柱成分分析 34
4-2-3 鎳鈷鐵鉻合金微柱之縱剖面元素分布 35
4-2-4 鎳鈷鐵鉻合金微柱之晶體結構 35
4-2-5 機械性質分析 35
4-3 鎳鈷鐵、鎳鈷鐵鉻合金微柱在1.0 M KOH中之析氧反應 36
4-3-1 線性掃描伏安法 36
4-3-2 循環伏安法 38
4-3-3 計時電位法 39
4-3-4 電化學阻抗頻譜 40
4-4 最佳產氧效能合金微柱之表面分析 40
4-5 鎳鈷鐵、鎳鈷鐵鉻合金微柱產氧反應之定電流氧氣蒐集 42
第五章、討論 44
5-1 析鍍參數對於鎳鈷鐵、鎳鈷鐵鉻合金微柱表面形貌影響 44
5-2 析鍍參數對於鎳鈷鐵、鎳鈷鐵鉻合金微柱化學成分影響 45
5-3 鎳鈷鐵、鎳鈷鐵鉻合金微柱之晶體結構 45
5-4 改變硫酸鉻濃度對鎳鈷鐵鉻合金微柱之機械性質探討 46
5-5 析鍍參數對於鎳鈷鐵、鎳鈷鐵鉻合金微柱產氧性能影響 47
5-5-1 線性掃描伏安法 47
5-5-2 循環伏安法 48
5-5-3 計時電位法 48
5-5-4 電化學阻抗頻譜 49
5-6 析鍍參數對於產氧反應活化前後表面狀態影響 50
5-7 鎳鈷鐵、鎳鈷鐵鉻合金微柱之水電解反應 52
5-8 本研究與相關文獻電催化劑之產氧效能比較 53
第六章、結論與未來展望 55
參考資料 57
參考文獻 1. Chu, S. and A. Majumdar, Opportunities and challenges for a sustainable energy future. nature, 2012. 488(7411): p. 294-303.
2. Sharma, S. and S.K. Ghoshal, Hydrogen the future transportation fuel: From production to applications. Renewable and sustainable energy reviews, 2015. 43: p. 1151-1158.
3. Klahr, B., S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T.W. Hamann, Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. Journal of the American Chemical Society, 2012. 134(40): p. 16693-16700.
4. Khan, M.A., H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, and J. Zhang, Recent progresses in electrocatalysts for water electrolysis. Electrochemical Energy Reviews, 2018. 1: p. 483-530.
5. Ball, M. and M. Wietschel, The future of hydrogen–opportunities and challenges. International journal of hydrogen energy, 2009. 34(2): p. 615-627.
6. Davis, S.J., N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I.L. Azevedo, S.M. Benson, T. Bradley, J. Brouwer, and Y.-M. Chiang, Net-zero emissions energy systems. Science, 2018. 360(6396): p. eaas9793.
7. Hordeski, M.F., Alternative fuels: the future of hydrogen. 2020: River Publishers.
8. Kanan, M.W. and D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008. 321(5892): p. 1072-1075.
9. Landon, J., E. Demeter, N. Inoglu, C. Keturakis, I.E. Wachs, R. Vasic, A.I. Frenkel, and J.R. Kitchin, Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. Acs Catalysis, 2012. 2(8): p. 1793-1801.
10. Suen, N.-T., S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.
11. Jamesh, M.-I. and X. Sun, Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–A review. Journal of Power Sources, 2018. 400: p. 31-68.
12. Vij, V., S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.-G. Lee, T. Yoon, and K.S. Kim, Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Acs Catalysis, 2017. 7(10): p. 7196-7225.
13. Wang, J., X. Ge, Z. Liu, L. Thia, Y. Yan, W. Xiao, and X. Wang, Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites. Journal of the American Chemical Society, 2017. 139(5): p. 1878-1884.
14. Han, X., C. Yu, S. Zhou, C. Zhao, H. Huang, J. Yang, Z. Liu, J. Zhao, and J. Qiu, Ultrasensitive iron‐triggered nanosized Fe–CoOOH integrated with graphene for highly efficient oxygen evolution. Advanced Energy Materials, 2017. 7(14): p. 1602148.
15. Kubisztal, J. and A. Budniok, Study of the oxygen evolution reaction on nickel-based composite coatings in alkaline media. International journal of hydrogen energy, 2008. 33(17): p. 4488-4494.
16. Li, X., F.C. Walsh, and D. Pletcher, Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Physical Chemistry Chemical Physics, 2011. 13(3): p. 1162-1167.
17. 拉維雅, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, in 應用材料科學國際研究生碩士學位學程. 2020, 國立中央大學: 桃園縣. p. 75.
18. 謝東佑, 自焦磷酸浴中以微陽極導引電鍍製備鎳-鎢合金微柱、微螺旋及其在1.0 M KOH 中電解產氫特性研究, in 材料科學與工程研究所. 2022, 國立中央大學: 桃園縣. p. 223.
19. 劉彥廷, 鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究, in 材料科學與工程研究所. 2022, 國立中央大學: 桃園縣. p. 170.
20. 黃楚雯, 鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 161.
21. 黃勤, Ni-W-Zn 三元合金微柱、微螺旋之製備 及其在1.0 M KOH(pH = 14)中之產氫行為探討, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 177.
22. 曾耀田, 李昱, 林景崎, 黃衍任, 鄭憲清, and 曹譯友, 鎳鐵合金微柱(Ni41Fe59, Ni55Fe45, Ni71Fe29 及 Ni86Fe14) 之製作及及 其在1 M KOH及 0.5 M NaCl 混合溶液中之電化學行為. Journal of Chinese Corrosion Engineering, 2021. 35(2): p. 8-16.
23. Xia, C., Q. Jiang, C. Zhao, M.N. Hedhili, and H.N. Alshareef, Selenide‐based electrocatalysts and scaffolds for water oxidation applications. Advanced Materials, 2016. 28(1): p. 77-85.
24. Sun, H., Z. Yan, F. Liu, W. Xu, F. Cheng, and J. Chen, Self‐supported transition‐metal‐based electrocatalysts for hydrogen and oxygen evolution. Advanced materials, 2020. 32(3): p. 1806326.
25. Ye, R., P. del Angel‐Vicente, Y. Liu, M.J. Arellano‐Jimenez, Z. Peng, T. Wang, Y. Li, B.I. Yakobson, S.H. Wei, and M.J. Yacaman, High‐performance hydrogen evolution from MoS2 (1–x) P x solid solution. Advanced Materials, 2016. 28(7): p. 1427-1432.
26. Katsounaros, I., S. Cherevko, A.R. Zeradjanin, and K.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angewandte Chemie International Edition, 2014. 53(1): p. 102-121.
27. Sun, H., X. Xu, Z. Yan, X. Chen, L. Jiao, F. Cheng, and J. Chen, Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018. 6(44): p. 22062-22069.
28. Bard, A., Standard potentials in aqueous solution. 2017: Routledge.
29. McCafferty, E., Standard electrode potentials of the elements as a fundamental periodic property of atomic number. Electrochimica acta, 2007. 52(19): p. 5884-5890.
30. Brenner, A., Electrodeposition of alloys: principles and practice. 2013: Elsevier.
31. Santos, H.L., P.G. Corradini, M. Medina, J.A. Dias, and L.H. Mascaro, NiMo–NiCu inexpensive composite with high activity for hydrogen evolution reaction. ACS applied materials & interfaces, 2020. 12(15): p. 17492-17501.
32. Mansouri, N., N. Benbrahim-Cherief, E. Chainet, F. Charlot, T. Encinas, S. Boudinar, B. Benfedda, L. Hamadou, and A. Kadri, Electrodeposition of equiatomic FeNi and FeCo nanowires: Structural and magnetic properties. Journal of Magnetism and Magnetic Materials, 2020. 493: p. 165746.
33. Roventi, G., R. Cecchini, A. Fabrizi, and T. Bellezze, Electrodeposition of nickel–zinc alloy coatings with high nickel content. Surface and Coatings Technology, 2015. 276: p. 1-7.
34. Zhuang, Y. and E. Podlaha, NiCoFe ternary alloy deposition: I. an experimental kinetic study. Journal of the Electrochemical Society, 2000. 147(6): p. 2231.
35. Gileadi, E. and N. Eliaz, The mechanism of induced codeposition of Ni-W alloys. ECS Transactions, 2007. 2(6): p. 337.
36. Podlaha, E. and D. Landolt, Induced codeposition: I. An experimental investigation of Ni‐Mo alloys. Journal of the Electrochemical Society, 1996. 143(3): p. 885.
37. Sun, S., T. Bairachna, and E. Podlaha, Induced codeposition behavior of electrodeposited NiMoW alloys. Journal of the Electrochemical Society, 2013. 160(10): p. D434.
38. Madden, J.D. and I.W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition. Journal of microelectromechanical systems, 1996. 5(1): p. 24-32.
39. El-Giar, E. and D. Thomson. Localized electrochemical plating of interconnectors for microelectronics. in IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings. 1997. IEEE.
40. Yeo, S. and J. Choo, Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition. Journal of micromechanics and microengineering, 2001. 11(5): p. 435.
41. Yeo, S., J. Choo, and K. Sim, On the effects of ultrasonic vibrations on localized electrochemical deposition. Journal of micromechanics and microengineering, 2002. 12(3): p. 271.
42. Said, R., Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling. Nanotechnology, 2003. 14(5): p. 523.
43. Seol, S., J. Yi, X. Jin, C. Kim, J. Je, W. Tsai, P. Hsu, Y. Hwu, C. Chen, and L. Chang, Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition. electrochemical and solid-state letters, 2004. 7(9): p. C95.
44. Seol, S.K., A.R. Pyun, Y. Hwu, G. Margaritondo, and J.H. Je, Localized electrochemical deposition of copper monitored using real‐time x‐ray microradiography. Advanced Functional Materials, 2005. 15(6): p. 934-937.
45. Seol, S., J. Kim, J. Je, Y. Hwu, and G. Margaritondo, Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition. Electrochemical and solid-state letters, 2007. 10(5): p. C44.
46. Lin, C., C. Lee, J. Yang, and Y. Huang, Improved copper microcolumn fabricated by localized electrochemical deposition. electrochemical and solid-state letters, 2005. 8(9): p. C125.
47. Lee, C.-Y., C.-S. Lin, and B.-R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions. Journal of Micromechanics and Microengineering, 2008. 18(10): p. 105008.
48. Pané, S., V. Panagiotopoulou, S. Fusco, E. Pellicer, J. Sort, D. Mochnacki, K.M. Sivaraman, B. Kratochvil, M. Baró, and B.J. Nelson, The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns. Electrochemistry communications, 2011. 13(9): p. 973-976.
49. Brant, A.M., M.M. Sundaram, and A.B. Kamaraj, Finite element simulation of localized electrochemical deposition for maskless electrochemical additive manufacturing. Journal of Manufacturing Science and Engineering, 2015. 137(1).
50. Wang, F., F. Wang, and H. He, Parametric electrochemical deposition of controllable morphology of copper micro-columns. Journal of The Electrochemical Society, 2016. 163(10): p. E322.
51. Wang, F., H. Xiao, and H. He, Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns. Scientific reports, 2016. 6(1): p. 26270.
52. Wang, F., H. Bian, and Y. Xiao, Fabrication of micro-sized copper columns using localized electrochemical deposition with a 20 μm diameter micro anode. ECS Journal of Solid State Science and Technology, 2019. 8(4): p. P223.
53. Wang, F., B. Hua, and Q. Niu, Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode. Journal of Solid State Electrochemistry, 2022. 26(3): p. 799-808.
54. 陳承志, 銅基材上之單軸微電析鎳製程研究, in 機械工程研究所. 1999, 國立中央大學: 桃園縣. p. 158.
55. 游絢博, 陽極單軸間歇運動下之直流、脈衝微電析鎳, in 機械工程研究所. 2000, 國立中央大學: 桃園縣. p. 177.
56. 張庭綱, 微陽極導引電鍍法製作微銅柱及銅柵欄之研究, in 機械工程研究所. 2004, 國立中央大學: 桃園縣. p. 168.
57. 游睿為, 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析, in 機械工程研究所. 2001, 國立中央大學: 桃園縣. p. 202.
58. 葉柏青, 微陽極引導電鍍與監測, in 機械工程研究所. 2003, 國立中央大學: 桃園縣. p. 147.
59. 賴格源, 微陽極導引電鍍銅其組織及底部覆蓋範圍之探討, in 機械工程研究所. 2006, 國立中央大學: 桃園縣. p. 157.
60. Lin, J., S. Jang, D. Lee, C. Chen, P. Yeh, T. Chang, and J. Yang, Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating. Journal of Micromechanics and Microengineering, 2005. 15(12): p. 2405.
61. Lin, J., T. Chang, J. Yang, J. Jeng, D. Lee, and S. Jiang, Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement. Journal of Micromechanics and Microengineering, 2008. 19(1): p. 015030.
62. Chang, T., J. Lin, J. Yang, P. Yeh, D. Lee, and S. Jiang, Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition. Journal of Micromechanics and Microengineering, 2007. 17(11): p. 2336.
63. 鄭家宏, 以微陽極導引電鍍法製作鎳銅合金微柱, in 機械工程研究所. 2005, 國立中央大學: 桃園縣. p. 151.
64. 楊仁泓, 微陽極導引電鍍法製備微析物之局部電場強度分析, in 機械工程研究所. 2009, 國立中央大學: 桃園縣. p. 107.
65. Ciou, Y.-J., Y.-R. Hwang, and J.-C. Lin, Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing. ECS Journal of Solid State Science and Technology, 2014. 3(7): p. P268.
66. 顧乃華, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析, in 機械工程學系. 2015, 國立中央大學: 桃園縣. p. 97.
67. 張翔, 銅鎳合金微結構之微電鍍研究, in 材料科學與工程研究所. 2018, 國立中央大學: 桃園縣. p. 112.
68. 劉謹綸, 以微電鍍法製備三維銅錫介金屬化合物微結構, in 材料科學與工程研究所. 2018, 國立中央大學: 桃園縣. p. 120.
69. 李昱, 以微電鍍法製備鎳鐵合金三維微結構之研究, in 機械工程學系. 2018, 國立中央大學: 桃園縣. p. 121.
70. 吳冠勳, 以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究, in 機械工程學系. 2019, 國立中央大學: 桃園縣. p. 101.
71. Tseng, Y.-T., G.-X. Wu, J.-C. Lin, Y.-R. Hwang, D.-H. Wei, S.-Y. Chang, and K.-C. Peng, Preparation of Co-Fe-Ni alloy micropillar by microanode-guided electroplating. Journal of Alloys and Compounds, 2021. 885: p. 160873.
72. 許壬瀚, 自含檸檬酸鈉鍍浴中電鍍銅鎳合金微柱並探討 其形貌、組成、構造與性質, in 材料科學與工程研究所. 2021, 國立中央大學: 桃園縣. p. 145.
73. 李盈家, 以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為, in 材料科學與工程研究所. 2020, 國立中央大學: 桃園縣. p. 150.
74. Liu, K., M. Ostadhassan, and B. Bubach, Applications of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks. Journal of Natural Gas Science and Engineering, 2016. 35: p. 1310-1319.
75. Kiely, E., R. Zwane, R. Fox, A.M. Reilly, and S. Guerin, Density functional theory predictions of the mechanical properties of crystalline materials. CrystEngComm, 2021. 23(34): p. 5697-5710.
76. Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 1992. 7(6): p. 1564-1583.
77. Song, J., C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, and Z.J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020. 49(7): p. 2196-2214.
78. Wang, S., A. Lu, and C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, 2021. 8: p. 1-23.
79. Li, J., Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Letters, 2022. 14(1): p. 112.
80. Wang, X., S. Xi, P. Huang, Y. Du, H. Zhong, Q. Wang, A. Borgna, Y.-W. Zhang, Z. Wang, and H. Wang, Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature, 2022: p. 1-7.
81. Li, Z., B. Li, M. Yu, C. Yu, and P. Shen, Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. International Journal of Hydrogen Energy, 2022.
82. Man, I.C., H.Y. Su, F. Calle‐Vallejo, H.A. Hansen, J.I. Martínez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, and J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 2011. 3(7): p. 1159-1165.
83. Seh, Z.W., J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, and T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998.
84. Kim, J.S., B. Kim, H. Kim, and K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Advanced Energy Materials, 2018. 8(11): p. 1702774.
85. Bockris, J.O.M. and T. Otagawa, The electrocatalysis of oxygen evolution on perovskites. Journal of The Electrochemical Society, 1984. 131(2): p. 290.
86. Goh, K.-H., T.-T. Lim, and Z. Dong, Application of layered double hydroxides for removal of oxyanions: a review. Water research, 2008. 42(6-7): p. 1343-1368.
87. Trotochaud, L., S.L. Young, J.K. Ranney, and S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014. 136(18): p. 6744-6753.
88. Bates, M.K., Q. Jia, H. Doan, W. Liang, and S. Mukerjee, Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catalysis, 2016. 6(1): p. 155-161.
89. Yang, Y., L. Dang, M.J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R.J. Hamers, and S. Jin, Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2018. 8(15): p. 1703189.
90. Cao, Y., W. Li, H. Guo, M. Yue, and Y. Wang, Surface synergistic effect of sub-2 nm NiFeCr hydroxide nanodots yielding high oxygen evolution mass activities. Chemical Engineering Journal, 2023. 461: p. 141917.
91. Wang, Z., W. Liu, Y. Hu, M. Guan, L. Xu, H. Li, J. Bao, and H. Li, Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Applied Catalysis B: Environmental, 2020. 272: p. 118959.
92. Chen, Z.J., T. Zhang, X.Y. Gao, Y.J. Huang, X.H. Qin, Y.F. Wang, K. Zhao, X. Peng, C. Zhang, and L. Liu, Engineering microdomains of oxides in high‐entropy alloy electrodes toward efficient oxygen evolution. Advanced Materials, 2021. 33(33): p. 2101845.
93. Watts, J.F. and J. Wolstenholme, An introduction to surface analysis by XPS and AES. 2019: John Wiley & Sons.
94. Han, L., S. Dong, and E. Wang, Transition‐metal (Co, Ni, and Fe)‐based electrocatalysts for the water oxidation reaction. Advanced materials, 2016. 28(42): p. 9266-9291.
95. Ledwig, P., M. Kac, A. Kopia, J. Falkus, and B. Dubiel, Microstructure and properties of electrodeposited nanocrystalline Ni-Co-Fe coatings. Materials, 2021. 14(14): p. 3886.
96. Biswal, A., P.K. Panda, A.N. Acharya, B.C. Tripathy, F. Alenazey, Z.-T. Jiang, and M.M. Sundaram, Tuning the morphology and redox behaviour by varying the concentration of Fe in a CoNiFe ternary oxide heterostructure for hybrid devices. New Journal of Chemistry, 2020. 44(23): p. 9921-9932.
97. Yang, Y., Preparation of Fe-Co-Ni ternary alloys with electrodeposition. Int. J. Electrochem. Sci, 2015. 10(6): p. 5164-5175.
98. Zhang, H., L. Liu, J. Bai, and X. Liu, Corrosion behavior and microstructure of electrodeposited nano-layered Ni–Cr coatings. Thin Solid Films, 2015. 595: p. 36-40.
99. Aghdam, A.S., S. Allahkaram, and S. Mahdavi, Corrosion and tribological behavior of Ni–Cr alloy coatings electrodeposited on low carbon steel in Cr (III)–Ni (II) bath. Surface and Coatings Technology, 2015. 281: p. 144-149.
100.Liu, Q., H. Zhang, J. Xu, L. Wei, Q. Liu, and X. Kong, Facile preparation of amorphous Fe–Co–Ni hydroxide arrays: A highly efficient integrated electrode for water oxidation. Inorganic Chemistry, 2018. 57(24): p. 15610-15617.
101.Zhang, T., Y.-L. Meng, Y.-H. Zhao, J.-C. Ni, Y. Pan, Y. Dai, Z. Tan, X.-F. Wang, and X.-Z. Song, Boosting the oxygen evolution electrocatalysis of high-entropy hydroxides by high-valence nickel species regulation. Chemical Communications, 2022. 58(55): p. 7682-7685.
102.Jin, K., Y. Gao, and H. Bei, Intrinsic properties and strengthening mechanism of monocrystalline Ni-containing ternary concentrated solid solutions. Materials Science and Engineering: A, 2017. 695: p. 74-79.
103.Xia, Y., H. Bei, Y. Gao, D. Catoor, and E.P. George, Synthesis, characterization, and nanoindentation response of single crystal Fe–Cr–Ni alloys with FCC and BCC structures. Materials Science and Engineering: A, 2014. 611: p. 177-187.
104.WebElements. Atomic radius (empirical) and Young′s modulus. [cited 2023 June]; Available from: https://www.webelements.com/.
105.Wu, Z., H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 2014. 81: p. 428-441.
106.程憲威, 以微電鍍法製備鎳鉬合金微柱並探討其在1.0 M KOH溶液中電解產氫之性能, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 206.
107.賴威全, 硫脲及其衍生物添加對微陽極導引電鍍法製備銅微柱之結構及特性影響研究, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 128.
108.Audichon, T., T.W. Napporn, C. Canaff, C.u. Morais, C.m. Comminges, and K.B. Kokoh, IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. The Journal of Physical Chemistry C, 2016. 120(5): p. 2562-2573.
109.Tung, C.-W., Y.-Y. Hsu, Y.-P. Shen, Y. Zheng, T.-S. Chan, H.-S. Sheu, Y.-C. Cheng, and H.M. Chen, Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nature communications, 2015. 6(1): p. 8106.
110. Yang, Y., X. Cui, D. Gao, H. He, Y. Ou, M. Zhou, Q. Lai, X. Wei, P. Xiao, and Y. Zhang, Trimetallic CoFeCr hydroxide electrocatalysts synthesized at a low temperature for accelerating water oxidation via tuning the electronic structure of active sites. Sustainable Energy & Fuels, 2020. 4(7): p. 3647-3653.
111. Li, M., Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Facile synthesis of electrospun MFe 2 O 4 (M= Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 2015. 7(19): p. 8920-8930.
112. WebElements. Abundance in Earth′s crust (by weight). [cited 2023 June]; Available from: https://www.webelements.com/.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明