參考文獻 |
1. Chatt, J.; Mann, F. G., 366. The Constitution of Complex Metallic Salts. Part VIII. The Bridged Thio-Derivatives of Palladous Halides with Tertiary Phosphines. J. Am. Chem. Soc. (Resumed) 1938, (0), 1949-1954.
2. Tolman, C. A., Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev. 1977, 77 (3), 313-348.
3. Tonner, R.; Frenking, G., Tolman’s Electronic Parameters for Divalent Carbon (0) Compounds. Organometallics 2009, 28 (13), 3901-3905.
4. Serron, S.; Huang, J.; Nolan, S., Organometallics 1998, 17, 534-539.
5. Chen, L.; Ren, P.; Carrow, B. P., Tri(1-adamantyl)phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds. J. Am.
Chem. Soc. 2016, 138 (20), 6392-6395.
6. Tolman, C. A., Phosphorus Ligand Exchange Equilibriums on Zerovalent Nickel:
Dominant Role for Steric Effects. J. Am. Chem. Soc. 1970, 92 (10), 2956-2965.
7. Dalal, M., A Textbook of Physical Chemistry–Volume 1. Dalal Institute: 2018.
8. Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L., SambVca: A Web Application for the Calculation of the Buried Volume of N-
Heterocyclic Carbene Ligands. Eur. J. Inorg. Chem. 2009, 2009 (13), 1759-1766.
9. Martin, R.; Buchwald, S. L., Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41 (11), 1461-1473.
10. Surry, D. S.; Buchwald, S. L., Biaryl Phosphane Ligands in Palladium-Catalyzed
Amination. Angew. Chem. Int. Ed. 2008, 47 (34), 6338-6361.
11. Zuccarello, G.; Zanini, M.; Echavarren, A. M., Buchwald-Type Ligands on Gold(I) Catalysis. Isr. J. Chem. 2020, 60 (3-4), 360-372.
12. Gessner, V. H., Modern Ylide Chemistry: Applications in Ligand Design, Organic and Catalytic Transformations. Springer: 2018; Vol. 177.
13. Kolodiazhnyi, O. I., Phosphorus ylides: chemistry and applications in organic synthesis. John Wiley & Sons: 2008.
14. Jörges, M.; Krischer, F.; Gessner, V. H., Transition Metal–Free Ketene Formation from Carbon Monoxide through Isolable Ketenyl Anions. Science 2022, 378 (6626), 1331-1336.
15. Lapointe, S.; Sarbajna, A.; Gessner, V. H., Ylide-Substituted Phosphines: A Platform of Strong Donor Ligands for Gold Catalysis and Palladium-Catalyzed Coupling Reactions. Acc. Chem. Res. 2022, 55 (5), 770-782.
16. Darmandeh, H.; Löffler, J.; Tzouras, N. V.; Dereli, B.; Scherpf, T.; Feichtner, K.-S.; Vanden Broeck, S.; Van Hecke, K.; Saab, M.; Cazin, C. S. J.; Cavallo, L.; Nolan, S. P.; Gessner, V. H., Au⋅⋅⋅H−C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew. Chem. Int. Ed. 2021, 60 (38), 21014-21024.
17. Dumas, J. B. Ann. Chim. Phys. 1835, 58, 28.
18. Arbuzov, B. A., 150th Anniversary of the Birth of A. M. Butlerov. Bulletin of the
Academy of Sciences of the USSR, Division of Chemical Science 1978, 27 (9), 1791-1794.
19. Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F., An Overview of N-
Heterocyclic Carbenes. Nature 2014, 510 (7506), 485-496.
20. Wanzlick, H. W.; Schönherr, H. J., Direct Synthesis of a Mercury Salt-Carbene
Complex. Angew. Chem. Int. Ed. Eng. 1968, 7 (2), 141-142. 106
21. Arduengo, A. J., III; Harlow, R. L.; Kline, M., A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113 (1), 361-363.
22. Lee, M.-T.; Hu, C.-H., Density Functional Study of N-Heterocyclic and Diamino Carbene Complexes: Comparison with Phosphines. Organometallics 2004, 23 (5), 976-983.
23. Doddi, A.; Peters, M.; Tamm, M., N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem. Rev. 2019, 119 (12), 6994-7112.
24. Powers, K.; Hering-Junghans, C.; McDonald, R.; Ferguson, M. J.; Rivard, E., Improved Synthesis of N-Heterocyclic Olefins and Evaluation of Their Donor Strengths. Polyhedron 2016, 108, 8-14.
25. Al-Rafia, S. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald, R.; Rivard, E., Intercepting Low Oxidation State Main Group Hydrides with a Nucleophilic N- Heterocyclic Olefin. Chem. Commun. 2011, 47 (24), 6987-6989.
26. Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bläser, D.; Boese, R., 1,3,4,5-Tetramethyl-2- Methyleneimidazoline—An Ylidic Olefin. J. Chem. Soc., Chem. Commun. 1993, (14), 1136-1137.
27. Naumann, S., Synthesis, Properties & Applications of N-Heterocyclic Olefins in Catalysis. Chem. Commun. 2019, 55 (78), 11658-11670.
28. Dumrath, A.; Wu, X.-F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M., Recyclable Catalysts for Palladium-Catalyzed C–O Coupling Reactions, Buchwald– Hartwig Aminations, and Sonogashira Reactions. Angew. Chem. Int. Ed. 2010, 49 (47), 8988-8992.
29. Paisley, N. R.; Lui, M. W.; McDonald, R.; Ferguson, M. J.; Rivard, E., Structurally Versatile Phosphine and Amine Donors Constructed from N-Heterocyclic Olefin Units. Dalton Trans. 2016, 45 (24), 9860-9870.
30. Wang, T.-H.; Chen, W.-C.; Ong, T.-G., Carbodicarbenes or Bent Allenes. J. Chin. Chem. Soc. 2017, 64 (2), 124-132.
31. Tonner, R.; Frenking, G., C(NHC)2: Divalent Carbon(0) Compounds with N- Heterocyclic Carbene Ligands—Theoretical Evidence for a Class of Molecules with Promising Chemical Properties. Angew. Chem. Int. Ed. 2007, 46 (45), 8695-8698.
32. Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G., Synthesis of an Extremely Bent Acyclic Allene (A “Carbodicarbene”): A Strong Donor Ligand. Angew. Chem. Int. Ed. 2008, 47 (17), 3206-3209.
33. Chen, W.-C.; Hsu, Y.-C.; Lee, C.-Y.; Yap, G. P. A.; Ong, T.-G., Synthetic Modification of Acyclic Bent Allenes (Carbodicarbenes) and Further Studies on Their Structural Implications and Reactivities. Organometallics 2013, 32 (8), 2435-2442.
34. Kuhn, N.; Bohnen, H.; Kratz, T.; Henkel, G., Derivate des Imidazols, VII. 2,3- Dihydro-1,3,4,5-tetramethyl-2-methylen-1H-imidazol als Kupplungsreagens. Die Kristallstruktur von Bis(1,3,4,5-tetramethyl-2-imidazolyl)methylium-iodid. Liebigs Ann. Chem. 1993, 1993 (10), 1149-1151.
35. Chen, W.-C.; Shen, J.-S.; Jurca, T.; Peng, C.-J.; Lin, Y.-H.; Wang, Y.-P.; Shih, W.-C.; Yap, G. P. A.; Ong, T.-G., Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angew. Chem. Int. Ed. 2015, 54 (50), 15207-15212.
36. Liu, S.-k.; Chen, W.-C.; Yap, G. P. A.; Ong, T.-G., Synthesis of Carbophosphinocarbene and Their Donating Ability: Expansion of the Carbone Class. Organometallics 2020, 39 (23), 4395-4401.
37. Noshi, M. N.; El-Awa, A.; Fuchs, P. L., Second-Generation Synthesis of Syn-and Anti-Cycloheptadienylsulfone Polyketide Stereodiads. J. Org. Chem. 2008, 73 (8), 3274-3277.
38. Chen, W.-C.; Shih, W.-C.; Jurca, T.; Zhao, L.; Andrada, D. M.; Peng, C.-J.; Chang, C.-C.; Liu, S.-k.; Wang, Y.-P.; Wen, Y.-S.; Yap, G. P. A.; Hsu, C.-P.; Frenking, G.; Ong, T.-G., Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules. J. Am. Chem. Soc. 2017, 139 (36), 12830-12836.
39. Steyl, G., Trans-Dichlorobis (triphenylphosphine) Palladium (II) Dichloroethane Solvate. Acta Crystallogr. Sect. Sect. E: Struct. Rep. Online 2006, 62 (6), m1324- m1325.
40. Grushin, V. V.; Bensimon, C.; Alper, H., Dichlorobis(tricyclohexylphosphine)- palladium(II): Synthesis and Crystal Structure. An Exceptionally Simple and Efficient Preparation of Bis(tricyclohexylphosphine)palladium(0). Inorg. Chem. 1994, 33 (21), 4804-4806.
41. Scherpf, T.; Schwarz, C.; Scharf, L. T.; Zur, J.-A.; Helbig, A.; Gessner, V. H., Ylide- Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angew. Chem. Int. Ed. 2018, 57 (39), 12859-12864.
42. Schmidbaur, H., Proof of Concept for Hydrogen Bonding to Gold, Au⋅⋅⋅H−X. Angew. Chem. Int. Ed. 2019, 58 (18), 5806-5809.
43. Muir, J. A.; Muir, M. M.; Pulgar, L. B.; Jones, P. G.; Sheldrick, G. M., Structures of Two Gold (I) Complexes with Tricyclohexylphosphine: [(Cy3P)AuCl] and
[(Cy3P)2Au]+Cl−. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1985, 41 (8),
1174-1176.
44. Borissova, A. O.; Korlyukov, A. A.; Antipin, M. Y.; Lyssenko, K. A., Estimation of
Dissociation Energy in Donor−Acceptor Complex AuCl·PPh3 via Topological Analysis of the Experimental Electron Density Distribution Function. J. Phys. Chem. A 2008, 112 (46), 11519-11522.
45. Collado, A.; Nelson, D. J.; Nolan, S. P., Optimizing Catalyst and Reaction Conditions in Gold(I) Catalysis–Ligand Development. Chem. Rev. 2021, 121 (14), 8559-8612.
46.Huang, B.; Hu, M.; Toste, F. D., Homogeneous Gold Redox Chemistry: Organometallics, Catalysis, and Beyond. Trends in Chemistry 2020, 2 (8), 707-720.
47.Handelmann, J.; Babu, C. N.; Steinert, H.; Schwarz, C.; Scherpf, T.; Kroll, A.; Gessner, V. H., Towards the Rational Design of Ylide-Substituted Phosphines for Gold(I)- Catalysis: From Inactive to ppm-level Catalysis. Chem. Sci. 2021, 12 (12), 4329-4337.
48.Hashmi, A. S. K., Homogeneous Gold Catalysis Beyond Assumptions and Proposals—Characterized Intermediates. Angew. Chem. Int. Ed. 2010, 49 (31), 5232- 5241.
49. Wang, W.; Hammond, G. B.; Xu, B., Ligand Effects and Ligand Design in Homogeneous Gold(I) Catalysis. J. Am. Chem. Soc. 2012, 134 (12), 5697-5705.
50. Ma, Y.; Ali, H. S.; Hussein, A. A., A Mechanistic Study on the Gold(I)-Catalyzed Cyclization of Propargylic Amide: Revealing the Impact of Expanded-Ring N- Heterocyclic Carbenes. Catal. Sci. Technol. 2022, 12 (2), 674-685. |