參考文獻 |
(1) Modern. Coordination Chemistry–The Legacy of Joseph Chatt. Chem. Int. 2002, 24, 29–30.
(2) Yamanaka, M.; Mikami, K. Theoretical Study on the Tropos Nature of the BIPHEP−Pd(II)/DABN and DPEN Complexes: PIO Analysis of Phosphine−Pd(II) Interaction and Trans Influence. Organometallics 2005, 24, 4579–4587.
(3) Martin, R.; Buchwald, S. L. Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461–1473.
(4) Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Vogt, D.; Keim, W. Effect of the bite angle of diphosphine ligands on activity and selectivity in the nickel-catalysed hydrocyanation of styrene. J. Chem. Soc., Chem. Commun. 1995, 21, 2177–2178.
(5) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39–92.
(6) Gilbert, B. C.; Griller, D.; Nazran, A. S. Structures of diarylcarbenes and their effect on the energy separation between singlet and triplet states. J. Org. Chem. 1985, 50, 4738–4742.
(7) Fischer, E. O.; Maasböl, A. J. A. C. On the Existence of a Tungsten Carbonyl Carbene Complex. Angew. Chem., Int. Ed. Engl. 1964, 3, 580–581.
(8) Dötz, K. H.; Stendel, J., Jr. Fischer Carbene Complexes in Organic Synthesis: Metal-Assisted and Metal-Templated Reactions. Chem. Rev. 2009, 109, 3227–3274.
(9) Schrock, R. R. Alkylcarbene complex of tantalum by intramolecular .alpha.-hydrogen abstraction. J. Am. Chem. Soc. 1974, 96, 6796–6797.
(10) Munz, D. Pushing Electrons—Which Carbene Ligand for Which Application? Organometallics 2018, 37, 275–289.
(11) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496.
(12) Çakır, S.; Kavukcu, S. B.; Şahin, O.; Günnaz, S.; Türkmen, H. N-Alkylation and N-Methylation of Amines with Alcohols Catalyzed by Nitrile-Substituted NHC–Ir(III) and NHC–Ru(II) Complexes. ACS Omega 2023, 8, 5332–5348.
(13) Wanzlick, H. W.; Schönherr, H. J. A. C. Direct Synthesis of a Mercury Salt‐Carbene Complex. Angew. Chem., Int. Ed. Engl. 1968, 7, 141–142.
(14) Weskamp, T.; Böhm, V. P. W.; Herrmann, W. A. N-Heterocyclic carbenes: state of the art in transition-metal-complex synthesis. J. Organomet. Chem. 2000, 600, 12–22.
(15) Arduengo, A. J., III; Harlow, R. L.; Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 1991, 113, 361–363.
(16) Saalfrank, R. W.; Maid, H. Roots: From carbenes to allenes and coordination polymers Ever present never twice the same. Chem. Commun. 2005, 5953–5967.
(17) Alcarazo, M. On the metallic nature of carbon in allenes and heterocumulenes. Dalton Trans. 2011, 40, 1839–1845.
(18) Vicente, J.; Singhal, A. R.; Jones, P. G. New Ylide−, Alkynyl−, and Mixed Alkynyl/Ylide−Gold(I) Complexes. Organometallics 2002, 21, 5887–5900.
(19) Petz, W.; Kutschera, C.; Neumüller, B. Reaction of the Carbodiphosphorane Ph3PCPPh3 with Platinum(II) and -(0) Compounds: Platinum Induced Activation of C−H Bonds. Organometallics 2005, 24, 5038–5043.
(20) Tonner, R.; Frenking, G. C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands-theoretical evidence for a class of molecules with promising chemical properties. Angew. Chem., Int. Ed. 2007, 46, 8695–8698.
(21) Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Synthesis of an Extremely Bent Acyclic Allene (a "Carbodicarbene"): A Strong Donor Ligand. Angew. Chem., Int. Ed. 2008, 47, 3206–3209.
(22) Chen, W.-C.; Hsu, Y.-C.; Lee, C.-Y.; Yap, G. P. A.; Ong, T.-G. Synthetic Modification of Acyclic Bent Allenes (Carbodicarbenes) and Further Studies on Their Structural Implications and Reactivities. Organometallics 2013, 32, 2435–2442.
(23) Chen, W. C.; Shen, J. S.; Jurca, T.; Peng, C. J.; Lin, Y. H.; Wang, Y. P.; Shih, W. C.; Yap, G. P.; Ong, T. G. Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angew. Chem., Int. Ed. 2015, 54, 15207–15212.
(24) Chen, W.-C.; Shih, W.-C.; Jurca, T.; Zhao, L.; Andrada, D. M.; Peng, C.-J.; Chang, C.-C.; Liu, S.-k.; Wang, Y.-P.; Wen, Y.-S. ; Ong, T. G. Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules. J. Am. Chem. Soc. 2017, 139, 12830–12836.
(25) Chan, Y. C.; Bai, Y.; Chen, W. C.; Chen, H. Y.; Li, C. Y.; Wu, Y. Y.; Tseng, M. C.; Yap, G. P. A.; Zhao, L.; Chen, H. Y. ; Ong, T. G. Synergistic Catalysis by Brønsted Acid/Carbodicarbene Mimicking Frustrated Lewis Pair-Like Reactivity. Angew. Chem., Int. Ed. 2021, 60, 19949–19956.
(26) Alcarazo, M.; Lehmann C. W.; Anoop A.; Thiel, W.; Fürstner, A. Coordination chemistry at carbon. Nat Chem 2009, 1, 295–301.
(27) Liu, S.-k.; Chen, W.-C.; Yap, G. P. A.; Ong, T.-G. Synthesis of Carbophosphinocarbene and Their Donating Ability: Expansion of the Carbone Class. Organometallics 2020, 39, 4395–4401.
(28) Aweke, B. S.; Yu, C.-H.; Zhi, M.; Chen, W.-C.; Yap, G. P. A.; Zhao, L.; Ong, T.-G. A Bis-(carbone) Pincer Ligand and Its Coordinative Behavior toward Multi-Metallic Configurations. Angew. Chem., Int. Ed. 2022, 61, e202201884.
(29) Cheng, L.-J.; Mankad, N. P. C–C and C–X coupling reactions of unactivated alkyl electrophiles using copper catalysis. Chem. Soc. Rev. 2020, 49, 8036–8064.
(30) Gao, Y.; Yazdani, S.; Kendrick IV, A.; Junor, G. P.; Kang, T.; Grotjahn, D. B.; Bertrand, G.; Jazzar, R.; Engle, K. M. Cyclic (Alkyl)(amino)carbene Ligands Enable Cu-Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes. Angew. Chem., Int. Ed. 2021, 60, 19871–19878.
(31) Klein, M.; Demirel, N.; Schinabeck, A.; Yersin, H.; Sundermeyer, J. Cu(I) complexes of multidentate N,C,N- and P,C,P-carbodiphosphorane ligands and their photoluminescence. Molecules 2020, 25, 3990.
(32) Morris, L. J.; Rajeshkumar, T.; Okumura, A.; Maron, L.; Okuda, J. Solvent-Dependent Oxidative Addition and Reductive Elimination of H2 Across a Gallium–Zinc Bond. Angew. Chem., Int. Ed. 2022, 61, e202208855.
(33) Yoshida, H. Borylation of Alkynes under Base/Coinage Metal Catalysis: Some Recent Developments. ACS Catal. 2016, 6, 1799−1811. |