博碩士論文 110223006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.138.143.72
姓名 廖靖瑜(Ching-Yu Liao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 雙芽手性卡本金屬錯合物 之合成與結構鑑定及其在催化反應之應用
(Synthesis and Characterization of BINAP-Carbone Bimetallic Complexes and Their Application in Catalysis)
相關論文
★ 雙同碳膦烷碳烯的鈀金屬鉗型錯合物之合成及其在薗頭偶合反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在有機金屬催化反應中,配位基時常扮演著重要的角色,其電子效應和立體效應會影響金屬錯合物的反應性。卡本 (carbone) 是一種近年來逐漸受到重視的配位基,由於其中心碳原子上具有兩對孤對電子,因此具有特殊的親核配位能力。
在本論文中,我們利用外消旋的2,2′-雙二苯膦基-1,1′-聯萘 (BINAP) 為骨架,結合新型的卡本—同碳磷烷碳烯 (carbophosphinocarbene, CPC),合成了雙芽配位基BINAP-CPC。利用BINAP-CPC與氯化亞銅 (copper(I) chloride) 反應,可以形成BINAP-CPC的單金屬銅錯合物,若利用第二對孤對電子與另一個Cu(I)或Au(I)等錯合物進行配位反應,可以構建出一系列雙金屬錯合物。我們透過X-ray單晶繞射解析和NMR的分析確認了這些由BINAP-CPC所形成的金屬錯合物之分子結構。
為了測試這些雙金屬錯合物的應用性,我們將其作為催化劑應用於雙(頻哪醇)二硼 (B2pin2) 對炔烴化合物進行氫硼化反應,不論是內部炔或末端炔均能得到中等至良好的反應活性。
摘要(英) In organometallic chemistry and catalysis, the ligands play an important role. Their steric and electronic effects will greatly affect the reactivity of the coordinated metal complexes. Our laboratory is mainly devoted to developing a specific derivative of bent-allene, called "carbone". Carbone has extraordinary nucleophilicity because the central carbon atom has two free electron pairs. Development of various carbones based on the design of substituents and investigating their applications in metal coordination as well as catalysis, are highly desirable.
In this work, we utilized one type of carbone, carbophosphinocarbenes (CPCs), on the 2,2’-bis(diphenylphosphino)-1,1’-binaphthyl (BINAP) to afford the racemic BINAP-CPC ligand. The synthesized BINAP-CPC was reacted with copper(I) chloride to give the mono-copper complex. The second lone pair on (BINAP-CPC)Cu(I) can further coordinate to another Cu(I) or Au(I), allowing an array of bimetallic complexes. The molecular structures of bimetallic complexes were confirmed by single-crystal X-ray diffraction and NMR analysis.
Finally, applying such bimetallic catalysts in hydroboration of internal and terminal alkynes with bis(pinacolato)diboron (B2pin2) resulted in moderate to good reactivity.
關鍵字(中) ★ ,2′-雙二苯膦基-1,1′-聯萘
★ 硼氫化反應
關鍵字(英) ★ BINAP
★ hydroboration
論文目次 中文摘要
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
式目錄 ix
表目錄 xi
附圖目錄 xii
附表目錄 xix
符號說明 xx
第一章 緒論 1
1-1 前言 1
1-2 膦化物 3
1-3 碳烯 5
1-4 含氮雜環碳烯 8
1-5 彎曲型重烯衍生物-卡本 11
1-6 同碳磷烷碳烯 19
1-7 硼氫化反應 21
1-8 研究動機 23
第二章 結果與討論 24
2-1 手性同碳膦烷碳烯及其前驅物之合成 24
2-1-1 手性同碳膦烷碳烯之合成 25
2-2 手性同碳膦烷碳烯的金屬錯合物之合成及探討 29
2-2-1 手性同碳膦烷碳烯的銅金屬錯合物之合成及探討 29
2-2-2 手性同碳膦烷碳烯的銅金屬錯合物陰離子置換之合成及探討 33
2-2-3 手性同碳膦烷碳烯銅金雙金屬與三金屬錯合物之合成及探討 40
2-2-4 手性同碳膦烷碳烯之鍺銅金屬錯合物之合成及探討 44
2-2-5 手性同碳膦烷碳烯前驅物的銅錯合物之合成與探討 48
2-3硼氫化交叉偶合反應 51
2-3-1 一般硼氫化交叉偶合的反應步驟 53
2-3-3 將雙銅錯合物2b應用於硼氫化交叉偶合反應 59
第三章 結論 62
第四章 實驗方法 64
4-1 實驗注意事項 64
4-1-1 一般實驗 64
4-1-2 溶劑輿試劑 64
4-1-3 文獻查詢 65
4-2 實驗儀器 66
4-2-1核磁共振光譜儀 (Nuclear magnetic resonance spectrometer) 66
4-2-2高解析度磁場式質譜儀 (High resolution magnetic sector mass spectrometer) 67
4-2-3 X-ray單晶繞射解析 (X-ray single-crystal diffraction analysis) 67
4-3 實驗步驟 68
參考文獻 109
附錄一 X-ray晶體與數據 115
附錄二 核磁共振光譜圖 136
參考文獻 (1) Modern. Coordination Chemistry–The Legacy of Joseph Chatt. Chem. Int. 2002, 24, 29–30.
(2) Yamanaka, M.; Mikami, K. Theoretical Study on the Tropos Nature of the BIPHEP−Pd(II)/DABN and DPEN Complexes:  PIO Analysis of Phosphine−Pd(II) Interaction and Trans Influence. Organometallics 2005, 24, 4579–4587.
(3) Martin, R.; Buchwald, S. L. Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461–1473.
(4) Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Vogt, D.; Keim, W. Effect of the bite angle of diphosphine ligands on activity and selectivity in the nickel-catalysed hydrocyanation of styrene. J. Chem. Soc., Chem. Commun. 1995, 21, 2177–2178.
(5) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39–92.
(6) Gilbert, B. C.; Griller, D.; Nazran, A. S. Structures of diarylcarbenes and their effect on the energy separation between singlet and triplet states. J. Org. Chem. 1985, 50, 4738–4742.
(7) Fischer, E. O.; Maasböl, A. J. A. C. On the Existence of a Tungsten Carbonyl Carbene Complex. Angew. Chem., Int. Ed. Engl. 1964, 3, 580–581.
(8) Dötz, K. H.; Stendel, J., Jr. Fischer Carbene Complexes in Organic Synthesis: Metal-Assisted and Metal-Templated Reactions. Chem. Rev. 2009, 109, 3227–3274.
(9) Schrock, R. R. Alkylcarbene complex of tantalum by intramolecular .alpha.-hydrogen abstraction. J. Am. Chem. Soc. 1974, 96, 6796–6797.
(10) Munz, D. Pushing Electrons—Which Carbene Ligand for Which Application? Organometallics 2018, 37, 275–289.
(11) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496.
(12) Çakır, S.; Kavukcu, S. B.; Şahin, O.; Günnaz, S.; Türkmen, H. N-Alkylation and N-Methylation of Amines with Alcohols Catalyzed by Nitrile-Substituted NHC–Ir(III) and NHC–Ru(II) Complexes. ACS Omega 2023, 8, 5332–5348.
(13) Wanzlick, H. W.; Schönherr, H. J. A. C. Direct Synthesis of a Mercury Salt‐Carbene Complex. Angew. Chem., Int. Ed. Engl. 1968, 7, 141–142.
(14) Weskamp, T.; Böhm, V. P. W.; Herrmann, W. A. N-Heterocyclic carbenes: state of the art in transition-metal-complex synthesis. J. Organomet. Chem. 2000, 600, 12–22.
(15) Arduengo, A. J., III; Harlow, R. L.; Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 1991, 113, 361–363.
(16) Saalfrank, R. W.; Maid, H. Roots: From carbenes to allenes and coordination polymers Ever present never twice the same. Chem. Commun. 2005, 5953–5967.
(17) Alcarazo, M. On the metallic nature of carbon in allenes and heterocumulenes. Dalton Trans. 2011, 40, 1839–1845.
(18) Vicente, J.; Singhal, A. R.; Jones, P. G. New Ylide−, Alkynyl−, and Mixed Alkynyl/Ylide−Gold(I) Complexes. Organometallics 2002, 21, 5887–5900.
(19) Petz, W.; Kutschera, C.; Neumüller, B. Reaction of the Carbodiphosphorane Ph3PCPPh3 with Platinum(II) and -(0) Compounds:  Platinum Induced Activation of C−H Bonds. Organometallics 2005, 24, 5038–5043.
(20) Tonner, R.; Frenking, G. C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands-theoretical evidence for a class of molecules with promising chemical properties. Angew. Chem., Int. Ed. 2007, 46, 8695–8698.
(21) Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Synthesis of an Extremely Bent Acyclic Allene (a "Carbodicarbene"): A Strong Donor Ligand. Angew. Chem., Int. Ed. 2008, 47, 3206–3209.
(22) Chen, W.-C.; Hsu, Y.-C.; Lee, C.-Y.; Yap, G. P. A.; Ong, T.-G. Synthetic Modification of Acyclic Bent Allenes (Carbodicarbenes) and Further Studies on Their Structural Implications and Reactivities. Organometallics 2013, 32, 2435–2442.
(23) Chen, W. C.; Shen, J. S.; Jurca, T.; Peng, C. J.; Lin, Y. H.; Wang, Y. P.; Shih, W. C.; Yap, G. P.; Ong, T. G. Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angew. Chem., Int. Ed. 2015, 54, 15207–15212.
(24) Chen, W.-C.; Shih, W.-C.; Jurca, T.; Zhao, L.; Andrada, D. M.; Peng, C.-J.; Chang, C.-C.; Liu, S.-k.; Wang, Y.-P.; Wen, Y.-S. ; Ong, T. G. Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules. J. Am. Chem. Soc. 2017, 139, 12830–12836.
(25) Chan, Y. C.; Bai, Y.; Chen, W. C.; Chen, H. Y.; Li, C. Y.; Wu, Y. Y.; Tseng, M. C.; Yap, G. P. A.; Zhao, L.; Chen, H. Y. ; Ong, T. G. Synergistic Catalysis by Brønsted Acid/Carbodicarbene Mimicking Frustrated Lewis Pair-Like Reactivity. Angew. Chem., Int. Ed. 2021, 60, 19949–19956.
(26) Alcarazo, M.; Lehmann C. W.; Anoop A.; Thiel, W.; Fürstner, A. Coordination chemistry at carbon. Nat Chem 2009, 1, 295–301.
(27) Liu, S.-k.; Chen, W.-C.; Yap, G. P. A.; Ong, T.-G. Synthesis of Carbophosphinocarbene and Their Donating Ability: Expansion of the Carbone Class. Organometallics 2020, 39, 4395–4401.
(28) Aweke, B. S.; Yu, C.-H.; Zhi, M.; Chen, W.-C.; Yap, G. P. A.; Zhao, L.; Ong, T.-G. A Bis-(carbone) Pincer Ligand and Its Coordinative Behavior toward Multi-Metallic Configurations. Angew. Chem., Int. Ed. 2022, 61, e202201884.
(29) Cheng, L.-J.; Mankad, N. P. C–C and C–X coupling reactions of unactivated alkyl electrophiles using copper catalysis. Chem. Soc. Rev. 2020, 49, 8036–8064.
(30) Gao, Y.; Yazdani, S.; Kendrick IV, A.; Junor, G. P.; Kang, T.; Grotjahn, D. B.; Bertrand, G.; Jazzar, R.; Engle, K. M. Cyclic (Alkyl)(amino)carbene Ligands Enable Cu-Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes. Angew. Chem., Int. Ed. 2021, 60, 19871–19878.
(31) Klein, M.; Demirel, N.; Schinabeck, A.; Yersin, H.; Sundermeyer, J. Cu(I) complexes of multidentate N,C,N- and P,C,P-carbodiphosphorane ligands and their photoluminescence. Molecules 2020, 25, 3990.
(32) Morris, L. J.; Rajeshkumar, T.; Okumura, A.; Maron, L.; Okuda, J. Solvent-Dependent Oxidative Addition and Reductive Elimination of H2 Across a Gallium–Zinc Bond. Angew. Chem., Int. Ed. 2022, 61, e202208855.
(33) Yoshida, H. Borylation of Alkynes under Base/Coinage Metal Catalysis: Some Recent Developments. ACS Catal. 2016, 6, 1799−1811.
指導教授 王朝諺 陳銘洲(Tiow-Gan Ong Ming-Chou Chen) 審核日期 2023-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明