博碩士論文 110324036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.144.105.101
姓名 朱郁民(Yu-Min Chu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用密度泛函理論探討鐵合金中間隙元素的影響
(Studying the Effect of Interstitial Elements in Fe-based Alloys Using Density Functional Theory)
相關論文
★ 使用機器學習決定不鏽鋼耐腐蝕性的關鍵因素★ 多孔材料的BET表面積測定:限制和改進
★ 二維凡德瓦材料和異質結構中熱傳輸的計算研究★ 利用密度泛函理論開發高效率矽鍺錫熱電合金
★ 使用分子動力學模擬探討甲烷/二氧化碳/氮氣混合水合物的成核與生長★ 研究多孔材料的孔徑分布:BJH方法的探討與機 器學習方法的應用潛力
★ 利用密度泛函理論計算探討元素摻雜對g-C3N4光催化效率的提升
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 不鏽鋼材料因其具有良好的抗腐蝕性,因而在工業界被廣泛使用。在製造不鏽鋼的過程中,通常會添加少量的間隙原子 (碳與氮) 以增強材料抗腐蝕性能,目前對於這些微量元素如何影響不鏽鋼抗腐蝕性的了解仍相當有限,且較少研究探討原子尺度下,間隙碳和間隙氮的協同效應對不鏽鋼抗腐蝕性能的影響,然而該特性對於設計良好的抗腐蝕不鏽鋼材料可能扮演重要角色。因此,本研究利用密度泛函理論計算方法探討間隙碳及間隙氮原子對不鏽鋼耐腐蝕性的影響。在本研究中使用多種分析方法,包括:鍵序鍵能 (Bond-order bond energy, BOBE) 模型、能態密度(Density of states, DOS)分析、晶體軌域漢密爾頓(Crystal orbital Hamilton populations, COHP)分析、電荷密度差異、電荷分析 (Bader charge analysis) 等,以探索間隙碳和間隙氮在不鏽鋼中的效應。利用鍵序鍵能模型得到金屬-金屬鍵、碳-金屬鍵和氮-金屬鍵的鍵能,並發現間隙碳和間
隙氮對合金系統的總能量皆表現出局部影響特性。另一方面,由電荷密度差異及 Bader charge analysis 發現碳原子的周圍有明顯的電子累積現象,電子由周邊的金屬原子轉移至碳原子上,在間隙氮原子上也觀察到同樣的現象。此外,利用能態密度分析也證實了間隙碳原子與氮原子對於系統電子結構的局部影響特性。進一步使用晶體軌域漢密爾頓分析發現氮與周圍金屬原子成鍵並且具有共價鍵特徵,與間隙碳和間隙氧與金屬間的鍵結特性相似。儘管分析結果皆顯示碳與氮並不直接影響對方的電子結構,但從電荷密度差異可以觀察到,當碳、氮互為對方的第二鄰近間隙原子時,電子累積表現出方向性,碳和氮的周圍電子更傾向累積在共用金屬原子和碳之間,以及共用金屬原子和氮之間,顯示間隙碳和間隙氮以間接方式影響對方電子結構的可能性。
摘要(英) Stainless steels are widely used in industry because of their excellent corrosion resistance. In the process of manufacturing stainless steels, a small amount of interstitial carbon (C) or nitrogen (N) is often added to enhance the corrosion resistance. Currently, our understanding of how these tiny elements affect the corrosion resistance is not comprehensive. Limited knowledge is achieved on the synergistic effects of interstitial C and N at the atomic scale on the corrosion resistance of stainless steels. However, this is crucial for designing stainless steels with high corrosion resistance for specific applications. Therefore, in this study, the density functional theory (DFT) calculation is applied to explore the influence of interstitial C and N atoms on the
corrosion resistance of stainless steels. Several analysis methods were utilized, including the bond-order bond energy (BOBE) model, density of states (DOS) analysis, crystal orbital Hamilton population (COHP) analysis, charge density difference and Bader charge analysis, to explore the synergistic effects of interstitial C and N. By decomposing the bond energy of metal-metal bonds, carbon-metal bonds, and nitrogen-metal bonds using the BOBE model, it is observed that both C and N exhibit local influences on the total energy of the alloy system. From the charge
density difference and Bader charge analysis, significant electron accumulation around C and N, and electrons transfer from the metal ions to C and N. Additionally, DOS analysis reveals an overlap of C and its first nearest neighboring metal atoms, which is also found in N and its first nearest neighboring metal atoms. However, no significant interaction was found between C and N, indicating local effects of interstitial atoms. Furthermore, the COHP analysis suggests covalent bonding features between N and first nearest neighboring metal atoms. Although the analysis indicates that C and N do not directly affect their electronic structure. In addition, charge density difference shows that when C and N are within the distance of the second nearest
interstitial position, a directionality of electron accumulation occurs. Electrons around C and N tend to accumulate between C and the shared metal atom, as well as between N and the shared metal atom.
關鍵字(中) ★ 密度泛函理論
★ 抗腐蝕
★ 奧斯田鐵
★ 間隙碳
★ 間隙氮
關鍵字(英) ★ DFT
★ corrosion resistance
★ austenite
★ interstitial carbon
★ interstitial nitrogen
論文目次 摘要 i
Abstract ii
Acknowledgement iv
Contents vi
List of Figures viii
List of Tables xii
1 Introduction 1
1.1 Introduction 1
1.2 Localized corrosion 2
1.3 Effect of interstitial carbon and nitrogen in stainless steels 5
1.4 Precipitations of carbon and nitrogen in stainless steels 6
1.5 Expanded austenite 9
1.6 Characteristic of individual interstitial carbon or nitrogen comparison 13
1.7 Characteristic of coexist interstitial carbon and nitrogen 14
1.8 Motivation 14
2 Methods and Simulation Settings 16
2.1 Density functional theory 16
2.2 Density of states 21
2.3 Crystal orbital Hamilton populations 22
2.4 Bond-order bond energy model 22
2.5 Simulation details 24
2.5.1 Studied materials 24
2.5.2 Calculation settings 26
3 Results and Discussions 27
3.1 Interstitial elements effect on the structure stability 27
3.1.1 Total bond energy and supercell volume 27
3.1.2 Lattice parameters 29
3.2 Bond energies 32
3.3 Density of states 35
3.4 Crystal orbital Hamilton populations 43
3.5 Charge density difference 49
3.6 Bader charge analysis 55
4 Conclusion 57
5 Future Work 59
Bibliography 60
參考文獻 1. Ramakrishna, S., Mayer, J., Wintermantel, E. & Leong, K. W. Biomedical applications of polymercomposite materials: a review. Composites Science and Technology 61, 1189–1224 (2001).
2. Wise, D. L. et al. Biomaterials engineering and devices: human applications (Springer, 2000).
3. Ettefagh, A. H., Guo, S. & Raush, J. Corrosion performance of additively manufactured stainless
steel parts: a review. Additive Manufacturing 37, 101689 (2021).
4. Malik, A., Siddiqi, N., Ahmad, S. & Andijani, I. The effect of dominant alloy additions on the
corrosion behavior of some conventional and high alloy stainless steels in seawater. Corrosion
Science 37, 1521–1535 (1995).
5. Hamada, A., Karjalainen, L. & Somani, M. Electrochemical corrosion behaviour of a novel submicrongrained austenitic stainless steel in an acidic NaCl solution. Materials Science and Engineering:
A 431, 211–217 (2006).
6. Ding, J. et al. Corrosion and stress corrosion cracking behavior of 316L austenitic stainless steel
in high H2S–CO2–Cl –
environment. Journal of Materials Science 48, 3708–3715 (2013).
7. Arivazhagan, N., Singh, S., Prakash, S. & Reddy, G. Investigation on AISI 304 austenitic stainless
steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction
welding. Materials & Design 32, 3036–3050 (2011).
8. Tseng, K. & Chou, C. Effect of pulsed gas tungsten arc welding on angular distortion in austenitic
stainless steel weldments. Science and Technology of Welding and Joining 6, 149–153 (2001).
9. Kim, I.-S., Son, J.-S. & Yarlagadda, P. K. A study on the quality improvement of robotic GMA
welding process. Robotics and Computer-Integrated Manufacturing 19, 567–572 (2003).
10. Xie, Z. et al. Stabilization of retained austenite by the two-step intercritical heat treatment and its
effect on the toughness of a low alloyed steel. Materials & Design 59, 193–198 (2014).
11. Singh, R. et al. Mechanical behavior of 304 austenitic stainless steel processed by cryogenic
rolling. Materials Today: Proceedings 5, 16880–16886 (2018).
12. Iseda, A., Okada, H., Semba, H. & Igarashi, M. Long term creep properties and microstructure of
SUPER304H, TP347HFG and HR3C for A-USC boilers. Energy Materials 2, 199–206 (2007).
13. Masuyama, F. History of power plants and progress in heat resistant steels. ISIJ International 41,
612–625 (2001).
14. Holton, A., Walsh, E., Anayiotos, A., Pohost, G. & Venugopalan, R. Comparative MRI compatibility of 316L stainless steel alloy and nickel–titanium alloy stents. Journal of Cardiovascular
Magnetic Resonance 4, 423–430 (2002).
15. Ermakova, A., Mehmanparast, A. & Ganguly, S. A review of present status and challenges of using
additive manufacturing technology for offshore wind applications. Procedia Structural Integrity
17, 29–36 (2019).
16. Akpanyung, K. & Loto, R. Pitting corrosion evaluation: a review in Journal of Physics: Conference Series 1378 (2019), 022088.
17. Pisarek, M., Kędzierzawski, P., Płociński, T., Janik-Czachor, M. & Kurzydłowski, K. J. Characterization of the effects of hydrostatic extrusion on grain size, surface composition and the corrosion
resistance of austenitic stainless steels. Materials Characterization 59, 1292–1300 (2008).
18. Guo, H., Lu, B. & Luo, J. Study on passivation and erosion-enhanced corrosion resistance by
Mott-Schottky analysis. Electrochimica Acta 52, 1108–1116 (2006).
19. Oldfield, J. & Sutton, W. Crevice corrosion of stainless steels: I. A mathematical model. British
Corrosion Journal 13, 13–22 (1978).
20. Shibata, T. Passivity breakdown and stress corrosion cracking of stainless steel. Corrosion Science
49, 20–30 (2007).
21. Wang, R. et al. Using atomic force microscopy to measure thickness of passive film on stainless
steel immersed in aqueous solution. Scientific Reports 9, 13094 (2019).
22. Gateman, S. M. et al. Using macro and micro electrochemical methods to understand the corrosion
behavior of stainless steel thermal spray coatings. npj Materials Degradation 3, 25 (2019).
23. Schweitzer, P. A. Fundamentals of corrosion: mechanisms, causes, and preventative methodstech.
rep. (CRC press, 2003).
24. Frankel, G. & Sridhar, N. Understanding localized corrosion. Materials Today 11, 38–44 (2008).
25. Abood, T. H. The influence of various parameters on pitting corrosion of 316L and 202 stainless steel. Department of Chemical Engineering of the University of Technology. University of
Technology (2008).
26. Laycock, N. & Newman, R. Localised dissolution kinetics, salt films and pitting potentials. Corrosion Science 39, 1771–1790 (1997).
27. Esmailzadeh, S., Aliofkhazraei, M. & Sarlak, H. Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review. Protection of Metals and
Physical Chemistry of Surfaces 54, 976–989 (2018).
28. Hall, E. L. & Briant, C. L. Chromium depletion in the vicinity of carbides in sensitized austenitic
stainless steels. Metallurgical Transactions A 15, 793–811 (1984).
29. Cunat, P.-J. Alloying elements in stainless steel and other chromium-containing alloys. Euro Inox
2004, 1–24 (2004).
30. Ahlawat, S., Srinivasu, K., Biswas, A. & Choudhury, N. First-principle investigation of electronic
structures and interactions of foreign interstitial atoms (C, N, B, O) and intrinsic point defects
in body- and face-centered cubic iron lattice: A comparative analysis. Computational Materials
Science 170, 109167 (2019).
31. Ledbetter, H. & Austin, M. Dilation of an fcc Fe–Cr–Ni alloy by interstitial carbon and nitrogen.
Materials Science and Technology 3, 101–104 (1987).
32. Amara, H., Roussel, J.-M., Bichara, C., Gaspard, J.-P. & Ducastelle, F. Tight-binding potential for
atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system.
Physical Review B 79, 014109 (2009).
33. Shankar, P., Sundararaman, D. & Ranganathan, S. Clustering and ordering of nitrogen in nuclear
grade 316LN austenitic stainless steel. Journal of Nuclear Materials 254, 1–8 (1998).
34. Slater, J. Atomic radii in crystals. The Journal of Chemical Physics 41, 3199–3204 (1964).
35. Wriedt, H., Gokcen, N. & Nafziger, R. The Fe-N (iron-nitrogen) system. Bulletin of Alloy Phase
Diagrams 8, 355–377 (1987).
36. Jiao, W.-C. et al. Effect of partial replacement of carbon by nitrogen on intergranular corrosion
behavior of high nitrogen martensitic stainless steels. Journal of Materials Science & Technology
35, 2357–2364 (2019).
37. Jargelius-Pettersson, R. Electrochemical investigation of the influence of nitrogen alloying on
pitting corrosion of austenitic stainless steels. Corrosion Science 41, 1639–1664 (1999).
38. Yang, H.-S. & Bhadeshia, H. Austenite grain size and the martensite-start temperature. Scripta
Materialia 60, 493–495 (2009).
39. Nayak, S., Anumolu, R., Misra, R., Kim, K. & Lee, D. Microstructure–hardness relationship in
quenched and partitioned medium-carbon and high-carbon steels containing silicon. Materials
Science and Engineering: A 498, 442–456 (2008).
40. Reed, R. P. Nitrogen in austenitic stainless steels. JOM 41, 16–21 (1989).
41. Vanderschaeve, F., Taillard, R. & Foct, J. Discontinuous precipitation of Cr2N in a high nitrogen, chromium-manganese austenitic stainless steel. Journal of Materials Science 30, 6035–6046
(1995).
42. Barbier, D. Extension of the martensite transformation temperature relation to larger alloying elements and contents. Advanced Engineering Materials 16, 122–127 (2014).
43. Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S. & Catalano, A. Nickel: human health and
environmental toxicology. International Journal of Environmental Research and Public Health
17, 679 (2020).
44. Denkhaus, E. & Salnikow, K. Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews
in Oncology/Hematology 42, 35–56 (2002).
45. Speidel, M. Nitrogen containing austenitic stainless steels. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen Technischer Werkstoffe
37, 875–880 (2006).
46. Niederhofer, P. & Huth, S. Cavitation erosion resistance of high interstitial CrMnCN austenitic
stainless steels. Wear 301, 457–466 (2013).
47. Simmons, J. Overview: high-nitrogen alloying of stainless steels. Materials Science and Engineering: A 207, 159–169 (1996).
48. Niederhofer, P., Richrath, L., Huth, S. & Theisen, W. Influence of conventional and powdermetallurgical manufacturing on the cavitation erosion and corrosion of high interstitial CrMnCN
austenitic stainless steels. Wear 360, 67–76 (2016).
49. Talha, M., Behera, C. & Sinha, O. A review on nickel-free nitrogen containing austenitic stainless
steels for biomedical applications. Materials Science and Engineering: C 33, 3563–3575 (2013).
50. Cameron, K. S., Buchner, V. & Tchounwou, P. B. Exploring the molecular mechanisms of nickelinduced genotoxicity and carcinogenicity: a literature review (2011).
51. Lai, J. A review of precipitation behaviour in AISI type 316 stainless steel. Materials Science and
Engineering 61, 101–109 (1983).
52. Lai, J., Chastell, D. & Flewitt, P. Precipitate phases in type 316 austenitic stainless steel resulting
from long-term high temperature service. Materials Science and Engineering 49, 19–29 (1981).
53. Padilha, A. & Rios, P. Decomposition of austenite in austenitic stainless steels. ISIJ International
42, 325–327 (2002).
54. Kikuchi, M., Kajihara, M. & Choi, S.-K. Cellular precipitation involving both substitutional and
interstitial solutes: cellular precipitation of Cr2N in Cr-Ni austenitic steels. Materials Science and
Engineering: A 146, 131–150 (1991).
55. Lee, T.-H., Kim, S.-J. & Jung, Y.-C. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-
(N) superaustenitic stainless steels aged at 900◦C. Metallurgical and Materials Transactions A 31,
1713–1723 (2000).
56. Shi, F., Wang, L., Cui, W. & Liu, C. Precipitation behavior of M2N in a high-nitrogen austenitic
stainless steel during isothermal aging. Acta Metallurgica Sinica (English Letters) 20, 95–101
(2007).
57. Andrén, H.-O., Cai, G. & Svensson, L.-E. Microstructure of heat resistant chromium steel weld
metals. Applied Surface Science 87, 200–206 (1995).
58. Rawers, J. C. Alloying effects on the microstructure and phase stability of Fe–Cr–Mn steels. Journal of Materials Science 43, 3618–3624 (2008).
59. Rivlin, V. 14: Critical review of constitution of carbon-chromium—iron and carbon—iron—manganese systems. International Metals Reviews 29, 299–328 (1984).
60. Sun, Y., Li, X. & Bell, T. Low temperature plasma carburising of austenitic stainless steels for
improved wear and corrosion resistance. Surface Engineering 15, 49–54 (1999).
61. Ceschini, L., Chiavari, C., Marconi, A. & Martini, C. Influence of the countermaterial on the
dry sliding friction and wear behaviour of low temperature carburized AISI316L steel. Tribology
International 67, 36–43 (2013).
62. Borgioli, F., Galvanetto, E. & Bacci, T. Low temperature nitriding of AISI 300 and 200 series
austenitic stainless steels. Vacuum 127, 51–60 (2016).
63. Martin, F. et al. Enhanced corrosion resistance of stainless steel carburized at low temperature.
Metallurgical and Materials Transactions A 40, 1805–1810 (2009).
64. Natishan, P. et al. Interstitial hardening of type 316L stainless steel to improve corrosion resistance
and mechanical properties. Corrosion 68, 638–644 (2012).
65. Martin, F. et al. Carburization-induced passivity of 316 L austenitic stainless steel. Electrochemical and Solid-State Letters 10, C76 (2007).
66. Christiansen, T. & Somers, M. Low temperature gaseous nitriding and carburising of stainless
steel. Surface Engineering 21, 445–455 (2005).
67. Dong, H. S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. International Materials
Reviews 55, 65–98 (2010).
68. Christiansen, T. L. & Somers, M. A. Stress and composition of carbon stabilized expanded austenite on stainless steel. Metallurgical and Materials Transactions A 40, 1791–1798 (2009).
69. Roliński, E. Effect of plasma nitriding temperature on surface properties of austenitic stainless
steel. Surface Engineering 3, 35–40 (1987).
70. Sun, Y. & Haruman, E. Effect of carbon addition on low-temperature plasma nitriding characteristics of austenitic stainless steel. Vacuum 81, 114–119 (2006).
71. Czerwiec, T. et al. Fundamental and innovations in plasma assisted diffusion of nitrogen and
carbon in austenitic stainless steels and related alloys. Plasma Processes and Polymers 6, 401–
409 (2009).
72. Ledbetter, H. & Austin, M. Effects of carbon and nitrogen on the elastic constants of AISI type
304 stainless steel. Materials Science and Engineering 70, 143–149 (1985).
73. Mohammadzadeh, M. & Mohammadzadeh, R. Effect of interstitial and substitution alloying elements on the intrinsic stacking fault energy of nanocrystalline fcc-iron by atomistic simulation
study. Applied Physics A 123, 1–9 (2017).
74. Gavriljuk, V. G. Nitrogen in iron and steel. ISIJ International 36, 738–745 (1996).
75. Gavriljuk, V., Shanina, B. & Berns, H. On the correlation between electron structure and short
range atomic order in iron-based alloys. Acta Materialia 48, 3879–3893 (2000).
76. Shanina, B., Gavrilyuk, V., Konchits, A., Kolesnik, S. & Tarasenko, A. Exchange interaction
between electron subsystems in iron-based F.C.C. alloys doped by nitrogen or carbon. Physica
Status Solidi (a) 149, 711–722 (1995).
77. Shanina, B., Gavriljuk, V. & Berns, H. High strength stainless austenitic CrMnN steels-part III:
electronic properties. Steel Research International 78, 724–728 (2007).
78. Gavriljuk, V. Austenite and martensite in nitrogen-, carbon- and hydrogen-containing iron alloys:
Similarities and differences. Materials Science and Engineering: A 438, 75–79 (2006).
79. Roth, M., Chamberod, A. & Billard, L. Short range order in a 70-30 FeNi alloy. Journal of Magnetism and Magnetic Materials 7, 104–106 (1978).
80. Berns, H., Gavriljuk, V., Riedner, S. & Tyshchenko, A. High strength stainless austenitic CrMnCN
steels–Part I: alloy design and properties. Steel Research International 78, 714–719 (2007).
81. Roncery, L. M., Weber, S. & Theisen, W. Nucleation and precipitation kinetics of M23C6 and M2N
in an Fe–Mn–Cr–C–N austenitic matrix and their relationship with the sensitization phenomenon.
Acta Materialia 59, 6275–6286 (2011).
82. Ijsseling, F. General guidelines for corrosion testing of materials for marine applications: literature
review on sea water as test environment. British Corrosion Journal 24, 53–78 (1989).
83. Kestyn, J. & Polizzi, E. From fundamental first-principle calculations to nanoengineering applications: a review of the NESSIE project. IEEE Nanotechnology Magazine 14, 52–C3 (2020).
84. Dirac, P. A. M. Quantum mechanics of many-electron systems. Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character 123, 714–733
(1929).
85. Garza, J., Nichols, J. A. & Dixon, D. A. The Hartree product and the description of local and
global quantities in atomic systems: A study within Kohn–Sham theory. The Journal of Chemical
Physics 112, 1150–1157 (2000).
86. Sholl, D. & Steckel, J. Density functional theory: a practical introduction (John Wiley & Sons,
2022).
87. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Physical Review 136, B864 (1964).
88. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects.
Physical Review 140, A1133 (1965).
89. Mattsson, A. E. In pursuit of the ”divine” functional. Science 298, 759–760 (2002).
90. Simón, L. & Goodman, J. M. How reliable are DFT transition structures? Comparison of GGA,
hybrid-meta-GGA and meta-GGA functionals. Organic & Biomolecular Chemistry 9, 689–700
(2011).
91. Lin, I.-C., Seitsonen, A. P., Tavernelli, I. & Rothlisberger, U. Structure and dynamics of liquid
water from ab initio molecular dynamics-comparison of BLYP, PBE, and revPBE density functionals with and without van der Waals corrections. Journal of Chemical Theory and Computation
8, 3902–3910 (2012).
92. Alfè, D. & Gillan, M. The energetics of oxide surfaces by quantum Monte Carlo. Journal of
Physics: Condensed Matter 18, L435 (2006).
93. Mattsson, A. E., Schultz, P. A., Desjarlais, M. P., Mattsson, T. R. & Leung, K. Designing meaningful density functional theory calculations in materials science—-a primer. Modelling and Simulation in Materials Science and Engineering 13, R1 (2004).
94. Yeo, B. C., Kim, D., Kim, C. & Han, S. S. Pattern learning electronic density of states. Scientific
Reports 9, 5879 (2019).
95. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Physical Review B 31,
805 (1985).
96. Lemieux, M.-A. & Tremblay, A.-M. Densities of states, projected densities of states, and transfermatrix methods from a unified point of view. Physical Review B 36, 1463 (1987).
97. Dronskowski, R. & Blöchl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved
visualization of chemical bonding in solids based on density-functional calculations. The Journal
of Physical Chemistry 97, 8617–8624 (1993).
98. Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP)
analysis as projected from plane-wave basis sets. The Journal of Physical Chemistry A 115, 5461–
5466 (2011).
99. Maintz, S., Esser, M. & Dronskowski, R. Efficient rotation of local basis functions using real
spherical harmonics. Acta Physica Polonica B 47 (2016).
100. Nelson, R. et al. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. Journal of Computational
Chemistry 41, 1931–1940 (2020).
101. Oberdorfer, C. & Windl, W. Bond-order bond energy model for alloys. Acta Materialia 179, 406–
413 (2019).
102. Becker, R. Die Keimbildung bei der Ausscheidung in metallischen Mischkristallen. Annalen der
Physik 424, 128–140 (1938).
103. Chien, S.-C. & Windl, W. Bond synergy model for bond energies in alloy oxides. Journal of the
Electrochemical Society 167, 141511 (2020).
104. Li, T. et al. Understanding the efficacy of concentrated interstitial carbon in enhancing the pitting
corrosion resistance of stainless steel. Acta Materialia 221, 117433 (2021).
105. Di Gianfrancesco, A. Materials for ultra-supercritical and advanced ultra-supercritical power
plants (woodhead Publishing, 2016).
106. Van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad
42, 13–18 (2013).
107. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Physical Review B 54, 11169 (1996).
108. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method.
Physical Review B 59, 1758 (1999).
109. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Physical Review B
13, 5188 (1976).
110. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 36, 354–360 (2006).
111. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice
bias. Journal of Physics: Condensed Matter 21, 084204 (2009).
112. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and
morphology data. Journal of Applied Crystallography 44, 1272–1276 (2011).
113. Cho, Y., Gwon, H. & Kim, S.-J. Effects of C and N on high-temperature deformation behavior of
15Cr–15Mn–4Ni austenitic stainless steels. Materials Science and Engineering: A 819, 141463
(2021).
114. Pauling, L. The nature of the chemical bond. IV. the energy of single bonds and the relative electronegativity of atoms. Journal of the American Chemical Society 54, 3570–3582 (1932).
115. Little Jr, E. J. & Jones, M. M. A complete table of electronegativities. Journal of Chemical Education 37, 231 (1960).
116. Blokker, E. et al. The chemical bond: when atom size instead of electronegativity difference determines trend in bond strength. Chemistry–A European Journal 27, 15616–15622 (2021).
117. Guo, X. et al. Interstitial elements created via metal 3D printing. Materials Today (2023).
118. Nguyen, T. Q., Sato, K. & Shibutani, Y. First-principles study of BCC/FCC phase transition promoted by interstitial carbon in iron. Materials Transa
指導教授 簡思佳(Szu-Chia Chien) 審核日期 2023-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明