博碩士論文 110329016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.145.170.2
姓名 曾昱翔(Yu-Xiang Zeng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
(Recycling waste printed circuit board materials for application in biomedical testing and energy storage)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究
★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討
★ 高熵氧化物電極於類海水催化應用★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 印刷電路板(printed circuit board , PCB)一種將多種電子元件結合再一起的模塊,其印刷電路板廣泛應用在目前人類的 3C 產品中,如手機、電視和電腦等常見的家電中皆有使用到 PCB,然而大多印刷電路板卻無法有效的回 收再利用,其原因來自於印刷電路板中含有大量且成分混雜的金屬元素、玻璃纖維和熱固性樹脂,關於目前印刷電路板的回收方式是以化學法回收印刷電路板中的金屬外,其餘的玻璃纖維和熱固性樹脂由於本身利用價值較 低,大多是以掩埋和焚燒的方式處,而近年來受到歐盟所制定碳稅和 ESG 相關政策後使得廢棄回收與循環經濟再利用再次受到重視,因此本實驗將使用提取來自印刷電路板的元素金後應用於生醫檢測和對印刷電路板粉屑嘗試進行融鹽法還原處理後用於儲能元件應用,嘗試創造出具有更高經濟價值之材料,於生醫檢測領域中透過將元素金使用生物無毒性的還原法還原成奈米金粒子後,在對奈米金粒子的表面進行白金奈米粒子修飾,得到海膽狀的金/白金奈米粒子,並應用在生醫檢測領域中,其別分在 Protein A 與 hCG 的檢測中,表現出獨特的顯色能力外,並在低濃度的檢測中表現出更 佳的靈敏度,而在儲能元件應用中,經初步鑑定後判定玻璃纖維中的成分結構為矽酸鋁和矽酸鈣的結構,並在還原後檢測到矽的信號,並在鋰離子電池中有初步的嘗試實驗。
摘要(英) A printed circuit board (PCB) is a module that combines multiple electronic components together and is widely used in current consumer electronics products such as smartphones, televisions, and computers. However, most PCBs cannot be effectively recycled and reused due to the presence of a large amount of mixed metal elements, glass fibers, and thermosetting resins. While the metals in PCBs can be chemically recovered, the remaining glass fibers and thermosetting resins, with their lower utility value, are often disposed of through landfilling or incineration. In recent years, with the implementation of carbon taxes and ESGrelated policies by the European Union, the importance of waste recycling and circular economy practices has been emphasized. Therefore, in this experiment, we aim to extract elemental gold from PCBs and apply it in biomedical detection, as well as explore the use of PCB debris through a molten salt-based reduction process for energy storage device applications. The goal is to create materials with higher economic value. In the field of biomedical detection, we will utilize nontoxic bioreduction methods to convert the elemental gold extracted from PCBs into gold nanoparticles. These nanoparticles will be surface-modified with platinum nanoparticles to obtain sea urchin-shaped gold/platinum nanoparticles, which will be applied in the detection of Protein A and hCG. They exhibit unique color development capabilities and show improved sensitivity in low concentration detection. Regarding the application in energy storage devices, the preliminary assessment of the composition structure in the glass fibers indicates the presence of aluminum silicate and calcium silicate structures. After reduction, signals indicating the presence of silicon were detected, and initial experimental attempts were made in lithium-ion batteries.
關鍵字(中) ★ 循環經濟
★ 印刷電路板
★ 生醫檢測
★ 儲能元件
關鍵字(英) ★ Circular Economy
★ Printed Circuit Board
★ Biomedical Testing
★ Energy Storage Devices
論文目次 摘要.......................................................................................................................................................... i
ABSTRACT.......................................................................................................................................... iii
誌謝........................................................................................................................................................ iv
目錄........................................................................................................................................................ vi
圖目錄.................................................................................................................................................... ix
表目錄................................................................................................................................................... ixi
一、前言與研究背景............................................................................................................................. 1
二、文獻回顧......................................................................................................................................... 2
2-1 ESG 環境保護(environment)、社會責任(social)和公司治理(governance) .............................. 2
2-2 印刷電路板簡介 ......................................................................................................................... 2
2-2-1 回收廢棄印刷電路板回收與純化技術 .............................................................................. 3
2-2-2 旋風分離法.......................................................................................................................... 4
2-2-3 磁力分離法.......................................................................................................................... 4
2-2-3 靜電分離法.......................................................................................................................... 5
2-2-4 化學法.................................................................................................................................. 5
2-3 鋁熱融鹽法 .................................................................................................................................. 5
2-4 鋰離子電池基本原理................................................................................................................... 6
2-5 奈米金粒子簡介 .......................................................................................................................... 7
2-6 奈米粒子合成技術 .................................................................................................................... 10
2-6-1Turkevich 合成法................................................................................................................. 11
2-6-2Brust-Schiffrin 合成法......................................................................................................... 12
2-6-3 雷射燒蝕法......................................................................................................................... 12
2-6-4 綠色合成法......................................................................................................................... 13
2-7 側向流動分析原理 .................................................................................................................... 14
2-8 抗體與抗原 ................................................................................................................................ 15
三、實驗步驟....................................................................................................................................... 16
vii
3-1 實驗藥品 .................................................................................................................................... 16
3-2 實驗材料 .................................................................................................................................... 18
3-3 回收印刷電路板之材料於生醫檢測之應用............................................................................. 19
3-3-1 回收廢棄印刷電路板之有價金屬 ..................................................................................... 19
3-3-2 奈米金粒子合成................................................................................................................. 19
3-3-3 金/白金奈米粒子合成........................................................................................................ 20
3-3-4 奈米粒子與 Protein A 蛋白嫁接........................................................................................ 20
3-3-5 奈米粒子與人類絨毛膜性腺激素(HCG)蛋白嫁接 .......................................................... 21
3-3-6 側向流動分析試條製備 ..................................................................................................... 21
3-4 回收印刷電路板之材料於儲能元件之應用............................................................................. 22
3-4-1 鋰離子電池負極材料製備 ................................................................................................. 22
3-4-2 鋰離子電池製備................................................................................................................. 22
3-5 分析儀器 .................................................................................................................................... 23
3-5-1 掃描式電子顯微鏡(FE-SEM) ............................................................................................ 23
3-5-2 穿透式電子顯微鏡分析(TEM).......................................................................................... 23
3-5-3 X 射線光電子能譜儀(XPS) ............................................................................................... 23
3-5-4 紫外光-可見光光譜分析(Uv-vis) ...................................................................................... 24
3-5-5 雷射顯微鏡(LM)................................................................................................................. 24
3-5-6 動態光散射粒徑分析儀及表面電位分析儀(DLS/Zeta)................................................... 24
四、結果與討論................................................................................................................................... 25
4-1 回收廢棄電路板之材料於生醫檢測......................................................................................... 25
4-1-1 紫外光-可見光光譜分析(Uv-vis) ...................................................................................... 25
4-1-2 穿透式電子顯微鏡分析(TEM).......................................................................................... 27
4-1-3 動態光散射粒徑分析儀及表面電位分析儀(DLS/Zeta)................................................... 29
4-1-4 Protein A 側向流動分析顯色能力測試............................................................................. 31
4-1-5 hCG 側向流動顯色能力測試............................................................................................. 33
4-2 回收廢棄電路板之材料於儲能元件......................................................................................... 35
4-2-1 雷射顯微鏡分析(LM)......................................................................................................... 35
viii
4-2-2 掃描式電子顯微鏡分析(SEM) .......................................................................................... 37
4-2-3X 射線光電子能譜儀分析(XPS) ........................................................................................ 39
4-3 鋰電池電池性能測試................................................................................................................. 44
4-3-1 循環伏安圖分析(CV)......................................................................................................... 44
4-3-2 鋰離子充放電性能測試(C-rate)......................................................................................... 46
4-3-3 電池電化學阻抗圖譜分析(EIS)......................................................................................... 48
五、結論............................................................................................................................................... 50
六、未來工作與實驗規劃................................................................................................................... 51
回收廢棄電路板之材料於生醫檢測........................................................................................... 51
回收廢棄電路板之材料於儲能元件........................................................................................... 51
七、參考資料....................................................................................................................................... 52
參考文獻 1. Ahmad, S., et al., Carbon-adjusted efficiency and technology gaps in gold mining.
Elsevier Resources Policy, 2023. 81: p. 103327.
2. Ghosh, B., et al., Waste printed circuit boards recycling: an extensive assessment of
current status. 2015. 94: p. 5-19.
3. Pokhrel, P., S.-L. Lin, and C.-T.J.J.o.E.M. Tsai, Environmental and economic
performance analysis of recycling waste printed circuit boards using life cycle
assessment. 2020. 276: p. 111276.
4. Huang, T., et al., Assessment of precious metals positioning in waste printed circuit
boards and the economic benefits of recycling. 2022. 139: p. 105-115.
5. Eswaraiah, C., et al., Classification of metals and plastics from printed circuit boards
(PCB) using air classifier. 2008. 47(4): p. 565-576.
6. Xian, Y., et al., Recovery of metals from heat-treated printed circuit boards via an
enhanced gravity concentrator and high-gradient magnetic separator. 2021. 14(16): p.
4566.
7. Suponik, T., et al., Impact of grinding of printed circuit boards on the efficiency of metal
recovery by means of electrostatic separation. 2021. 11(3): p. 281.
8. He, Y. and Z.J.R.A. Xu, Recycling gold and copper from waste printed circuit boards
using chlorination process. 2015. 5(12): p. 8957-8964.
9. Lin, N., et al., A low temperature molten salt process for aluminothermic reduction of
silicon oxides to crystalline Si for Li-ion batteries. 2015. 8(11): p. 3187-3191.
10. Roy, P. and S.K.J.J.o.M.C.A. Srivastava, Nanostructured anode materials for lithium ion
batteries. 2015. 3(6): p. 2454-2484.
11. Ghosh, S.K., et al., Solvent and ligand effects on the localized surface plasmon
resonance (LSPR) of gold colloids. 2004. 108(37): p. 13963-13971.
12. Jain, P.K., et al., Calculated absorption and scattering properties of gold nanoparticles
of different size, shape, and composition: applications in biological imaging and
biomedicine. 2006. 110(14): p. 7238-7248.
13. Pellas, V., et al., Gold nanorods for LSPR biosensing: synthesis, coating by silica, and
bioanalytical applications. 2020. 10(10): p. 146.
14. He, M.-Q., Y.-L. Yu, and J.-H.J.N.T. Wang, Biomolecule-tailored assembly and
morphology of gold nanoparticles for LSPR applications. 2020. 35: p. 101005.
15. Rindzevicius, T., et al., Nanohole plasmons in optically thin gold films. 2007. 111(3): p.
1207-1212.
16. Hong, Y., et al., Nanobiosensors based on localized surface plasmon resonance for
biomarker detection. 2012. 2012: p. 111-111.
53
17. Verma, H.N., P. Singh, and R.J.V.w. Chavan, Gold nanoparticle: synthesis and
characterization. 2014. 7(2): p. 72.
18. De Souza, C.D., et al., Review of the methodologies used in the synthesis gold
nanoparticles by chemical reduction. 2019. 798: p. 714-740.
19. Kimling, J., et al., Turkevich method for gold nanoparticle synthesis revisited. 2006.
110(32): p. 15700-15707.
20. Rohiman, A., et al. Study of colloidal gold synthesis using Turkevich method. in AIP
Conference Proceedings. 2011. American Institute of Physics.
21. Dong, J., et al., Synthesis of precision gold nanoparticles using Turkevich method. 2020.
37: p. 224-232.
22. Perala, S.R.K. and S.J.L. Kumar, On the mechanism of metal nanoparticle synthesis in
the Brust–Schiffrin method. 2013. 29(31): p. 9863-9873.
23. Liz-Marzán, L.M.J.C.C., Gold nanoparticle research before and after the Brust–
Schiffrin method. 2013. 49(1): p. 16-18.
24. Mafuné, F., et al., Formation of gold nanoparticles by laser ablation in aqueous solution
of surfactant. 2001. 105(22): p. 5114-5120.
25. Ma, H., et al., Synthesis of silver and gold nanoparticles by a novel electrochemical
method. 2004. 5(1): p. 68-75.
26. Kundu, S., L. Peng, and H.J.I.c. Liang, A new route to obtain high-yield multiple-shaped
gold nanoparticles in aqueous solution using microwave irradiation. 2008. 47(14): p.
6344-6352.
27. Gutiérrez-Wing, C., et al., Microwave-assisted synthesis of gold nanoparticles selfassembled into self-supported superstructures. 2012. 4(7): p. 2281-2287.
28. Wu, F., et al., Biologically synthesized green gold nanoparticles from Siberian ginseng
induce growth-inhibitory effect on melanoma cells (B16). 2019. 47(1): p. 3297-3305.
29. Ankamwar, B.J.E.-J.o.C., Biosynthesis of gold nanoparticles (green-gold) using leaf
extract of Terminalia catappa. 2010. 7(4): p. 1334-1339.
30. Rónavári, A., et al., Green silver and gold nanoparticles: Biological synthesis
approaches and potentials for biomedical applications. 2021. 26(4): p. 844.
31. de Oliveira, P.F., et al., Challenges and opportunities in the bottom-up mechanochemical
synthesis of noble metal nanoparticles. 2020. 8(32): p. 16114-16141.
32. Ojea-Jiménez, I., N.G. Bastús, and V.J.T.J.o.P.C.C. Puntes, Influence of the sequence of
the reagents addition in the citrate-mediated synthesis of gold nanoparticles. 2011.
115(32): p. 15752-15757.
33. Schulz, F., et al., Little adjustments significantly improve the Turkevich synthesis of
gold nanoparticles. 2014. 30(35): p. 10779-10784.
34. Bastús, N.G., J. Comenge, and V.J.L. Puntes, Kinetically controlled seeded growth
synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus
54
Ostwald ripening. 2011. 27(17): p. 11098-11105.
35. Li, Y., et al., Mechanistic Insights into the Brust−Schiffrin Two-Phase Synthesis of
Organo-chalcogenate-Protected Metal Nanoparticles. Journal of the American
Chemical Society, 2011. 133(7): p. 2092-2095.
36. Tsuji, T., et al., Preparation and investigation of the formation mechanism of submicronsized spherical particles of gold using laser ablation and laser irradiation in liquids. 2013.
15(9): p. 3099-3107.
37. Abduljalil, J.J.N.m. and n. infections, Laboratory diagnosis of SARS-CoV-2: available
approaches and limitations. Elsevier New Microbes and New Infections, 2020. 36: p.
100713
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明