博碩士論文 110329005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.144.243.184
姓名 李佳慈(Chia-Tzu Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究
(A Study on the Application of High Entropy Selenide Catalysts on the Degradation of Organic Pollutants by Electro-Fenton Reaction)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究
★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討
★ 高熵氧化物電極於類海水催化應用★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究
★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究
★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 了應對現代工業化發展帶來的污水問題,採用一種創新的高熵材料來分解染料廢水中含有偶氮基團的有機污染物。本研究中,利用反應中產生的氫氧自由基(·OH)來攻擊有機汙染物中所含的偶氮鍵,進一步進行降解。本實驗利用Se_(AlCrCuFeNi)奈米材料作為活性觸媒,通過電芬頓反應來降解水溶液中的有機污染物。Se_HEC材料通過快速煆燒和硒化反應的方法製備而成,並且分析該觸媒材料之材料特性,進一步探討該材料在電芬頓反應中降解污染物的效率,研究高熵硒化物材料分解污染物的潛力。
在水溶液中,我觀察到Se_HEC陰極對甲基橙的去除效果高達98%,並且在酸性環境pH值為3下表現出良好的穩定性。此外,我進一步研究了應用電流和溶液酸鹼值等不同參數對降解效果的影響。此外,透過活性氧物質測試驗證了甲基橙降解途徑,進一步支持反應過程中·OH的重要作用。綜上所述,高熵硒化物材料展現了在電芬頓反應中有效降解有機污染物的優勢。這種技術具有潛在的應用前景,並為可持續發展提供了一個綠色能源的解決方案。
摘要(英) To address the sewage issues arising from modern industrialization, an innovative approach employing a high-entropy material was adopted for the degradation of organic pollutants containing azo groups in dye wastewater. In this study, hydroxyl radicals generated during the reaction were utilized to attack the azo bonds in the organic pollutants for further degradation. Se_(AlCrCuFeNi) was used as the active catalyst for the degradation of organic pollutants through the electro-Fenton process. The Se_HEC material was prepared via rapid annealing and selenization reactions, and its material properties were analyzed to explore its efficiency in degrading pollutants during the electro-Fenton process, highlighting the potential of high-entropy selenide materials for pollutant decomposition.
In aqueous solutions, the Se_HEC cathode exhibited an impressive removal efficiency of 98% for methyl orange, demonstrating excellent stability at an acidic pH of 3. Furthermore, the influence of various parameters such as applied current and solution pH on the degradation efficiency was investigated. Additionally, the degradation pathway of methyl orange was confirmed through ROS test, further supporting the significant role of hydroxyl radicals in the reaction process. Se_HEC demonstrated advantages in effectively degrading organic pollutants in the electro-Fenton process. This technology holds promising potential for future applications and provides a green way for sustainable development.
關鍵字(中) ★ 電觸媒
★ 高熵陶瓷
★ 電芬頓法
★ 汙水降解
★ ESG
關鍵字(英) ★ electrocatalyst
★ high-entropy ceramics
★ electro-Fenton method
★ wastewater degradation
★ ESG
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
第二章 文獻回顧 3
2.1 高熵材料簡介 3
2.2 高級氧化法 7
2.3 活性氧物質 13
2.4 硒化表面改質優勢 16
2.5 ESG環境友善的污染物降解之太陽能應用 17
第三章 實驗部分 21
3.1 實驗藥品 21
3.2 硒化高熵陶瓷粉末製備 23
3.2.1快速煆燒製程 23
3.2.2硒化材料製程 23
3.3 高熵硒化物電極製備 25
3.4 電芬頓實驗步驟 27
3.5 儀器分析 28
3.5.1 X光繞射分析儀 (XRD) 28
3.5.2掃描式電子顯微鏡 (FE-SEM) 28
3.5.3 X-ray光電子光譜儀 ( XPS ) 28
3.5.4 X-ray螢光光譜儀 (nano-XRF) 29
第四章 結果與討論 30
4.1 結構與特性分析 30
4.1.1 晶體結構與結構型態 30
4.1.2 微觀形貌與元素分布 30
4.1.3 元素表面化學態分析 32
4.2 材料降解成效分析 35
4.2.1高熵硒化物降解成效 35
4.2.2於不同酸鹼環境下之降解成效 37
4.2.3於不同電流下之降解成效 39
4.2.4 Se_HEC電極之穩定性測試 41
4.2.5 活性氧物質分析 41
4.2.6綠能電芬頓實驗 45
第五章 結論 47
參考文獻 49
參考文獻 [1] Dogan, D., Turkdemir, H., Electrochemical Treatment of Actual Textile Indigo Dye Effluent. Polish Journal of Environmental Studies 2012, 21 (5).
[2] Muthu, S. S., Khadir, A., Muthu, Novel Materials for Dye-Containing Wastewater Treatment. Springer 2021.
[3] Kwon, C. H., Shin, H., Kim, J. H., Choi, W. S., Yoon, K. H., Degradation of methylene blue via photocatalysis of titanium dioxide. Materials Chemistry Physics 2004, 86 (1), 78-82.
[4] Mall, I. D., Srivastava, V. C., Agarwal, N. K., Mishra, I. M., Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 2005, 61 (4), 492-501.
[5] Cisneros, R. L., Espinoza, A. G., Litter, M. I., Photodegradation of an azo dye of the textile industry. Chemosphere 2002, 48 (4), 393-399.
[6] Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., Agarwal, S., Chemical treatment technologies for waste-water recycling—an overview. Rsc Advances 2012, 2 (16), 6380-6388.
[7] Martínez-Huitle, C. A., Andrade, L. S., Electrocatalysis in wastewater treatment: recent mechanism advances. Quimica Nova 2011, 34, 850-858.
[8] Murty, B. S., Yeh, J.-W., Ranganathan, S., Bhattacharjee, P. P., High-entropy alloys. Elsevier 2019.
[9] Miracle, D. B., Senkov, O. N., A critical review of high entropy alloys and related concepts. Acta Materialia 2017, 122, 448-511.
[10] George, E. P., Raabe, D., Ritchie, R. O., High-entropy alloys. Nature reviews materials 2019, 4 (8), 515-534.
[11] Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat 2006, 31 (6), 633-648.
[12] Amiri, A., Shahbazian-Yassar, R., Recent progress of high-entropy materials for energy storage and conversion. Journal of Materials Chemistry A 2021, 9 (2), 782-823.
[13] Wang, R., Tang, Y., Li, S., Ai, Y., Li, Y., Xiao, B., Liu, X., Bai, S., Effect of lattice distortion on the diffusion behavior of high-entropy alloys. Journal of Alloys Compounds 2020, 825, 154099.
[14] Tong, C.-J., Chen, Y.-L., Yeh, J.-W., Lin, S.-J., Chen, S.-K., Shun, T.-T., Tsau, C.-H., Chang, S.-Y., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical Materials Transactions A 2005, 36, 881-893.
[15] Tsai, M.-H., Yeh, J.-W., Gan, J.-Y., Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films 2008, 516 (16), 5527-5530.
[16] Chang, H.-W., Huang, P.-K., Yeh, J.-W., Davison, A., Tsau, C.-H., Yang, C.-C., Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi) N coatings. Surface Coatings Technology 2008, 202 (14), 3360-3366.
[17] Löffler, T., Meyer, H., Savan, A., Wilde, P., Garzón Manjón, A., Chen, Y. T., Ventosa, E., Scheu, C., Ludwig, A., Schuhmann, W., Discovery of a multinary noble metal–free oxygen reduction catalyst. Advanced Energy Materials 2018, 8 (34), 1802269.
[18] Zhao, J., He, Y., Wang, J., Zhang, J., Qiu, L., Chen, Y., Zhong, C., Han, X., Deng, Y., Hu, W., Regulating metal active sites of atomically-thin nickel-doped spinel cobalt oxide toward enhanced oxygen electrocatalysis. Chemical Engineering Journal 2022, 435, 134261.
[19] Lu, Y.-T., Chien, Y.-J., Liu, C.-F., You, T.-H., Hu, C.-C., Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M 0.1 Ni 0.9 Co 2 O 4 (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc–air batteries. Journal of Materials Chemistry A 2017, 5 (39), 21016-21026.
[20] Kim, J., Ko, W., Yoo, J. M., Paidi, V. K., Jang, H. Y., Shepit, M., Lee, J., Chang, H., Lee, H. S., Jo, J., Structural Insights into Multi‐Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis. Advanced Materials 2022, 34 (8), 2107868.
[21] Wei, C., Feng, Z., Scherer, G. G., Barber, J., Shao‐Horn, Y., Xu, Z. J., Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition‐metal spinels. Advanced Materials 2017, 29 (23), 1606800.
[22] Panizza, M., Cerisola, G., Electro-Fenton degradation of synthetic dyes. Water research 2009, 43 (2), 339-344.
[23] Wang, J., Wang, S., Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal 2020, 401, 126158.
[24] Parsons, S., Advanced oxidation processes for water and wastewater treatment. IWA publishing 2004.
[25] Moreira, F. C., Boaventura, R. A., Brillas, E., Vilar, V. J., Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental 2017, 202, 217-261.
[26] Dewil, R., Mantzavinos, D., Poulios, I., Rodrigo, M. A., New perspectives for advanced oxidation processes. Journal of environmental management 2017, 195, 93-99.
[27] Salazar, R., Garcia-Segura, S., Ureta-Zañartu, M., Brillas, E., Degradation of disperse azo dyes from waters by solar photoelectro-Fenton. Electrochimica acta 2011, 56 (18), 6371-6379.
[28] Brillas, E., Sirés, I., Oturan, M. A., Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical reviews 2009, 109 (12), 6570-6631.
[29] Sirés, I., Brillas, E., Upgrading and expanding the electro-Fenton and related processes. Current Opinion in Electrochemistry 2021, 27, 100686.
[30] Youssef, N. A., Shaban, S. A., Ibrahim, F. A., Mahmoud, A. S., Degradation of methyl orange using Fenton catalytic reaction. Egyptian Journal of Petroleum 2016, 25 (3), 317-321.
[31] Illés, E., Mizrahi, A., Marks, V., Meyerstein, D., Carbonate-radical-anions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate. Free Radical Biology Medicine 2019, 131, 1-6.
[32] He, H., Zhou, Z., Electro-Fenton process for water and wastewater treatment. Critical Reviews in Environmental Science Technology 2017, 47 (21), 2100-2131.
[33] Jiang, C.-c., Zhang, J.-f., Progress and prospect in electro-Fenton process for wastewater treatment. Journal of Zhejiang University-SCIENCE A 2007, 8 (7), 1118-1125.
[34] Plakas, K. V., Karabelas, A. J., Electro-Fenton applications in the water industry. Electro-Fenton Process: New Trends Scale-Up 2018, 343-378.
[35] Nidheesh, P. V., Olvera-Vargas, H., Oturan, N., Oturan, M. A., Heterogeneous electro-Fenton process: principles and applications. Electro-Fenton Process: New Trends Scale-Up 2018, 85-110.
[36] Babuponnusami, A., Muthukumar, K., Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chemical Engineering Journal 2012, 183, 1-9.
[37] Chiu, C.-T., Teng, Y.-J., Dai, B.-H., Tsao, I.-Y., Lin, W.-C., Wang, K.-W., Hsu, L.-C., Chang, Y.-C., Li, C.-T., Nguyen, H. T. T., Novel high-entropy ceramic/carbon composite materials for the decomposition of organic pollutants. Materials Chemistry Physics 2022, 275, 125274.
[38] Krumova, K., Cosa, G., Overview of reactive oxygen species. 2016.
[39] Kim, D.-h., Lee, J., Ryu, J., Kim, K., Choi, W., technology, Arsenite oxidation initiated by the UV photolysis of nitrite and nitrate. Environmental science 2014, 48 (7), 4030-4037.
[40] Lian, L., Yao, B., Hou, S., Fang, J., Yan, S., Song, W., Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents. Environmental science technology 2017, 51 (5), 2954-2962.
[41] Lee, W., Lee, Y., Allard, S., Ra, J., Han, S., Lee, Y., Mechanistic and kinetic understanding of the UV254 photolysis of chlorine and bromine species in water and formation of oxyhalides. Environmental Science Technology 2020, 54 (18), 11546-11555.
[42] Liu, Y., Jiang, J., Ma, J., Yang, Y., Luo, C., Huangfu, X., Guo, Z., Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes. Water research 2015, 68, 750-758.
[43] Yang, J., Pan, B., Li, H., Liao, S., Zhang, D., Wu, M., Xing, B., Degradation of p-nitrophenol on biochars: role of persistent free radicals. Environmental Science Technology 2016, 50 (2), 694-700.
[44] Kozmér, Z., Takács, E., Wojnárovits, L., Alapi, T., Hernádi, K., Dombi, A., The influence of radical transfer and scavenger materials in various concentrations on the gamma radiolysis of phenol. Radiation Physics Chemistry 2016, 124, 52-57.
[45] Li, X., Li, J., Bai, J., Dong, Y., Li, L., Zhou, B. J. N.-M. L., The inhibition effect of tert-butyl alcohol on the TiO 2 nano assays photoelectrocatalytic degradation of different organics and its mechanism. 2016, 8, 221-231.
[46] Ruan, M., Chen, L., Wen, Z., Yang, F., Ma, C., Lu, C., Yang, G., Gao, M., Electrochemical two-electron oxygen reduction reaction (ORR) induced aerobic oxidation of α-diazoesters. Chemical Communications 2022, 58 (13), 2168-2171.
[47] Zhu, M., Lu, J., Hu, Y., Liu, Y., Hu, S., Zhu, C., Photochemical reactions between 1, 4-benzoquinone and O 2•−. Environmental Science Pollution Research 2020, 27, 31289-31299.
[48] Karuppasamy, K., Santhoshkumar, P., Hussain, T., Vikraman, D., Yim, C.-J., Hussain, S., Shanmugam, P., Alfantazi, A., Manickam, S., Kim, H.-S., Influence of selenium precursors on the formation of iron selenide nanostructures (FeSe2): Efficient Electro-Fenton catalysts for detoxification of harmful organic dyestuffs. Chemosphere 2021, 272, 129639.
[49] Yuan, Q., Zhao, J., Mok, D. H., Zheng, Z., Ye, Y., Liang, C., Zhou, L., Back, S., Jiang, K., Electrochemical hydrogen peroxide synthesis from selective oxygen reduction over metal selenide catalysts. Nano letters 2021, 22 (3), 1257-1264.
[50] Xia, X., Wang, L., Sui, N., Colvin, V. L., William, W. Y., Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 2020, 12 (23), 12249-12262.
[51] Hussain, R. A., Badshah, A., Lal, B., Fabrication, characterization and applications of iron selenide. Journal of Solid State Chemistry 2016, 243, 179-189.
[52] Li, T.-T., Wang, K., Sueyoshi, T., Wang, D. D., ESG: Research progress and future prospects. Sustainability 2021, 13 (21), 11663.
[53] Solís, M., Solís, A., Pérez, H. I., Manjarrez, N., Flores, M., Microbial decolouration of azo dyes: a review. Process Biochemistry 2012, 47 (12), 1723-1748.
[54] 蔡人傑、徐秀鳳、林子皓、陳建璋、鄭湘澐/經濟部工業局, 紡織業產業用水最適化及節水技術指引. 2018.
[55] 新竹工業區污水處理費現行收費標準及水質水量分級費率計算公式.
[56] Mikheev, Y. A., Guseva, L., Ershov, Y. A., Transformations of methyl orange dimers in aqueous–acid solutions, according to UV–Vis spectroscopy data. Russian Journal of Physical Chemistry A 2017, 91, 1896-1906.
[57] Cui, L., Li, Z., Li, Q., Chen, M., Jing, W., Gu, X., Cu/CuFe2O4 integrated graphite felt as a stable bifunctional cathode for high-performance heterogeneous electro-Fenton oxidation. Chemical Engineering Journal 2021, 420, 127666.
[58] Zhao, H., Wang, Y., Wang, Y., Cao, T., Zhao, G., Electro-Fenton oxidation of pesticides with a novel Fe3O4@ Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Applied Catalysis B: Environmental 2012, 125, 120-127.
[59] Sheng, H., Janes, A. N., Ross, R. D., Kaiman, D., Huang, J., Song, B., Schmidt, J., Jin, S., Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe 2 polymorph catalysts. Energy Environmental Science 2020, 13 (11), 4189-4203.
[60] Cao, P., Quan, X., Zhao, K., Chen, S., Yu, H., Niu, J., Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. Journal of hazardous materials 2020, 382, 121102.
[61] Cui, L., Huang, H., Ding, P., Zhu, S., Jing, W., Gu, X., Cogeneration of H2O2 and OH via a novel Fe3O4/MWCNTs composite cathode in a dual-compartment electro-Fenton membrane reactor. Separation Purification Technology 2020, 237, 116380.
[62] Zhou, X., Xu, D., Chen, Y., Hu, Y., Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@ PC modified cathode. Chemical Engineering Journal 2020, 384, 123324.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明