博碩士論文 108683004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.140.185.250
姓名 陳昭宇(Zhao-Yu Chen)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 高頻雷達射頻干擾與電離層干擾濾除
(Mitigation of Radio Frequency Interference and Ionospheric Interference for High Frequency Radar)
相關論文
★ 利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係★ 利用中壢特高頻雷達對流星現象進行觀測與應用
★ 台灣北部地區大氣折射率之分析與應用★ 中華衛星一號Ka波段標識訊號大氣衰減之量測研究
★ 利用華衛一號通訊實驗酬載Ka波段標識訊號對閃爍效應之研究★ 利用中立VHF雷達對大氣及降水回波特性之研究
★ 台灣地區Ka波段大氣傳播通道之研究★ 低軌道Ka波段人造衛星標識訊號特性之研究
★ 電離層散塊E層型態二不規則體之研究★ 中華衛星一號Ka波段傳播實驗診斷分析
★ 中華衛星一號低軌道衛星 Ka 波段雨衰減實驗與模型建立★ 特高頻雷達對空中降水粒子大小與回波功 率關係之研究
★ 低軌道衛星Ka波段閃爍現象之研究★ Ka波段雨衰減之分析與研究
★ 電離層E層場列不規則體移行速度之估算研究★ 臺灣地區蒸發導管之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2033-7-1以後開放)
摘要(中) 本研究主要為開發一套全新自動化辨識與濾除射頻干擾(Radio Frequency Interference,RFI)及電離層干擾(Ionospheric Interference)演算法並應用至高頻地波雷達,內容包含海面回波特性、操作波形(Operational Waveform)、來向角(Direction of Arrival,DOA)演算法等介紹,利用互頻譜分析(Cross Spectral Analysis)統計發現約8成觀測時間內頻譜被干擾影響,經干擾濾除後與浮標提供徑向洋流都卜勒速度(Radial Current Doppler Velocity)比對,相關係數(Correlation Coefficient)最佳提升至0.82,且方均根誤差(Root Mean Square Error)最佳下降至0.42m/s。本研究首次改良並應用頻率域自適應雜波抑制法(Frequency domain Adaptive Clutter Suppression,FACS)於高頻地波雷達射頻干擾,經統計後發現當參考距離閘數目為2時,海波訊雜比(Signal to Noise Ratio,SNR) 最佳達到約4.06dB改善,且射頻干擾濾除後仍保有目標物來向角特性,並使一定數量干擾飽和(Saturation)頻譜重新獲得海波。此外本研究也是首次將頻率域自適應雜波抑制法改良並應用至電離層探測儀電離圖中,並與射頻干擾抑制法(Radio Frequency Interference Mitigation,RFIM)比較與分析,得出RFIM標準差倍數門檻為2-2.5倍及FACS參考距離閘數目為5-15個有較佳結果。因為調頻截斷連續波(Frequency Modulated Interrupted Continuous Wave,FMICW)波形設計,高頻地波雷達中電離層干擾易有距離混疊效應(Aliasing),透過電離層探測儀(Ionosonde)電離圖(Ionogram)進行距離比對,經距離混淆修正後,相關係數最佳提升至0.99,方均根誤差最佳下降至2.03km。本研究改良並應用頻率域正交投影法(Orthogonal Projection Algorithm,OPA)於高頻地波雷達電離層干擾,並新增方法使用三維雷達資料,其中經統計得知電離層干擾相干值(Coherence)較海洋回波高,可用於辨識不同回波之門檻。最後因為特高頻(Very High Frequency,VHF)測海雷達頻譜不易受外部干擾影響,利用其資料進行徑向洋流都卜勒速度、示性波高(Significant Wave Height)等測海參數及海面目標物來向角反演,並利用漂流浮標(Drifting Buoy)、自動識別系統(Automatic Identification System,AIS)及廣播式自動回報監視(Automatic Dependent Surveillance-Broadcast,ADS-B)等資料進行比對,驗證測海雷達參數反演與海面目標物來向角計算演算法正確性,經資料品質控制(Quality Control,QC)與相位修正後,其結果皆有良好正相關性。
摘要(英) In this study, we develop a new automatic algorithm for high frequency ground wave radar (HFGWR) to identify and mitigate the influence of radio frequency interference (RFI) and ionospheric interference. We also introduce characteristic of sea echo, operational waveform, and estimation of direction of arrival (DOA). Use cross spectral analysis to statistic chatacteristics of interference. It shows there are over 80% spectrum contain interference during experiment. After mitigation of interference, compare radial current Doppler velocity with drift. The best results show that correlation coefficient increase to 0.82 and root mean square error decrease to 0.42m/s. In this study, we first improve and apply frequency domain adaptive clutter suppression (FACS) for HFGWR to mitigate RFI. It shows the best improvement of SNR is 4.06dB when the number of neighboring range cell is 2. DOA is consistent after mitiagation of RFI. It also shows there are some saturated spectrum recovering the information of sea echo. We also first improve and apply frequency domain adaptive clutter suppression (FACS) for iongram to mitigate RFI and compare the results with radio frequency interference mitigation (RFIM). The results show well when threshold of standard deviation for RFIM equals to 2-2.5 and number of neighboring range cell of FACS equals to 5-15. Limited by characteristic of Frequency Modulated Interrupted Continuous Wave (FMICW), range aliasing of ionospheric interference sometimes occur for HFGWR. Use ionogram provided by ionsonde to compare range. After revising of range aliasing, the best results show that correlation coefficient increase to 0.99 and root mean square error decrease to 2.03km. In this study, we first improve and apply orthogonal projection algorithm (OPA) for HFGWR to mitigate ionospheric interference. We add a method to use three dimensional radar data. Coherence of ionospheric echo is higher than that of sea echo. This characteristic can be used to set thrsohold to identify different echoes. Finally, very high frequency (VHF) sea radar has less effect by external interference. Estimate radial current Doppler velocity, significant wave height and DOA from target to compare with drift, automatic identification system (AIS) and automatic dependent surveillance-broadcast (ADS-B). Validate the algorithm for retrieval of sea parameter and DOA of target. The results show high positive correlation after quality control and revising phase offset.
關鍵字(中) ★ 射頻干擾
★ 電離層干擾
★ 互頻譜分析
★ 頻率域自適應雜波抑制法
★ 射頻干擾抑制法
★ 調頻截斷連續波
★ 正交投影法
關鍵字(英) ★ Radio Frequency Interference
★ Ionospheric Interference
★ Cross Spectral Analysis
★ Frequency domain Adaptive Clutter Suppression
★ Radio Frequency Interference Mitigation
★ Frequency Modulated Interrupted Continuous Wave
★ Orthogonal Projection Algorithm
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖表目錄 ix
第一章 緒論 1
1.1 研究目的 1
1.2 文獻回顧 2
1.3 實驗儀器與資料介紹 4
1.3.1 陣列式岸基測波儀 4
1.3.2 中壢特高頻測海雷達 9
1.3.3 中壢電離層探測儀 11
1.3.4 微型資料浮標 13
1.4 內容大綱 14
第二章 理論與方法 16
2.1 海洋回波特性 16
2.1.1 海面一階波 16
2.1.2 海面二階波 18
2.1.3 測海雷達回波頻譜模擬 20
2.1.4 徑向洋流都卜勒速度及示性波高反演 26
2.2 目標物來向角演算法 27
2.2.1 傳統波束成形法 27
2.2.2 Capon波束成形法 28
2.2.3 多重訊號分類法 29
2.3 互頻譜分析演算法 30
第三章 應用頻率域自適應雜波抑制法(FACS)於高頻地波雷達射頻干擾濾除 31
3.1 頻率域自適應雜波抑制法(FACS)理論 31
3.2 海面一階波SNR改善分析與統計 36
3.3 海面目標物來向角分析與比對 39
3.4 射頻干擾飽和頻譜改善分析與統計 44
第四章 高頻地波調頻截斷連續波雷達與電離層探測儀電離層回波比對 50
4.1 調頻截斷連續波雷達訊號分析處理理論 50
4.2 不同電離層回波比對與發生機率統計 57
4.3 距離混淆修正電離層回波距離比對與統計 61
第五章 應用FACS與RFIM於電離層探測儀電離層圖射頻干擾濾除 76
5.1 射頻干擾抑制法(RFIM)理論 76
5.2 電離圖中不同回波分類結果與統計 78
5.3 電離層參數foF2反演結果與比對 87
第六章 應用頻率域正交投影法(OPA)於高頻地波雷達電離層干擾濾除 91
6.1 正交投影法(OPA)理論 91
6.2 電離層干擾相干值分析與統計 94
6.3 電離層干擾濾除結果與討論 101
第七章 建立高頻地波雷達射頻與電離層干擾辨識與濾除自動化演算法 107
7.1 互頻譜相干值分析與統計 107
7.2 辨識與濾除干擾自動化程式流程 111
7.3 干擾濾除前後徑向洋流都卜勒速度比對 113
第八章 特高頻相位陣列雷達特定目標物觀測與定位 121
8.1 徑向洋流都卜勒速度比對 122
8.2 示性波高比對 126
8.3 海面目標物來向角比對 128
第九章 結論 138
9.1 學術貢獻 138
9.2 未來展望 140
參考資料 141
附錄 148
A. 名詞中英文對照表 148
參考文獻 傅兆平(2017)。國立中央大學特高頻測海雷達回波分析與比對。國立中央大學碩士論文。
孫忠佑(2019)。利用特高頻雷達波束成形技術定位船舶軌跡。國立中央大學碩士論文。
林伯勳(2019)。雷達海洋回波頻譜之模擬。國立中央大學碩士論文。
王懿嫻(2020)。利用中壢特高頻測海雷達反演海面風速與示性波高的研究。國立中央大學碩士論文。
洪晟銘(2020)。相位陣列雷達測海原理運用。國立中央大學博士論文。
林志宗(2021)。微型資料浮標觀測波浪及MSS的比對分析與演算流程的改善。
柯凱鈞(2022)。新中壢電離層探測儀系統特性與實高分析-演算法與資料比對。國立中央大學博士論文。
Abramovich, Y. I., Spencer, N. K., Anderson, S. J., & Gorokhov, A. Y. (1998). Stochastic-constraints method in nonstationary hot-clutter cancellation. I. Fundamentals and supervised training applications. IEEE Transactions on Aerospace and Electronic Systems, 34(4), 1271-1292.
Barrick, D. E. (1971a). Theory of HF and VHF propagation across the rough sea, 1, The effective surface impedance for a slightly rough highly conducting medium at grazing incidence. Radio Science, 6(5), 517-526.
Barrick, D. E. (1971b). Theory of HF and VHF propagation across the rough sea, 2, Application to HF and VHF propagation above the sea. Radio Science, 6(5), 527-533.
Barrick, D. E. (1972a). First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Transactions on Antennas and Propagation, 20(1), 2-10.
Barrick, D. E. (1972b). Remote sensing of sea state by radar, In Remote Sensing of the Troposphere. ed. VE Derr, US Govt. Printing Office, Washington, DC.
Barrick, D. E. (1973). FM/CW radar signals and digital processing. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories.
Barrick, D. E. (1977a). The ocean waveheight nondirectional spectrum from inversion of the HF sea-echo Doppler spectrum. Remote Sensing of Environment, 6(3), 201-227.
Barrick, D. E. (1977b). Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Science, 12(3), 415-424.
Barrick, D. E., & Snider, J. (1977). The statistics of HF sea-echo Doppler spectra. IEEE Journal of Oceanic Engineering, 2(1), 19-28.
Behrens, R. T., & Scharf, L. L. (1994). Signal processing applications of oblique projection operators. IEEE Transactions on signal processing, 42(6), 1413-1424.
Bibl, K. (2005). U.S. Patent No. 6,850,552. Washington, DC: U.S. Patent and Trademark Office.
Broche, P., Forget, P., De Maistre, J. C., Devenon, J. L., & Crochet, M. (1987). VHF radar for ocean surface current and sea state remote sensing. Radio Science, 22(1), 69-75.
Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408-1418.
Chen, G., Zhao, Z., Zhu, G., Huang, Y., & Li, T. (2010). HF radio-frequency interference mitigation. IEEE Geoscience and Remote Sensing Letters, 7(3), 479-482.
Chen, Z. Y., Ke, K. J., Su, C. L., Lin, H. S., Lai, Y. L., Lin, Y., & Chu, Y. H. (2023). A Comparative Study on Radio Frequency Interference Suppression and foF2 Scaling for Ionograms. Remote Sensing, 15(8), 2169.
Chen, Z., Zezong, C., Yanni, J., Lingang, F., & Gengfei, Z. (2013). Exploration and validation of wave-height measurement using multifrequency HF radar. Journal of Atmospheric and Oceanic Technology, 30(9), 2189-2202.
Chen, Z., Zeng, G., Zhao, C., & Zhang, L. (2015). A phase error estimation method for broad beam high-frequency radar. IEEE Geoscience and Remote Sensing Letters, 12(7), 1526-1530.
Chen, Z., Xie, F., Zhao, C., & He, C. (2017). Radio frequency interference mitigation in high-frequency surface wave radar based on CEMD. IEEE Geoscience and Remote Sensing Letters, 14(5), 764-768.
Chen, Z., Xie, F., Zhao, C., & He, C. (2018a). An orthogonal projection algorithm to suppress interference in high-frequency surface wave radar. Remote Sensing, 10(3), 403.
Chen, Z., Xie, F., Zhao, C., & He, C. (2018b). Radio frequency interference mitigation for high-frequency surface wave radar. IEEE Geoscience and Remote Sensing Letters, 15(7), 986-990.
Chu, Y. H., & Franke, S. J. (1991). A study of the frequency coherence of stratospheric and tropospheric radar echoes made with Chung‐Li VHF radar. Geophysical research letters, 18(10), 1849-1852.
Chuang, L. Z., Chung, Y. J., & Tang, S. T. (2015). A simple ship echo identification procedure with SeaSonde HF radar. IEEE Geoscience and Remote Sensing Letters, 12(12), 2491-2495.
Crombie, D. D. (1955). Doppler spectrum of sea echo at 13.56 Mc./s. Nature, 175(4459), 681-682.
De Paolo, T., Cook, T., & Terrill, E. (2007). Properties of HF radar compact antenna arrays and their effect on the MUSIC algorithm (pp. 1-10). IEEE.
Drmac, Z. (2000). On principal angles between subspaces of Euclidean space. SIAM Journal on Matrix Analysis and Applications, 22(1), 173-194.
Dzvonkovskaya, A. L., & Rohling, H. (2006, October). Target detection with adaptive power regression thresholding for HF radar. In 2006 CIE International Conference on Radar (pp. 1-4). IEEE.
Dzvonkovskaya, A. L., & Rohling, H. (2007). HF radar ship detection and tracking using WERA system.
Fabrizio, G. A., Gershman, A. B., & Turley, M. D. (2004). Robust adaptive beamforming for HF surface wave over-the-horizon radar. IEEE Transactions on Aerospace and Electronic Systems, 40(2), 510-525.
Guo, X., Sun, H., & Yeo, T. S. (2008). Interference cancellation for high-frequency surface wave radar. IEEE Transactions on Geoscience and Remote Sensing, 46(7), 1879-1891.
Gurgel, K. W., Essen, H. H., & Kingsley, S. P. (1999). High-frequency radars: physical limitations and recent developments. Coastal engineering, 37(3-4), 201-218.
Haardt, M., Zoltowski, M. D., Mathews, C. P., & Nossek, J. (1995, May). 2D unitary ESPRIT for efficient 2D parameter estimation. In 1995 International Conference on Acoustics, Speech, and Signal Processing (Vol. 3, pp. 2096-2099). IEEE.
Hilmer, T. J. (2010). Radar sensing of ocean wave heights (Doctoral dissertation, [Honolulu]:[University of Hawaii at Manoa],[December 2010]).
Julian, P. R. (1975). Comments on the determination of significance levels of the coherence statistic. Journal of the Atmospheric Sciences, 32(4), 836-837.
Ke, K. J., Su, C. L., Kuong, R. M., Chen, H. C., Lin, H. S., Chiu, P. H., ... & Chu, Y. H. (2022). New Chung-Li Ionosonde in Taiwan: System Description and Preliminary Results. Remote Sensing, 14(8), 1913.
Khan, R., Gamberg, B., Power, D., Walsh, J., Dawe, B., Pearson, W., & Millan, D. (1994). Target detection and tracking with a high frequency ground wave radar. IEEE Journal of Oceanic Engineering, 19(4), 540-548.
Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: the parametric approach. IEEE signal processing magazine, 13(4), 67-94.
Li, Y., Yue, X., Wu, X., Zhang, L., Zhou, Q., Yi, X., & Liu, N. (2019). A higher-order singular value decomposition-based radio frequency interference mitigation method on high-frequency surface wave radar. IEEE Transactions on Geoscience and Remote Sensing, 58(4), 2770-2781.
Liberti, J. C., & Rappaport, T. S. (1999). Smart antennas for wireless communications: IS-95 and third generation CDMA applications. Prentice Hall PTR.
Lipa, B. J. (1982). Analysis methods for narrow-beam high-frequency radar sea echo (Vol. 82, No. 252123). US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories.
Lipa, B. J., & Barrick, D. E. (1986). Extraction of sea state from HF radar sea echo: Mathematical theory and modeling. Radio science, 21(1), 81-100.
Liu, Z., Su, H., & Hu, Q. (2016). Radio frequency interference cancelation for skywave over-the-horizon radar. IEEE geoscience and remote sensing letters, 13(3), 304-308.
Luo, H. (2020). Target detection method in short coherent integration time for sky wave over-the-horizon radar. Sādhanā, 45(1), 179.
Nazari, M. E., Huang, W., & Zhao, C. (2019). Radio frequency interference suppression for HF surface wave radar using CEMD and temporal windowing methods. IEEE Geoscience and Remote Sensing Letters, 17(2), 212-216.
Moskowitz, L. (1964). Estimates of the power spectrums for fully developed seas for wind speeds of 20 to 40 knots. Journal of geophysical research, 69(24), 5161-5179.
Palmer, R. D., Gopalam, S., Yu, T. Y., & Fukao, S. (1998). Coherent radar imaging using Capon′s method. Radio Science, 33(6), 1585-1598.
Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE transactions on antennas and propagation, 34(3), 276-280.
Su, H., Liu, H., Shui, P., & Bao, Z. (2013). Adaptive beamforming for nonstationary HF interference cancellation in skywave over-the-horizon radar. IEEE Transactions on Aerospace and Electronic Systems, 49(1), 312-324.
Tian, Z., Wen, B., Jin, L., & Tian, Y. (2017). Radio frequency interference suppression algorithm in spatial domain for compact high-frequency radar. IEEE Geoscience and Remote Sensing Letters, 15(1), 102-106.
Wang, C. Y., Su, C. L., Wu, K. H., & Chu, Y. H. (2017). Cross spectral analysis of CODAR-SeaSonde echoes from sea surface and ionosphere at Taiwan. International Journal of Antennas and Propagation, 2017.
Wang, G., Xia, X. G., Root, B. T., Chen, V. C., Zhang, Y., & Amin, M. (2003). Manoeuvring target detection in over-the-horizon radar using adaptive clutter rejection and adaptive chirplet transform. IEE Proceedings-Radar, Sonar and Navigation, 150(4), 292-298.
Wang, W., & Wyatt, L. R. (2011). Radio frequency interference cancellation for sea-state remote sensing by high-frequency radar. IET radar, sonar & navigation, 5(4), 405-415.
Wyatt, L. R., & Green, J. J. (2009). Measuring high and low waves with HF radar. In OCEANS 2009-EUROPE (pp. 1-5). IEEE.
Zhiben, S., Jianwei, W., Haixiong, Z., & Liang, D. (2022). Interference suppression based on the spatial and temporal characteristics of ocean surface current data. In Journal of Physics: Conference Series (Vol. 2253, No. 1, p. 012041). IOP Publishing.
Zhou, H., Wen, B., & Wu, S. (2005). Dense radio frequency interference suppression in HF radars. IEEE signal processing letters, 12(5), 361-364.
Zhou, H., & Wen, B. (2012). Radio frequency interference suppression in small-aperture high-frequency radars. IEEE Geoscience and Remote Sensing Letters, 9(4), 788-792.
指導教授 朱延祥(Yen-Hsyang Chu) 審核日期 2023-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明