博碩士論文 110223067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.137.217.242
姓名 曾昭瑋(Jau-Wei Tzeng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以溫和水相法封裝胰島素至鋁基底金屬有機骨架材料A520於糖尿病治療之研究
(A Mild Water-based Approach for Obtaining Encapsulation of Insulin into Aluminum -based Metal-Organic Frameworks A520 for Diabetic Treatments)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 糖尿病為一種常見的慢性代謝異常疾病,根據統計全球現有五億人罹患糖尿病。即使目前有設計許多治療方法來治療第一型與第二型糖尿病,但較為嚴重的糖尿病患者只能透過直接注射胰島素來治療,所以開發口服胰島素來減輕患者因注射所帶來的痛苦與不便是必要的。 有機金屬骨架材料 (MOFs) 是一種新興的奈米孔洞材料,其孔洞性質在各領域皆有很大的發展潛力,也是酵素固定化與藥物載體理想的材料之一。 本篇論文成功的以較溫和的水相環境快速合成鋁基底金屬骨架有機材料A520,其材料擁有耐酸的性質,並且其中心金屬為鋁,在醫學上鋁鹽已被用作佐劑已有很長的歷史,對人體有相當好的生物相容性,而有機配體反丁烯二酸皆對於人體有很低的毒性,因此A520具有很大的潛力能夠成為口服胰島素藥物載體。本篇論文也成功的以鋁基底金屬有機骨架材料包覆胰島素,其包覆率約為5%。此外,本論文也使用模擬腸液、胃液與血液的溶液來測試材料的穩定度,其結果也驗證了材料對於胃與小腸環境之耐受性與在血液之環境能夠崩解之特性。 本論文亦成功以同樣的方式合成CAT@A520,並且在大分子蛋白水解酶(proteinase K)的作用下,能夠保護過氧化氫酶並維持良好的催化活性。其證明此材料具有一定的孔洞篩選性,能夠保護酵素不被大分子蛋白酶所分解而失活,而同理可以推論其可以保護胰島素不被胃中大分子的胃蛋白酶所攻擊而分解。本研究充分顯示了A520對於成為胰島素藥物載體的可行性,期望其能夠對於口服胰島素的發展帶來突破。
摘要(英) Diabetes is a common chronic metabolic disorder. According to statistics, there are currently 500 million people worldwide suffering from diabetes. Despite the availability of various treatment methods for type 1 and type 2 diabetes, individuals with severe diabetes can only rely on direct insulin injections for treatment. Therefore, the development of oral insulin (INS) administration to alleviate the pain and inconvenience caused by injections is necessary.Metal-organic frameworks (MOFs) are promising porous nanoscale materials with diverse applications in various fields. One area where they show great potential is in enzyme immobilization and drug delivery systems. This paper successfully achieved the rapid synthesis of aluminum-based metal-organic framework material A520 in a relatively mild water-based environment. The material exhibits acid-resistant properties, with aluminum as the central metal. Aluminum salts have a long history of use as adjuvants in medicine and are known for their good biocompatibility with the human body. Additionally, the organic ligand, fumaric acid, has low toxicity to the human body. Therefore, A520 has great potential to serve as an oral insulin drug carrier. The study achieved a 5% insulin loading capacity in the INS@A520 biocomposite. A520 exhibited remarkable stability in simulated gastric and intestinal fluids, as well as efficient dissolution in the bloodstream. This highlights its potential as an innovative carrier for oral insulin delivery, paving the way for future advancements in MOF-based drug delivery systems. Using a similar approach, we successfully obtained the CAT@A520 biocomposite by encapsulating the Catalase (CAT) enzyme within A520. In the presence of the proteinase K enzyme, this material effectively shields CAT, maintaining its catalytic activity. This showcases the material′s selective pore behavior, safeguarding enzymes from degradation by large molecule proteases and preserving their functionality. Consequently, it can be inferred that A520 may also shield insulin from gastric proteases′ attack and degradation in the stomach. This research strongly supports the viability of A520 as an insulin drug carrier, holding the potential for significant advancements in oral insulin development.
關鍵字(中) ★ 鋁基底有機金屬骨架材料
★ 胰島素
★ 蛋白固定化
★ 糖尿病治療
★ 溫和水相合成法
關鍵字(英)
論文目次 摘要 I
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 X
第 1 章 緒論 1
1.1 有機金屬骨架材料(Metal Organic Frameworks) 1
1.2 鋁金屬之有機金屬骨架材料 3
1.3 鋁金屬之金屬有機骨架材料-Aluminum Fumarate (A520) 4
1.4 糖尿病 4
1.5 研究目的 5
第 2 章 實驗部分 6
2.1 化學藥品 6
2.2 實驗儀器 8
2.3 實驗使用儀器 8
2.3.1 實驗鑑定儀器 9
2.4 實驗儀器之原理 10
2.4.1 X 射線粉末繞射圖譜 10
2.4.2 場發射掃描式電子顯微鏡 12
2.4.3 高效能液相層析儀 (High Performance Liquid Chromatography, HPLC) 13
2.4.4 等溫氮氣吸/脫附儀 (Nitrogen Ad/desorption Isotherms) 14
2.5 酵素與激素 17
2.5.1 過氧化氫酶 17
2.5.2 蛋白酶K 17
2.5.3 胰島素 18
2.6 實驗步驟 20
2.6.1 金屬有機骨架材料-A520之合成 20
2.6.2 金屬有機骨架材料-CAT@A520 之合成 20
2.6.3 金屬有機骨架材料-INS@A520 之合成 21
2.6.4 布拉德福蛋白質定量法 (Bradford Assay) 21
2.6.5 十二烷基硫酸鈉聚丙醯胺膠體電泳 (SDS-PAGES) 23
2.6.6 測定過氧化氫酶之活性 25
2.6.7 酵素結合免疫吸附分析法Enzyme-linked immunosorbent assay (ELISA) 27
2.6.8 高效能液相層析儀HPLC之測定 28
第 3 章 結果與討論 30
3.1 A520與INS@A520之鑑定 30
3.1.1 X射線粉末繞射圖譜分析 31
3.1.2 INS@A520布拉德福蛋白質測定法 (Bradford assay) 33
3.1.3 場發射掃描電子顯微鏡 (SEM) 34
3.1.4 A520材料酸性測試 35
3.1.5 A520 PBS血液模擬崩解測試 37
3.1.6 INS@A520之BET測定 39
3.1.7 高效能液相層析儀 (HPLC) 40
3.1.8 酵素結合免疫吸附分析法(Enzyme-linked immunosorbent assay, ELISA) 41
3.2 CAT@A520之鑑定與活性測試 43
3.2.1 X射線粉末繞射圖譜分析 43
3.2.2 CAT@A520布拉德福蛋白質測定法 (Bradford Assay) 44
3.2.3 十二烷基硫酸鈉聚丙醯胺膠體電泳 45
3.2.4 場發射掃描式電子顯微鏡 (SEM) 46
3.2.5 CAT@A520之BET測定 47
3.2.6 過氧化氫酶活性測定 (FOX assay) 48
第 4 章 結論與未來展望 50
參考文獻 51
參考文獻 (1) Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706. DOI: 10.1038/378703a0.
(2) Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279. DOI: 10.1038/46248.
(3) Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714. DOI: 10.1038/nature01650.
(4) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O′Keeffe, M.; Yaghi, O. M. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300 (5622), 1127-1129. DOI: 10.1126/science.1083440 (acccessed 2023/05/31).
(5) Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231. DOI: 10.1021/cr2003147.
(6) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 2009, 38 (5), 1477-1504. DOI: 10.1039/b802426j PubMed.
(7) Bétard, A.; Fischer, R. A. Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083. DOI: 10.1021/cr200167v.
(8) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125. DOI: 10.1021/cr200324t.
(9) Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M. Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 2014, 8 (7), 7451-7457. DOI: 10.1021/nn5027092.
(10) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268. DOI: 10.1021/cr200256v.
(11) He, C.; Liu, D.; Lin, W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers. Chemical Reviews 2015, 115 (19), 11079-11108. DOI: 10.1021/acs.chemrev.5b00125.
(12) Islamoglu, T.; Chen, Z.; Wasson, M. C.; Buru, C. T.; Kirlikovali, K. O.; Afrin, U.; Mian, M. R.; Farha, O. K. Metal–Organic Frameworks against Toxic Chemicals. Chemical Reviews 2020, 120 (16), 8130-8160. DOI: 10.1021/acs.chemrev.9b00828.
(13) Xu, W.; Yaghi, O. M. Metal–Organic Frameworks for Water Harvesting from Air, Anywhere, Anytime. ACS Central Science 2020, 6 (8), 1348-1354. DOI: 10.1021/acscentsci.0c00678.
(14) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444. DOI: 10.1126/science.1230444 (acccessed 2023/05/31).
(15) Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969. DOI: 10.1021/cr200304e.
(16) Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry 2013, 19 (34), 11139-11142. DOI: 10.1002/chem.201301560 PubMed.
(17) Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie 1985, 24, 1026-1040.
(18) Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330, 10.1039/C0DT00708K. DOI: 10.1039/C0DT00708K.
(19) Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582. DOI: 10.1021/cm900069f.
(20) Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214, 10.1039/B513750K. DOI: 10.1039/B513750K.
(21) Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644, 10.1039/B804126A. DOI: 10.1039/B804126A.
(22) Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry 2019, 12 (3), 295-315. DOI: https://doi.org/10.1016/j.arabjc.2016.01.003.
(23) Wu, T.; Prasetya, N.; Li, K. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. Journal of Membrane Science 2020, 615, 118493. DOI: https://doi.org/10.1016/j.memsci.2020.118493.
(24) Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B. J.; Jacobsen, L. M.; Schatz, D. A.; Lernmark, Å. Type 1 diabetes mellitus. Nature Reviews Disease Primers 2017, 3 (1), 17016. DOI: 10.1038/nrdp.2017.16.
(25) Baskaran, S. Structure and Regulation of Yeast Glycogen Synthase. 2010.
(26) Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In Handbook of Materials Characterization, Sharma, S. K. Ed.; Springer International Publishing, 2018; pp 113-145.
(27) Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). 1985, 57 (4), 603-619. DOI: doi:10.1351/pac198557040603 (acccessed 2023-06-14).
(28) Ogura, Y.; Yamazaki, I. Steady-state kinetics of the catalase reaction in the presence of cyanide. J Biochem 1983, 94 (2), 403-408. DOI: 10.1093/oxfordjournals.jbchem.a134369 From NLM.
(29) Jiang, Z. Y.; Woollard, A. C.; Wolff, S. P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett 1990, 268 (1), 69-71. DOI: 10.1016/0014-5793(90)80974-n From NLM.
(30) Najjar, A.; Alawi, M.; AbuHeshmeh, N.; Sallam, A. A Rapid, Isocratic HPLC Method for Determination of Insulin and Its Degradation Product. Advances in Pharmaceutics 2014, 2014, 749823. DOI: 10.1155/2014/749823.
指導教授 謝發坤 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明