博碩士論文 110324088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.116.47.194
姓名 曾棻彥(Fen-Yan Zeng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
(Development of Nickel-Copper Carbon Felt Electrodes in Water-Containing Deep Eutectic Solvent-based Electrochemical System for Water Splitting)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究★ 氧化鎂/聚丙烯酸/聚偏二氟乙烯修飾聚丙烯隔離膜應用於鋰離子電池
★ 以有機金屬框架製備鐵摻雜富鋰鎳錳鈷氧正極材料 應用於鋰離子電池之研究★ Na1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/ 醋酸纖維素複合型固態電解質應用於鈉離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 為因應全球淨零碳排放趨勢,尋求可再生能源來解決能源危機和環境問題是首要辦法。其中,氫能因具有高能量密度與低碳排等特色,被視為傳統高汙染產業的重要替代能源。然而,水電解製氫因為在過程中沒有二氧化碳的排放,是近幾年主要用來生產氫氣的方式之一,但受昂貴的催化劑價格與高過電位影響,限制了氫氣的製備效率和可行性。為了解決這些問題,本研究致力於開發低成本的過渡金屬催化劑來取代貴金屬催化劑,材料的選擇上,以具有高催化活性與適當氫吸附能的鎳及銅金屬,透過金屬合金化的方式,在三維結構的碳纖維氈基材上,通過一步驟電沉積來合成鎳銅合金複合材料,並進一步將催化材料應用於水電解產氫。
本研究在無外加水(0 wt.%)及不同比例外加水(1 wt.%、3 wt.%以及5 wt.%)之氯化膽鹼/乙二醇深共熔系統中,進行恆電位電沉積。實驗中,分別在-1.5 V(V vs Ag/AgCl sat, KCl)及-2V(V vs Ag/AgCl sat, KCl)的電壓下進行材料的製備。從結果發現,在深共熔系統中添加額外水,除有助於使得沉積結構更均勻外,對於鎳銅合金比例也具調控性。其中,以-2NiCu(3)/CF複合材料在1.0 M KOH溶液中表現出最優異的析氫(27 mV@10 mA/cm2)與析氧(390 mV@50 mA/cm2)過電位表現,透過金屬間的協同作用以及添加水導致的更細緻結構,有助於活性位點數量的提升,對於催化性能產生直接影響。另外,該複合材料在長時間的水電解產氫也展現優異的穩定性,水電解電壓達1.52 V,優於商業上常見之水電解槽,代表在含微量水的深共熔系統中製備雙功用電催化劑,是相當有潛力的做法,這將對於綠氫的生產提供更多的選擇性。
摘要(英) Energy is a crucial element in modern daily life and has a significant impact on our future. Hydrogen, a clean-burning fuel, can be produced from various sources and applied in multiple industries, such as transportation and power generation. Water electrolysis, using electricity to split water molecules into hydrogen and oxygen, is an environmentally friendly method to produce pure hydrogen. However, there are still obstacles to overcome, such as the high drive voltage and high cost of production. Transition metal-based materials are regarded as a potential solution to this issue due to their cost-effectiveness and high catalytic activity for water electrolysis, as suggested by many studies. Our research proposes a one-step electrodeposition method in a choline chloride/ethylene glycol deep eutectic solvent (ChCl/EG DES) with varying water content to fabricate nickel-copper alloy/carbon fiber felt composite electrodes for water splitting.
Based on the materials analysis, it can be confirmed through XRD, SEM, and XPS analyses that the Nickel-Copper alloy can be effectively synthesized using the water-containing DES system. The catalyst electrode synthesized at -2 V in ChCl/EG with 3 wt.% water exhibits an excellcent hydrogen evolution (HER) overpotential (27 mV@10 mA/cm2) in 1.0 M KOH solution, outperforming previously reported values. The smaller charge transfer impedance and Tafel slope indicate that the Nickel-Copper alloy/CF electrode has high electron transport efficiency, which facilitates chemical reactions. In addition, the stability of the electrode is confirmed by a 12 hour chronopotentiometry test, and the overall water splitting voltage obtained by the stability test is lower than that of commercial devices, indicating that the composite electrode has the potential to replace commercial catalysts. Its outstanding catalytic performance proves that the one-step electrodeposition in the water-containing DES system is a feasible method for synthesizing composite electrodes.
關鍵字(中) ★ 含水深共熔溶劑
★ 鎳基合金催化劑
★ 水電解
★ 析氫
★ 析氧
關鍵字(英) ★ Deep eutectic solvent
★ Nickel-based alloy catalyst
★ Water electrolysis
★ Hydrogen Evolution
★ Oxygen Evolution
論文目次 摘要 i
致謝 iii
目錄 v
圖目錄 viii
表目錄 xii
第一章、序論 1
1-1能源的發展 1
1-2氫能源種類 2
1-3全球氫能源發展 3
1-4目前電解產氫技術概況 4
1-5水電解原理 7
1-5-1 陰極析氫反應(Hydrogen Evolution Reaction,HER) 7
1-5-2 陽極析氧反應(Oxygen Evolution Reaction,OER) 10
1-6 深共熔溶劑(Deep Eutectic Solvents,DES) 12
1-6-1 深共熔溶劑種類 13
1-6-2深共熔溶劑形成機制 15
1-6-3目前深共熔溶劑實際應用範圍 16
1-7 研究動機 18
第二章、文獻回顧 19
2-1 常見之析氫催化劑 19
2-2 常見之析氧催化劑 23
2-3 提升催化活性之方式 27
2-4合金材料常見之合成方式 29
2-5合金材料優勢 31
2-6 氯化膽鹼-乙二醇深共熔系統電沉積相關應用 32
2-7 含水的深共熔系統電沉積相關應用 33
第三章、實驗方法 37
3-1 實驗架構 37
3-2 實驗步驟 40
3-2-1碳氈基材前處理 40
3-2-2 深共熔溶劑的製備 40
3-2-3 鎳銅合金複合電極的製備 41
3-2-4電極材料之電化學分析 42
3-3 複合電極材料之材料分析 43
3-3-1 傅立葉轉換紅外線光譜儀 (Fourier-Transform Infrared Spectroscopy, FTIR) 44
3-3-2 流變儀 (Rheometers) 44
3-3-3 導電度計 (Conductivity Meter) 45
3-3-4 X射線繞射儀 (X-ray Diffraction, XRD) 45
3-3-5 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 46
3-3-6 X射線光電子能譜儀 (X-ray photoelectron spectroscopy , XPS) 46
3-4 複合電極材料之電化學分析 47
3-4-1 線性掃描伏安法 (Linear Sweep Voltammetry,LSV) 48
3-4-2 塔佛動力學 (Tafel Kinetics) 49
3-4-3 電化學阻抗圖譜 (Electrochemical Impedance Spectroscopy,EIS) 49
3-4-4 電雙層電容 (Double-Layer Capacitance,Cdl) 50
3-4-5 恆電流測試(Chronopotentiometry test,CP) 50
3-4-6 腐蝕電位(Corrosion Potential) 51
3-4-7 產氫效率 52
3-4-8 氣相層析質譜儀 53
第四章、結果與討論 54
4-1 碳氈基材前處理分析 54
4-2 無水及含少量水之氯化膽鹼/乙二醇深共熔溶劑性質分析 56
4-2-1 無水氯化膽鹼/乙二醇深共熔溶劑之FTIR分析 56
4-2-2 含水氯化膽鹼/乙二醇深共熔溶劑之FTIR分析 56
4-2-3 含水氯化膽鹼/乙二醇深共熔溶劑之導電度及粘度分析 59
4-3 電觸媒複合材料之材料分析 62
4-3-1 電觸媒複合材料之XRD分析 62
4-3-2 電觸媒複合材料之SEM分析 63
4-3-3 電觸媒複合材料之EDS分析 67
4-3-4 電觸媒複合材料之XPS分析 69
4-4 含水氯化膽鹼/乙二醇深共熔溶劑中鎳銅合金複合材料形成機制 72
4-5 電觸媒複合材料之電性分析 73
4-5-1線性掃描伏安: 析氫過電位分析 73
4-5-2線性掃描伏安法: 析氧過電位分析 79
4-5-3 塔佛動力學:複合材料之動力學分析 85
4-5-4 電化學阻抗:複合材料之動力學分析 87
4-5-5 電雙層電容:複合材料之電化學活性面積分析 92
4-5-6 腐蝕電位:複合材料之耐腐蝕性測試 96
4-5-7 恆電流測試:複合材料之長期穩定性分析 99
4-5-8 法拉第效率:複合材料之析氫及析氧效能分析 102
4-5-9 氣相層析質譜儀:析氫端產氫純度分析 104
第五章、結論與未來展望 105
5-1 結論 105
5-1-1 含水深共熔系統製備鎳銅合金複合材料 105
5-1-2 鎳銅合金複合材料之電化學表現 107
5-2 未來展望 109
參考文獻 110
參考文獻 1. Borowski, P.F, Karlikowska, B. Clean Hydrogen Is a Challenge for Enterprises in the Era of Low-Emission and Zero-Emission Economy. Energies 2023, 16, P.1171.
2. 工研院. 「氫能發展藍圖」,工業餘氫純化再利用也能發電. 2022;Available from: https://e-info.org.tw/node/234424
3. 打造氫能新經濟. 2022;Available from: https://www.businesstoday.com.tw/article/category/183015/post/202208170063/
4. Alzahrani, A, et al. A review on hydrogen-based hybrid microgrid system: Topologies for hydrogen energy storage, integration, and energy management with solar and wind energy. Energies, 2022, 15, P.7979.
5. Taipabu, M.I, et al. A critical review of the hydrogen production from biomass-based feedstocks: Challenge, solution, and future prospect. Process Safety and Environmental Protection, 2022, 164, P.384-407.
6. Bockris, J.O. Energy: the solar-hydrogen alternative. 1975.
7. LI, L, et al. Review and outlook on the international renewable energy development. Energy and Built Environment, 2022, 3, P.139-157.
8. 台灣經濟研究院. 氫能發展趨勢,各國何去何從. 2022; Available from: https://findit.org.tw/researchPageV2.aspx?pageId=2001
9. CEPCONSULT. The development of hydrogen energy. 2021.
10. Kumar, S. S, HIMABINDU, V. Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2019, 2, P.442-454.
11. Taibi, E, et al. Green hydrogen cost reduction. 2020.
12. Zahra, R, et al. A review on nickel cobalt sulphide and their hybrids: Earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, P.24518-24543.
13. Cheng, Y. Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Progress in natural science: materials international, 2015, 25, P.545-553.
14. Wei, J, et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-micro letters, 2018,10, P.1-15.
15. Walter, C, et al. Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chemical Science, 2021, 12, P.8603-8631.
16. Wang, J, et al. Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications. Advanced materials, 2017, 29, P.1605838.
17. Johnston, B, et al. Hydrogen: the energy source for the 21st century. Technovation, 2005, 25, P.569-585.
18. Yan, Z, et al. Electrodeposition of (hydro) oxides for an oxygen evolution electrode. Chemical Science, 2020, 11, P.10614-10625.
19. Suen, N.T, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, P.337-365.
20. Smith, E.L, et al. Deep eutectic solvents (DESs) and their applications. Chemical reviews, 2014, 114, P.11060-11082.
21. Abbott, A.P, et al. Eutectic‐based ionic liquids with metal‐containing anions and cations. Chemistry–A European Journal, 2007.
22. Sut, S, et al. "Natural Deep Eutectic Solvents (NADES) to enhance berberine absorption: An in vivo pharmacokinetic study." Molecules ,2017, 22, P.1921.
23. Stefanovic, R, et al. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Physical Chemistry Chemical Physics, 2017, 19, P.3297-3306.

24. Alizadeh, V, et al. Are there magic compositions in deep eutectic solvents? Effects of composition and water content in choline chloride/ethylene glycol from ab initio molecular dynamics. The Journal of Physical Chemistry B, 2020, 124, P7433-7443.
25. Abbott, et al. Application of ionic liquids to the electrodeposition of metals. Physical Chemistry Chemical Physics, 2006, 8, P.4265-4279.
26. Abbott, et al. Electrodeposition of nickel using eutectic based ionic liquids. Transactions of the IMF, 2008, 86, P.234-240.
27. Popescu, A.M, et al. Electrochemical study and electrodeposition of copper (I) in ionic liquid-reline. Chemical Research in Chinese Universities, 2013, 29, P.991-997.
28. Yu, D and Zhimin, X. Deep eutectic solvents as a green toolbox for synthesis. Cell Reports Physical Science, 2022.
29. Nørskov, J. K, et al. Trends in the exchange current for hydrogen evolution. Journal of The Electrochemical Society, 2005, 152, P.23.
30. Jaramillo, T. F, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science, 2007, 317, P.100-102.
31. Paul, R, et al. Recent advances in carbon‐based metal‐free electrocatalysts. Advanced Materials, 2019, 31, P.1806403.
32. Markovića, N.M, et al. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. Journal of the Chemical Society, Faraday Transactions, 1996, 92, P.3719-3725.
33. Sapountzi, F.M, et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 2017, 58, P.1-35.
34. Ma, Y.Y, et al. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@ C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10, P.788-798.
35. Scofield, M.E, et al. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions. ACS Catalysis, 2016, 6, P.3895-3908.
36. Kitchin, J. R, et al. Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. The Journal of chemical physics, 2004, 120, P. 10240-10246.
37. Zhang, C, et al. The OH−-driven synthesis of Pt–Ni nanocatalysts with atomic segregation for alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, P.5475-5481.
38. Wei, J, et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-micro letters, 2018, 10, P.1-15.
39. Anantharaj, S, et al. Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy, 2017, 39, P.30-43.
40. Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, P.11053-11077.
41. Anantharaj, S, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review. Acs Catalysis, 2016, 6, P.8069-8097.
42. Xie, J, and Yi, X. Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges. Chemistry–A European Journal, 2016, 22, P.3588-3598.
43. Zhou, M, et al. Fabrication of 3D microporous amorphous metallic phosphides for high-efficiency hydrogen evolution reaction. Electrochimica Acta, 2019, 306, P.651-659.
44. Elezović, N. R, et al. Kinetics of the hydrogen evolution reaction on Fe–Mo film deposited on mild steel support in alkaline solution. Electrochimica Acta, 2005, 50, P.5594-5601.
45. Santana, R. A, et al. Studies on electrodeposition of corrosion resistant Ni–Fe–Mo alloy. Journal of Materials Science, 2007, 42, P.2290-2296.
46. Cabello, G, et al. Microwave-electrochemical deposition of a Fe-Co alloy with catalytic ability in hydrogen evolution. Electrochimica Acta, 2017, 235, P.480-487.
47. Hu, X, et al. Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC advances, 2019, 9, P.31563-31571.
48. Gutić, S. J, et al. Electrochemically synthesized Ni@ reduced graphene oxide composite catalysts for hydrogen evolution in alkaline media–the effects of graphene oxide support. Int. J. Electrochem. Sci, 2019, 14, P.8532-8543.
49. Gutić, S, J, et al. Improved catalysts for hydrogen evolution reaction in alkaline solutions through the electrochemical formation of nickel-reduced graphene oxide interface. Physical Chemistry Chemical Physics, 2017, 19, P.13281-13293.
50. Shao, M, et al. Recent advances in electrocatalysts for oxygen reduction reaction. Chemical reviews, 2016, 116, P.3594-3657.
51. Duan, J, et al. Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS nano, 2015, 9, P.931-940.
52. Shinde, S. S, et al. Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se. Journal of Materials Chemistry A, 2015, 3, P.12810-12819.
53. Huang, X, et al. Micelle-template synthesis of nitrogen-doped mesoporous graphene as an efficient metal-free electrocatalyst for hydrogen production. Scientific reports, 2014, 4, P.7557.
54. Jiao, Y, et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy, 2016, 1, P.1-9.
55. Frydendal, R, et al. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem, 2014, 1, P. 2075-2081.
56. Suen, N.T, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, P.337-365.
57. Xie, L, et al. High‐performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angewandte Chemie International Edition, 2017, 56, P.1064-1068.
58. Xu, Y, et al. Nickel nanoparticles encapsulated in few‐layer nitrogen‐doped graphene derived from metal–organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Advanced Materials, 2017, 29, P.1605957
59. Zhu, Y.P, et al. Cover Picture: Self‐Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie International Edition, 2017, 56, P.1324-1328.
60. Walter, C, et al. A molecular approach to manganese nitride acting as a high performance electrocatalyst in the oxygen evolution reaction. Angewandte Chemie, 2018, 130, P.706-710.
61. Liu, W, et al. One-step electroreductively deposited iron-cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting. Nano Energy, 2017, 38, P.576-584.
62. Bockris, J. O′M, and Takaaki O. The electrocatalysis of oxygen evolution on perovskites. Journal of The Electrochemical Society, 1984, 131, P.290.
63. Suntivich, J, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334, P.1383-1385.
64. Subbaraman, R, et al. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nature materials, 2012, 11, P.550-557.
65. Vo, T.G, et al. Controllable electrodeposition of binary metal films from deep eutectic solvent as an efficient and durable catalyst for the oxygen evolution reaction. Dalton Transactions, 2019, 48, P.14748-14757.
66. Seh, Z. Wei, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355, P.4998.
67. Yang, H, et al. Self‐supported electrocatalysts for practical water electrolysis. Advanced Energy Materials, 2021, 11, P.2102074.
68. Xu, H, et al. Bimetallic NiCu alloy catalysts for hydrogenation of levulinic acid. ACS Applied Nano Materials, 2021, 4, P.3989-3997.
69. Lim, D, et al. Bimetallic NiFe alloys as highly efficient electrocatalysts for the oxygen evolution reaction. Catalysis Today, 2020, 352, P.27-33.
70. Solmaz, R, and Gülfeza K. "Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis." Electrochimica Acta ,2009, 54, P.3726-3734.
71. Jakšić, M. M. "Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory." International Journal of Hydrogen Energy ,1987,12, P. 727-752.
72. Li, W, et al. Electrochemical behavior and electrodeposition of Ni-Co alloy from choline chloride-ethylene glycol deep eutectic solvent. Applied Surface Science, 2020, 507, P.144889.
73. Hu, Y, et al. Electrodeposition of Ni-Mo-P coatings in choline chloride-ethylene glycol deep eutectic electrolyte for high performance electrocatalyst toward hydrogen evolution reaction. Applied Catalysis A: General, 2023, 662, P.119267.
74. Li, R, et al. Electrodeposition of composition controllable ZnNi coating from water modified deep eutectic solvent. Surface and Coatings Technology, 2019, 366, P.138-145.
75. Liu, Y.H, et al. Green fabrication of nanostructured Ni(OH)2/Ni/Carbon felt electrodes with water-containing deep eutectic solvent for enhanced water electrolysis performance. Journal of Power Sources, 2023, 570, P.233043.
76. Le, T. X, et al. Carbon felt based-electrodes for energy and environmental applications: A review. Carbon, 2017, 122, P.564-591.
77. Vieira, L, et al. In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface. Physical Chemistry Chemical Physics, 2015, 17, P.12870-12880.
78. Hayyan, M, et al Functionalization of graphene using deep eutectic solvents. Nanoscale research letters, 2015, 10, P.1-26.
79. Gabriele, F, et al. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. Journal of Molecular Liquids, 2019, 291, P.111301.
80. Lin, Z, et al. Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys. Journal of Materials Chemistry A, 2017, 5, P.773-781.
81. Wang, Y.M, et al. Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2 electrode. RSC advances, 2012, 2, P.1074-1082.
82. Wang, Y, et al. Electrochemical behaviour in process of electrodeposition Ni–P alloy coating. Surface engineering, 2014, 30, P.557-561.
83. Wang, H, et al. The synthesis of Ni–Cu alloy nanofibers via vacuum thermal Co-reduction toward hydrogen generation from hydrazine decomposition. Catalysis Letters, 2019, 149, P.77-83.
84. Niu, J, et al. Ultrarapid synthesis Ni-Cu bifunctional electrocatalyst by self-etching electrodeposition for high-performance water splitting reaction. Applied Surface Science, 2021, 561, P.150030.
85. Zhang, Y, et al. Rapid synthesis of cobalt nitride nanowires: highly efficient and low‐cost catalysts for oxygen evolution. Angewandte Chemie, 2016, 128, P.8812-8816.
86. Anantharaj, S, et al. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Letters, 2019, 4, P.1260-1264.
87. Ahsan, M.A, et al. Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions. Journal of the American Chemical Society, 2020, 142, P.14688-14701.
88. Zhang, Y, et al. 3D porous hierarchical nickel–molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen‐evolution‐reaction electrocatalysts. Advanced Energy Materials, 2016, 6, P.1600221.
89. Sharland, S. M. A review of the theoretical modelling of crevice and pitting corrosion. Corrosion science, 1987, 27, P.289-323.
90. Aliyu, A, et al. Correlation Between Texture, Grain Boundary Constitution, and Corrosion Behavior of Ni-Cu Coatings. Metallurgical and Materials Transactions A, 2022, 53, P.1440-1449.
91. Varea, A, et al. Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films. Int. J. Electrochem. Sci, 2012, 7, P.1288-1302.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明