博碩士論文 110324027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.21.12.122
姓名 洪章堯(Jhang-Yao Hong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究
(In Situ Polymerization of Dual-Salt Poly(1,3-dioxolane) Gel-Like Electrolyte for Lithium-Ion Batterie義)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究★ 氧化鎂/聚丙烯酸/聚偏二氟乙烯修飾聚丙烯隔離膜應用於鋰離子電池
★ 以有機金屬框架製備鐵摻雜富鋰鎳錳鈷氧正極材料 應用於鋰離子電池之研究★ Na1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/ 醋酸纖維素複合型固態電解質應用於鈉離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 高能量密度的鋰離子電池有著廣泛的應用,但安全風險始終阻礙其更廣泛的發展。由於傳統電池中的液體電解質(Liquid Electrolyte, LE)是電池危害的主要來源。為了避免與 LE相關的安全性問題,開發更穩定、更安全的電解質是一個重要的議題。傳統固態電解質多以外部生成電解質薄膜的方式製備,容易受到固體與固體之間不均勻的界面限制,因此本研究採用原位聚合生成(In situ polymerization)製備具有固液特性的凝膠狀電解質解決了傳統固態電解質不均勻界面限制的問題,並且減少了短路造成的熱失控相關問題,是一種可行的策略。
本研究採用1,3-二氧戊環(1,3-dioxolane, DOL)與碳酸乙烯酯(Ethylene Carbonate, EC)添加雙(三氟甲基磺醯)氨基鋰(lithium bis(trifluoromethanesulfonyl) imide, LiTFSI)作為鋰鹽以及六氟磷酸鋰(lithium hexafluorophosphate, LiPF6)作為誘發劑引發DOL溶劑開環聚合,形成類凝膠電解質(Gel-Like Electrolyte , GLE)。透過調整誘發劑和鋰鹽濃度的比例以討論聚合度對離子電導率以及鋰離子轉移數的影響,並得到最佳比例的GLE。所得的GLE表現出高聚和度84.3%,並擁有4.16x10-5(S/cm)的離子電導率以及高鋰離子轉移數0.63,同時也良好的電化學穩定性(>5.0 V) 保持其結構完整性。在1.0 mA/cm2電流密度超過1000小時以上的穩定鋰沉積與剝落行為可以避免形成鋰枝晶造成短路和熱失控相關問題。應用於LFP電池展示出高達161.8 mAh/g的電容量在0.1 C充放電條件下,並且1.0 C充放電速率條件下200圈循環後仍有133.0 mAh/g的電容量,而在高電壓NCM811電池應用中,展現出202.6 mAh/g的初始電容量在0.2 C時,並且循環100圈後,仍有70.7 %的電容保持率。綜合上述,本研究所使用的類凝膠電解質表現出優秀的電化學性能應用在LFP與NCM811電池,同時對環境友善的材料與製程,有助於鋰離子電池更廣泛的發展應用。
摘要(英) High-energy density lithium-ion batteries have widely applications, but their development is hindered by safety risks. The liquid electrolyte (LE) in conventional batteries is the main source of hazards. To address the safety issues associated with LE, it is crucial to develop more stable and safer electrolytes. In this regard, traditional solid-state electrolytes often poor contact due to the formation of solid-solid interfaces. Therefore, this study proposes an in-situ polymerization method to synthesize a gel-like electrolyte (GLE) with solid-liquid characteristics, which overcomes the limitations of traditional solid-state electrolytes, making it a viable strategy.
In this study, 1,3-dioxolane (DOL) and ethylene carbonate (EC) were used as solvents, and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium hexafluorophosphate (LiPF6) were used as initiators to induce the ring-opening polymerization of DOL. This resulted in the formation of gel-like electrolyte. By adjusting the ratio of initiators and lithium salts, the influence of degree of polymerization on ion conductivity and lithium ion transference number was investigated, leading to the optimal ratio of gel-like electrolyte. The obtained GLE exhibited a high polymerization degree of 84.3%, an ion conductivity of 4.16x10-5 S/cm, and a high lithium ion transference number of 0.63. It also demonstrated good electrochemical stability (>5.0 V) while maintaining its structural integrity. Stable lithium ion stripping and plating were achieved for over 1000 hours at a current density of 1.0 mA/cm2, preventing the formation of lithium dendrites and associated short-circuit and thermal runaway issues. When applied to LFP batteries, it demonstrated a high capacity of 161.8 mAh/g under 0.1 C charging/discharging conditions. Even after 200 cycles at a charging/discharging rate of 1.0 C, it still maintained a capacity of 133.0 mAh/g. In high-voltage NCM811 battery applications, it demonstrates an initial capacity of 202.6 mAh/g at 0.2 C, with a capacity retention of 70.7% after 100 cycles. In conclusion, the developed GLE in this study exhibited excellent electrochemical performance when used in LFP and NCM811 batteries. Moreover, its environmentally friendly materials and processes contribute to the wider development and application of lithium-ion batteries.
關鍵字(中) ★ 鋰離子電池
★ 原位聚合生成法
★ 雙鋰鹽系統
★ 1,3-二氧戊環
★ 類凝膠電解質
關鍵字(英) ★ Lithium-ion batteries
★ In situ polymerization
★ Dual-salt system
★ 1-3,dioxolane
★ Gel-Like Electrolyte
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
第一章 序論 1
1-1 鋰離子電池的優勢與特性 1
1-2 鋰離子電池的市場需求與安全疑慮 4
1-3 鋰離子電池主要的內部元件 5
1-3-1正極材料 5
1-3-2負極材料 8
1-3-3液態電解液 (Liquid Electrolyte,LE) 9
1-3-4隔離膜 (Separator) 12
1-4 電池內部熱失控過程 13
第二章 文獻回顧 15
2-1 固態電解質的發展與限制 15
2-1-1無機陶瓷電解質(ICEs) 15
2-1-2固態聚合物電解質(SPEs) 16
2-1-3 複合固態電解質(SCEs) 21
2-2 原位生成法製備凝膠聚合物電解質 23
2-2-1 原位熱化學交聯製備方式 25
2-3 LiPF6 誘發1,3-二氧戊環(DOL)開環聚合 29
2-3-1 GPE的電化學性能 30
2-3-2 影響GPE熱穩定因素 32
2-3-3 分析不同增塑劑配比對GPE的影響 34
2-4 原位生成的前景 36
第三章 實驗方法 37
3-1 實驗架構 37
3-2 電極製備流程 42
3-3 電解質製備流程 43
3-4 鈕扣電池組裝 44
3-5 材料分析與電化學特性 45
3-5-1 液態 600 MHz 超導核磁共振儀系統 46
3-5-2 傅立葉紅外光譜儀 46
3-5-3 桌上型掃描式電子顯微鏡 (Hitachi TM3000) 47
3-5-4 接觸角分析儀 47
3-5-5 電化學阻抗譜 48
3-5-6 穩態極化曲線 49
3-5-7 線性掃描伏安法 50
3-5-8 電池充放電性能分析 50
第四章 結果與討論 51
4-1 陽離子的開環聚合反應機制 51
4-1-1 LiPF6 誘發DOL開環聚合的過程 51
4-2 電極和隔離膜的表面分析 54
4-3 傅立葉紅外光譜儀分析 57
4-4 誘發劑(LiPF6)濃度對電解質結構的影響 59
4-5 誘發劑(LiPF6)濃度對電解質電化學性能的影響 62
4-5-1電化學阻抗譜(EIS)分析 62
4-5-2穩態極化曲線測試 65
4-6 鋰鹽(LiTFSI)濃度對電解質結構的影響 68
4-7 鋰鹽(LiTFSI)濃度對電解質電化學性能的影響 72
4-7-1電化學阻抗譜(EIS)分析 72
4-7-2穩態極化曲線測試 75
4-8 線性掃描伏安法(LSV)分析 79
4-9 鋰沉積和剝落分析(Li Plating/Stripping test) 81
4-10 LFP電池不同充放電速率分析 83
4-11 LFP電池長時間快速充放電循環測試 86
4-12 高電壓NCM811電池應用 89
第五章 結論與未來展望 92
5-1 結論 92
5-1-1 原位聚合生成類凝膠電解質 92
5-1-2 雙鋰鹽系統濃度變化對電解質結構與電化學性能之影響 93
5-1-3 類凝膠電解質的電化學性能與電池表現 94
5-2 未來展望 96
參考文獻 97
參考文獻 [1] A.-I. Stan, M. Swierczynski, and D.-I. Stroe et al., Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications — An overview. 2014 International Conference on Optimization of Electrical and Electronic Equipment, 713-720 (2014).
[2] J. Rogelj, M. den Elzen, and N. Hohne et al., Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).
[3] L. da Silva Lima, M. Quartier, and A. Buchmayr et al., Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustainable Energy Technologies and Assessments 46, 101286 (2021).
[4] B. Diouf and R. Pode, Potential of lithium-ion batteries in renewable energy. Renewable Energy 76, 375−380 (2015).
[5] G. Zubi, R. Dufo-López, and M. Carvalho et al., The lithium-ion battery: state of the art and future perspectives. Renewable and Sustainable Energy Reviews 89, 292–308 (2018).
[6] Y. Ding, Z.P. Cano, and A. Yu et al., Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews 2, 1–28 (2019).
[7] M. M. Hussain, M. M. S. Beg, and M. S. Alam et al., Big Data Analytics Platforms for Electric Vehicle integration in Transport Oriented Smart Cities: Computing platforms for Platforms for Electric Vehicle integration in Smart Cities. International Journal of Digital Crime and Forensics 11, 23-42 (2019).
[8] H. P. Meshram, L. Svb, and T. Jadhav, Lithium-ion battery control system for hybrid-electric vehicle. Proceedings of ISSRD International Conference, 1–5 (2018).
[9] B. E. Murdock, K. E. Toghill, and N. Tapia-Ruiz, A perspective on the sustainability of cathode materials used in lithium‐ion batteries. Advanced Energy Materials 11, 2102028 (2021).
[10] J. M. Zheng, S. J. Myeong, and W. R. Cho et al., Li‐ and Mn‐rich cathode materials: challenges to commercialization. Advanced Energy Materials 7, 1601284 (2016).
[11] B. Ramasubramanian, S. Sundarrajan, and V. Chellappan et al., Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries 8, 133 (2022).
[12] D. Ouyang, M. Chen, and Q. Huang et al., A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Applied Sciences 9, 2483 (2019).
[13] N. Nitta, F. Wu, and J. T. Lee et al., Li-Ion Battery Materials: Present and Future. Materials Today 18, 252−264 (2015).
[14] G.G. Eshetu and E. Figgemeier, Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: role of designer electrolyte additives and polymeric binders. ChemSusChem 12, 2515–2539 (2019).
[15] D. Aurbach, Nonaqueous Electrochemistry. ISBN-9780367800499 (1999).
[16] K. Hayashi, Y. Nemoto, and S. Tobishima et al., Mixed Solvent Electrolyte for High Voltage Lithium Metal Secondary Cells. Electrochimica Acta 44, 2337−2344 (1999).
[17] M. North, F. Pizzato, and P. Villuendas, Organocatalytic, Asymmetric Aldol Reactions with a Sustainable Catalyst in a Green Solvent. ChemSusChem 2, 862−865 (2009).
[18] K. Khan, Z. Tu, Q. Zhao, and C. Zhao et al., Synthesis and Properties of Poly-Ether/Ethylene Carbonate Electrolytes with High Oxidative Stability. Chemistry of Materials 31, 8466−8472 (2019).
[19] R. Moscoso, J. Carbajo, and J.A. Squella, 1,3-Dioxolane: a green solvent for the preparation of carbon nanotube-modified electrodes. Electrochemistry Communications 48, 69–72 (2014).
[20] Q. Wang, L. Jiang, and Y. Yu et al., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy 55, 93–114 (2018).
[21] M. Waqas, S. Ali, and C. Feng et al., Recent development in separators for high-temperature lithium-ion batteries. Small 15, 1901689 (2019).
[22] M. Yuan and K. Liu, Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry 43, 58-70 (2020).
[23] S. Wang, L. Zhou, and M. K. Tufail et al., In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries. Chemical Engineering Journal 415, 128846 (2021).
[24] S. A. Pervez, M. A. Cambaz, and V. Thangadurai et al., Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. ACS Applied Materials & Interfaces 11, 22029−22050 (2019).
[25] X. Yu and A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34, 282–300 (2021).
[26] M. Dirican, C. Yan, and P. Zhu et al., Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports 136, 27–46 (2019).
[27] K.S. Ngai, S. Ramesh, and K. Ramesh et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259-1279 (2016).
[28] S. Li, S.-Q. Zhang, and L. Shen et al., Progress and perspective of ceramic/ polymer composite solid electrolytes for lithium batteries. Advanced Science 7, 1903088 (2020).
[29] K. Fu, Y. Gong, and B. Liu et al., Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances 3, e1601659 (2017).
[30] Y. Tian, T. Shi, W. D. Richards, and J. Li et al., Compatibility Issues between Electrodes and Electrolytes in Solid-State Batteries. Energy & Environmental Science 10, 1150−1166 (2017).
[31] X.-B. Cheng, R. Zhang, and C.-Z. Zhao et al., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 117, 10403−10473 (2017).
[32] C. Ma, W. Cui, and X. Liu et al., In Situ Preparation of Gel Polymer Electrolyte for Lithium Batteries: Progress and Perspectives. InfoMat 4, e12232 (2022).
[33] V. Vijayakumar, B. Anothumakkool, and S. Kurungot et al., In situ polymerization process: an essential design tool for lithium polymer batteries. Energy & Environmental Science 14, 2708-2788 (2021).
[34] D. Zhou, D. Shanmukaraj, and A. Tkacheva et al., Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 5, 2326−2352 (2019).
[35] M. Faraday, Iv. Experimental Researches in Electricity-Third Series. Philosophical Transactions of the Royal Society of London 123, 23−54 (1833).
[36] G. Feuillade and Ph. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 5, 63–69 (1975).
[37] A. Hosseinioun and E. Paillard, In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithium-ion batteries. Journal of membrane science 594, 117456 (2020).
[38] T. Bok, S.-J. Cho, and S. Choi et al., An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes. RSC advances 6,6960-6966 (2016).
[39] C.-H. Tsao, Y.-T. Lin, and S.-Y. Hsu et al., Crosslinked solidified gel electrolytes via in-situ polymerization featuring high ionic conductivity and stable lithium deposition for long-term durability lithium battery. Electrochimica Acta 361, 137076 (2020).
[40] Y. Ma, J. Ma, and J. Chai et al., Two players make a formidable combination: in situ generated poly(acrylic anhydride-2-methylacrylic acid-2-oxirane-ethyl ester-methyl methacrylate) crosslinking gel polymer electrolyte toward 5 V high-voltage batteries. ACS Applied Materials & Interfaces 9, 41462–41472 (2017).
[41] F.-Q. Liu, W.-P. Wang, and Y.-X. Yin et al., Upgrading Traditional Liquid Electrolyte via in Situ Gelation for Future Lithium Metal Batteries. Science Advances 4, eaat5383 (2018).
[42] Q. Liu, B. Cai, and S. Li et al., Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. Journal of materials chemistry A 8, 7197–7204 (2020).
[43] H. Cheng, J. Zhu, and H. Jin et al., In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide1,3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Mater Today Energy 20, 100623 (2021).
[44] W. Choi, H.-C. Shin, and J.M. Kim et al., Modeling and applications of electrochemical impedance spectroscopy (eis) for lithium-ion batteries. Journal of Electrochemical Science and Technology 11, 1–13 (2020).
[45] E. J. Goethals and R. R. de Clercq, Cationic Ring-Opening Polymerization. Print ISBN- 978-1-4899-2358-5 (1992).
[46] H. Yang, M.-X. Jing, and H.-P. Li et al., ‘Environment-friendly’ polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chemical Engineering Journal 421, 129710 (2021).
[47] B. Deng, M.-X. Jing, and L.-X. Li et al., Nano-zirconia boosting the ionic conductivity and lithium dendrite inhibition ability of a poly (1,3-dioxolane) solid electrolyte for high-voltage solid-state lithium batteries. Sustainable Energy Fuels 5, 5461–5470 (2021).
[48] B. Deng, M.-X. Jing, and R. Li et al., Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. Journal of Colloid and Interface Science 620, 199-208 (2022).
[49] Z. Wang, B. Huang, and H. Huang et al., Infrared spectroscopic study of the interaction between lithium salt LiClO4 and the plasticizer ethylene carbonate in the polyacrylonitrile-based electrolyte. Solid State Ion 85, 143-148 (1996).
[50] G. Yang, Y. Zhai, and J. Yao et al., Synthesis and properties of poly(1, 3-dioxolane) in situ quasi-solid-state electrolytes via a rare-earth triflate catalyst. Chemical Communications 57, 7934−7937 (2021).
[51] R. Abdul-Karim, A. Hameed, and M. I. Malik, Ring-Opening Polymerization of Ethylene Carbonate: Comprehensive Structural Elucidation by 1D & 2D-NMR Techniques, and Selectivity Analysis. RSC Advances 7, 11786-11795 (2017).
[52] Q. Zhao, X. Liu, and S. Stalin et al., Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy 4, 365–373 (2019).
[53] M. A. Careem, I. S. M. Noor, and A. K. Arof et al., Impedance Spectroscopy in Polymer Electrolyte Characterization. Print ISBN-9783527342006 (2020).
[54] Y.M.C.D. Jayathilake, L.R.A.K. Bandara, and K.P. Vidanapathirana et al., Optimization of the conductivity of gel polymer electrolyte based on PMMA. Proceedings of the Technical Sessions 30, 27-33 (2014).
[55] G. X. Wang, L. Yang, and J. Z. Wang et al., Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders. Journal of Nanoscience and Nanotechnology 5, 1135–1140 (2005).
[56] J. Evans, C. A. Vincent, and P. G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).
[57] C. Ma, J.F. Zhang, and M.Q. Xu et al., Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries. Journal of Power Sources 317, 103–111 (2016).
[58] Y. Tominaga, Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives. Polymer Journal 49, 291-299 (2017).
[59] F.M. Wang, D.T. Shieh, and J.H. Cheng et al., An investigation of the salt dissociation effects on solid electrolyte interface (SEI) formation using linear carbonate-based electrolytes in lithium ion batteries. Solid State Ionics 180, 1660-1666 (2010).
[60] Y.-H. Tseng, Y.-H. Lin, and R. Subramani et al., On-site-coagulation gel polymer electrolytes with a high dielectric constant for lithium-ion batteries. Journal of Power Sources 480, 228802 (2020).
[61] Z. K. Liu, J. Guan, and H. X. Yang et al., Ternary-salt solid polymer electrolyte for high-rate and long-life lithium metal batteries. Chemical Communications 58, 10973-10976 (2022).
[62] P. Jayathilaka, M. Dissanayake, and I. Albinsson et al., Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ionics 156, 179– 195 (2003).
[63] F. Wu, K. Zhang, and Y. Liu et al., Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy Storage Mater. 33, 26–54 (2020).
[64] X. Shen, H. Hua, and H. Li et al., Synthesis and molecular dynamic simulation of a novel single ion conducting gel polymer electrolyte for lithium-ion batteries. Polymer 201, 122568 (2020).
[65] K. M. Diederichsen, E. J. McShane, and B. D. McCloskey, Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. ACS Energy Letters 2, 2563−2575 (2017).
[66] Y. Yu, F. Lu, and N. Sun et al., Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries. Soft Matter 14, 6313-6319 (2018).
[67] Y. Tominaga, K. Yamazaki, and V. Nanthana, Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. Journal of The Electrochemical Society 162, A3133 (2015).
[68] Y. Huang, Y. Huang, and B. Liu et al., Gel polymer electrolyte based on p(acrylonitrile-maleic anhydride) for lithium ion battery. Electrochimica Acta 286, 242−251 (2018).
[69] S. Ramesh and C.-W. Liew, Exploration on nano-composite fumed silica-based composite polymer electrolytes with doping of ionic liquid. Journal of non-crystalline solids 358, 931–940 (2012) .
[70] D. Mouraliraman, N. Shaji, and S. Praveen et al., Thermally Stable PVDF-HFP-Based Gel Polymer Electrolytes for High Performance Lithium-Ion Batteries. Nanomaterials 12, 1056 (2022).
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明