參考文獻 |
[1] A.-I. Stan, M. Swierczynski, and D.-I. Stroe et al., Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications — An overview. 2014 International Conference on Optimization of Electrical and Electronic Equipment, 713-720 (2014).
[2] J. Rogelj, M. den Elzen, and N. Hohne et al., Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).
[3] L. da Silva Lima, M. Quartier, and A. Buchmayr et al., Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustainable Energy Technologies and Assessments 46, 101286 (2021).
[4] B. Diouf and R. Pode, Potential of lithium-ion batteries in renewable energy. Renewable Energy 76, 375−380 (2015).
[5] G. Zubi, R. Dufo-López, and M. Carvalho et al., The lithium-ion battery: state of the art and future perspectives. Renewable and Sustainable Energy Reviews 89, 292–308 (2018).
[6] Y. Ding, Z.P. Cano, and A. Yu et al., Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews 2, 1–28 (2019).
[7] M. M. Hussain, M. M. S. Beg, and M. S. Alam et al., Big Data Analytics Platforms for Electric Vehicle integration in Transport Oriented Smart Cities: Computing platforms for Platforms for Electric Vehicle integration in Smart Cities. International Journal of Digital Crime and Forensics 11, 23-42 (2019).
[8] H. P. Meshram, L. Svb, and T. Jadhav, Lithium-ion battery control system for hybrid-electric vehicle. Proceedings of ISSRD International Conference, 1–5 (2018).
[9] B. E. Murdock, K. E. Toghill, and N. Tapia-Ruiz, A perspective on the sustainability of cathode materials used in lithium‐ion batteries. Advanced Energy Materials 11, 2102028 (2021).
[10] J. M. Zheng, S. J. Myeong, and W. R. Cho et al., Li‐ and Mn‐rich cathode materials: challenges to commercialization. Advanced Energy Materials 7, 1601284 (2016).
[11] B. Ramasubramanian, S. Sundarrajan, and V. Chellappan et al., Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries 8, 133 (2022).
[12] D. Ouyang, M. Chen, and Q. Huang et al., A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Applied Sciences 9, 2483 (2019).
[13] N. Nitta, F. Wu, and J. T. Lee et al., Li-Ion Battery Materials: Present and Future. Materials Today 18, 252−264 (2015).
[14] G.G. Eshetu and E. Figgemeier, Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: role of designer electrolyte additives and polymeric binders. ChemSusChem 12, 2515–2539 (2019).
[15] D. Aurbach, Nonaqueous Electrochemistry. ISBN-9780367800499 (1999).
[16] K. Hayashi, Y. Nemoto, and S. Tobishima et al., Mixed Solvent Electrolyte for High Voltage Lithium Metal Secondary Cells. Electrochimica Acta 44, 2337−2344 (1999).
[17] M. North, F. Pizzato, and P. Villuendas, Organocatalytic, Asymmetric Aldol Reactions with a Sustainable Catalyst in a Green Solvent. ChemSusChem 2, 862−865 (2009).
[18] K. Khan, Z. Tu, Q. Zhao, and C. Zhao et al., Synthesis and Properties of Poly-Ether/Ethylene Carbonate Electrolytes with High Oxidative Stability. Chemistry of Materials 31, 8466−8472 (2019).
[19] R. Moscoso, J. Carbajo, and J.A. Squella, 1,3-Dioxolane: a green solvent for the preparation of carbon nanotube-modified electrodes. Electrochemistry Communications 48, 69–72 (2014).
[20] Q. Wang, L. Jiang, and Y. Yu et al., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy 55, 93–114 (2018).
[21] M. Waqas, S. Ali, and C. Feng et al., Recent development in separators for high-temperature lithium-ion batteries. Small 15, 1901689 (2019).
[22] M. Yuan and K. Liu, Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry 43, 58-70 (2020).
[23] S. Wang, L. Zhou, and M. K. Tufail et al., In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries. Chemical Engineering Journal 415, 128846 (2021).
[24] S. A. Pervez, M. A. Cambaz, and V. Thangadurai et al., Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. ACS Applied Materials & Interfaces 11, 22029−22050 (2019).
[25] X. Yu and A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34, 282–300 (2021).
[26] M. Dirican, C. Yan, and P. Zhu et al., Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports 136, 27–46 (2019).
[27] K.S. Ngai, S. Ramesh, and K. Ramesh et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259-1279 (2016).
[28] S. Li, S.-Q. Zhang, and L. Shen et al., Progress and perspective of ceramic/ polymer composite solid electrolytes for lithium batteries. Advanced Science 7, 1903088 (2020).
[29] K. Fu, Y. Gong, and B. Liu et al., Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances 3, e1601659 (2017).
[30] Y. Tian, T. Shi, W. D. Richards, and J. Li et al., Compatibility Issues between Electrodes and Electrolytes in Solid-State Batteries. Energy & Environmental Science 10, 1150−1166 (2017).
[31] X.-B. Cheng, R. Zhang, and C.-Z. Zhao et al., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 117, 10403−10473 (2017).
[32] C. Ma, W. Cui, and X. Liu et al., In Situ Preparation of Gel Polymer Electrolyte for Lithium Batteries: Progress and Perspectives. InfoMat 4, e12232 (2022).
[33] V. Vijayakumar, B. Anothumakkool, and S. Kurungot et al., In situ polymerization process: an essential design tool for lithium polymer batteries. Energy & Environmental Science 14, 2708-2788 (2021).
[34] D. Zhou, D. Shanmukaraj, and A. Tkacheva et al., Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 5, 2326−2352 (2019).
[35] M. Faraday, Iv. Experimental Researches in Electricity-Third Series. Philosophical Transactions of the Royal Society of London 123, 23−54 (1833).
[36] G. Feuillade and Ph. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 5, 63–69 (1975).
[37] A. Hosseinioun and E. Paillard, In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithium-ion batteries. Journal of membrane science 594, 117456 (2020).
[38] T. Bok, S.-J. Cho, and S. Choi et al., An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes. RSC advances 6,6960-6966 (2016).
[39] C.-H. Tsao, Y.-T. Lin, and S.-Y. Hsu et al., Crosslinked solidified gel electrolytes via in-situ polymerization featuring high ionic conductivity and stable lithium deposition for long-term durability lithium battery. Electrochimica Acta 361, 137076 (2020).
[40] Y. Ma, J. Ma, and J. Chai et al., Two players make a formidable combination: in situ generated poly(acrylic anhydride-2-methylacrylic acid-2-oxirane-ethyl ester-methyl methacrylate) crosslinking gel polymer electrolyte toward 5 V high-voltage batteries. ACS Applied Materials & Interfaces 9, 41462–41472 (2017).
[41] F.-Q. Liu, W.-P. Wang, and Y.-X. Yin et al., Upgrading Traditional Liquid Electrolyte via in Situ Gelation for Future Lithium Metal Batteries. Science Advances 4, eaat5383 (2018).
[42] Q. Liu, B. Cai, and S. Li et al., Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. Journal of materials chemistry A 8, 7197–7204 (2020).
[43] H. Cheng, J. Zhu, and H. Jin et al., In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide1,3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Mater Today Energy 20, 100623 (2021).
[44] W. Choi, H.-C. Shin, and J.M. Kim et al., Modeling and applications of electrochemical impedance spectroscopy (eis) for lithium-ion batteries. Journal of Electrochemical Science and Technology 11, 1–13 (2020).
[45] E. J. Goethals and R. R. de Clercq, Cationic Ring-Opening Polymerization. Print ISBN- 978-1-4899-2358-5 (1992).
[46] H. Yang, M.-X. Jing, and H.-P. Li et al., ‘Environment-friendly’ polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chemical Engineering Journal 421, 129710 (2021).
[47] B. Deng, M.-X. Jing, and L.-X. Li et al., Nano-zirconia boosting the ionic conductivity and lithium dendrite inhibition ability of a poly (1,3-dioxolane) solid electrolyte for high-voltage solid-state lithium batteries. Sustainable Energy Fuels 5, 5461–5470 (2021).
[48] B. Deng, M.-X. Jing, and R. Li et al., Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. Journal of Colloid and Interface Science 620, 199-208 (2022).
[49] Z. Wang, B. Huang, and H. Huang et al., Infrared spectroscopic study of the interaction between lithium salt LiClO4 and the plasticizer ethylene carbonate in the polyacrylonitrile-based electrolyte. Solid State Ion 85, 143-148 (1996).
[50] G. Yang, Y. Zhai, and J. Yao et al., Synthesis and properties of poly(1, 3-dioxolane) in situ quasi-solid-state electrolytes via a rare-earth triflate catalyst. Chemical Communications 57, 7934−7937 (2021).
[51] R. Abdul-Karim, A. Hameed, and M. I. Malik, Ring-Opening Polymerization of Ethylene Carbonate: Comprehensive Structural Elucidation by 1D & 2D-NMR Techniques, and Selectivity Analysis. RSC Advances 7, 11786-11795 (2017).
[52] Q. Zhao, X. Liu, and S. Stalin et al., Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy 4, 365–373 (2019).
[53] M. A. Careem, I. S. M. Noor, and A. K. Arof et al., Impedance Spectroscopy in Polymer Electrolyte Characterization. Print ISBN-9783527342006 (2020).
[54] Y.M.C.D. Jayathilake, L.R.A.K. Bandara, and K.P. Vidanapathirana et al., Optimization of the conductivity of gel polymer electrolyte based on PMMA. Proceedings of the Technical Sessions 30, 27-33 (2014).
[55] G. X. Wang, L. Yang, and J. Z. Wang et al., Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders. Journal of Nanoscience and Nanotechnology 5, 1135–1140 (2005).
[56] J. Evans, C. A. Vincent, and P. G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).
[57] C. Ma, J.F. Zhang, and M.Q. Xu et al., Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries. Journal of Power Sources 317, 103–111 (2016).
[58] Y. Tominaga, Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives. Polymer Journal 49, 291-299 (2017).
[59] F.M. Wang, D.T. Shieh, and J.H. Cheng et al., An investigation of the salt dissociation effects on solid electrolyte interface (SEI) formation using linear carbonate-based electrolytes in lithium ion batteries. Solid State Ionics 180, 1660-1666 (2010).
[60] Y.-H. Tseng, Y.-H. Lin, and R. Subramani et al., On-site-coagulation gel polymer electrolytes with a high dielectric constant for lithium-ion batteries. Journal of Power Sources 480, 228802 (2020).
[61] Z. K. Liu, J. Guan, and H. X. Yang et al., Ternary-salt solid polymer electrolyte for high-rate and long-life lithium metal batteries. Chemical Communications 58, 10973-10976 (2022).
[62] P. Jayathilaka, M. Dissanayake, and I. Albinsson et al., Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ionics 156, 179– 195 (2003).
[63] F. Wu, K. Zhang, and Y. Liu et al., Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy Storage Mater. 33, 26–54 (2020).
[64] X. Shen, H. Hua, and H. Li et al., Synthesis and molecular dynamic simulation of a novel single ion conducting gel polymer electrolyte for lithium-ion batteries. Polymer 201, 122568 (2020).
[65] K. M. Diederichsen, E. J. McShane, and B. D. McCloskey, Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. ACS Energy Letters 2, 2563−2575 (2017).
[66] Y. Yu, F. Lu, and N. Sun et al., Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries. Soft Matter 14, 6313-6319 (2018).
[67] Y. Tominaga, K. Yamazaki, and V. Nanthana, Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. Journal of The Electrochemical Society 162, A3133 (2015).
[68] Y. Huang, Y. Huang, and B. Liu et al., Gel polymer electrolyte based on p(acrylonitrile-maleic anhydride) for lithium ion battery. Electrochimica Acta 286, 242−251 (2018).
[69] S. Ramesh and C.-W. Liew, Exploration on nano-composite fumed silica-based composite polymer electrolytes with doping of ionic liquid. Journal of non-crystalline solids 358, 931–940 (2012) .
[70] D. Mouraliraman, N. Shaji, and S. Praveen et al., Thermally Stable PVDF-HFP-Based Gel Polymer Electrolytes for High Performance Lithium-Ion Batteries. Nanomaterials 12, 1056 (2022). |