博碩士論文 111222022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.116.118.87
姓名 謝慶霖(Qing-Lin Xie)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Growth Dynamics and Electronic Properties of Hexagonal Boron Nitride Synthesized with Different Nitrogen/Hydrogen Gas Ratios)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 六角硼氮化物(Hexagonal boron nitride)近年成為石墨烯和其他二維材料 應用中的關鍵組成部分。六角硼氮化物對石墨烯是一個良好的基板,因為其表面沒 有電荷陷阱,是一種能帶隙為 6.8 電子伏特的絕緣體,並且其層狀結構類似於石墨烯。六角硼氮化物是增強二維材料電子性能的良好基板,因為其具有較小的基板 效應。許多研究使用 h-BN 作為基板進行場效電晶體(FET)研究,並顯著改善了電子性能。

六角硼氮化物的結構是由 B 原子和 N 原子交替排列形成的蜂窩結構,遵循六角晶格形成的規律。在銅基板上使用化學氣相沉積(CVD)方法製備 h-BN,而 h-BN 的形狀是三角形,因為 N 原子的生長速度比 B 原子慢。在工業上,通常使用氨硼烷作為前驅體,因其具有無毒和不易燃的特性。由於固態前驅體的存在,溫度對氨硼烷的影響非常重要,不同的溫度和時間將導致氨硼烷的分解程度不同。

在 CVD 過程中,h-BN 的層數高度依賴於基板。銅、金、鎳和鎳鐵都可以作為 h-BN 的合成基板。硼和氮的溶解度取決於不同的金屬或合金。在工業上,通過控 制硼和氮的擴散速率,可以合成單層 h-BN。對於銅來說,硼的溶解度低,氮不溶 解,h-BN 在低源蒸發下往往形成單層。對於鎳鐵合金,硼和氮的溶解度高,h-BN 往往形成多層。通過使用不同溫度、不同前驅體重量和載氣流速的源蒸發,可以控 制 h-BN 的成核密度。

通過增加氫氣流速,可以合成多層 h-BN,因為氫氣對其進行了端基處理效應。 我們發現氫終止了三角形的 h-BN 邊緣,源頭將有更多機會通過單層形成成核並生 長多層 h-BN。多層 h-BN 的堆疊角度為 0°、30°和60°。由於 B 和 N 是交替排列形成蜂窩結構,其旋轉對稱性為 60°。

通過控制前驅體的蒸發或在反應中添加氮氣,可以合成單層 h-BN,以增加氮的鋸齒邊生長速度。然而,一些研究使用密度泛函理論(DFT)計算發現,在高氮環境下,h-BN 會產生類似硼空位的缺陷。缺陷區域將導致 h-BN 的電子性質和光物理性質變化。缺陷 h-BN 將具有光致發光峰,其波長由缺陷類型決定,並且廣泛應用於量子通信領域的單光子發射器研究中。使用角度分辨光電子能譜測量 h-BN 的價帶,可以觀察到缺陷引起的電子性質變化,並發現 h-BN 在與氮氣相互作用時呈 p 型行為。由於在缺陷區域周圍將形成三個電子空穴,圍繞硼空位。在我們的研究中,我們發現添加氮氣可以增加生長速度,使整塊銅基板完全被單層 h-BN 覆蓋。 這些結果顯示了增加樣品產量並減少不需要的多層 h-BN 的概念。

在這篇論文中,我們通過控制氫氣和氮氣的流速以及源頭溫度來合成多層和 單層 h-BN,觀察多層的生長。使用角度分辨光電子能譜(ARPES)檢測了非氮、高 氮和低氮流量合成的 h-BN 的電子性質。使用電子背散射(EBSD)觀察了銅晶體的 退火重組結構。
摘要(英) Hexagonal boron nitride is emerging as a key component in the application of graphene and other two-dimensional layered material. Hexagonal boron nitride is a good substrate for graphene because of no charge trap on the surface, insulator with bandgap 6.8ev, and the layered structure like graphene. Hexagonal boron nitride is good substrate for the 2D material to enhance the electronic property due to less substrate effect. Many researches use h-BN as substrate to do the FET and improve the electronic property obviously.

The structure of h-BN is B atom and N atom alternately arranged to form a honeycomb structure with the law of hexagonal lattice formation. Usually on Cu substrate, using CVD synthesized h-BN and the shape of h-BN is triangle because the N atom side will grow slower than B atom. In industry, they usually used ammonia borane as precursor because of its non-toxic and non-flammable properties. Because of the property of solidstate precursor, the temperature influence in the ammonia borane is significance, and different heating time cause the ammonia borane decomposition changing.

In the CVD process, the number of layers of h-BN highly depended on the substrate. Copper, gold, Nickle, and Ni-Fe can be the synthesis substrate for h-BN. The solubility of boron and nitrogen depended on the different metal or alloy. In the industry, the V monolayer h-BN can be synthesized by controlling the diffusion rate of boron and nitrogen. For copper, low solubility for boron and insolubility of nitrogen, the h-BN tends to form the monolayer in LPCVD with low source evaporation. For Ni-Fe alloy, the high solubility of boron and nitrogen, h-BN tended to form the multilayer. The h-BN nucleation density can control by the source evaporation by using different temperature or different source weight and flow rate of carrier gas.

The multilayer h-BN can be synthesized by increasing hydrogen flow rate because of hydrogen termination effect. We found that the hydrogen terminated the triangle shape h-BN edge and source will have more chance through under the monolayer to nucleate and grow the multilayer h-BN. The multilayer stacking angle is 0°, 30°, and 60°. Because the B and N are alternatively arranged to form honeycomb structure, the rotation symmetry is 60°.

The monolayer h-BN can be synthesized by controlling the precursor evaporation or adding nitrogen gas into the reaction to increase the growth speed of the nitrogen zigzag edge. However, there are some researchers used DFT to calculate the h-BN will have point defect like boron vacancy under the high nitrogen environment. The defect region will cause the electronic property of h-BN became different, and also the photophysical property. The defect h-BN will have photoluminescence peaks and the wavelength are VI decided by the type of defect, and it is widely used on researches of single photon emitter source in the quantum communication region. The defect caused electronic property changed can be observed by using angle resolved photoemission energy spectrum to measure the valence band of h-BN and found h-BN p-type behavior with nitrogen gas interacting. Because of in the defect region, there will form three electron holes around boron vacancy. In our research, we found that with nitrogen gas adding the growth speed increasing, and the whole piece copper substrate is monolayer fully covered. These result shows the concept to increase the sample yield on decrease the unwanted multilayer hBN.

In this thesis, we synthesized the multilayer and monolayer h-BN by controlling the flow rate of hydrogen and nitrogen and source temperature to observe the multilayer growing. ARPES checked the non-nitrogen, high nitrogen, and low nitrogen synthetization h-BN electronic property. The copper crystalline used EBSD to observe the annealing reconstruction structure of the sample.
關鍵字(中) ★ 六角氮化硼
★ 化學氣相沉積
★ 角解析光電子能譜學
★ 電子背像散射繞射
★ 單層與多層六角氮化硼
★ 成長動力學
關鍵字(英) ★ Hexagonal Boron Nitride
★ Chemical Vapor Deposition
★ Angle Resolved Photoemission Spectroscopy
★ Electron Backscatter Diffraction
★ Monolayer and Multilayer h-BN
★ Growth Dynamics
論文目次 中文摘要 II
Abstract IV
Contents VII
List of Figures IX
Chapter 1. Introduction 1
Chapter 2. Background 4
2.1 Motivation 4
2.2 h-BN band structure 4
2.3 Raman Spectrum and h-BN Raman Property 10
2.3.1 h-BN Raman property 13
2.4 Recent h-BN Researches for single crystalline 15
2.5 Solid precursor: Ammonia borane 21
2.6 Precursor and Hydrogen Roles in CVD Process 24
2.7 h-BN Vacancy and Nitrogen Roles in CVD Process 27
2.8 Electron-polishing and anneal Cu 32
2.9 h-BN Growth Mechanism and Multilayer Growth Research 35
2.10 Angle resolved photoemission spectroscopy 41
2.10.1 ARPES energy analyzer 42
2.10.2 ARPES energy analyzer 46
2.10.3 Low energy photoelectron spectrum regardless momentum of photon 49
2.10.4 2D material in ARPES 51
2.10.5 APRES light sources introduction 51
2.10.6 ARPES sample measurement 53
2.11 Electron backscatter diffraction 55
Chapter 3. Experiment Methods 59
VIII
3.1 Sample Preparation of CVD h-BN 59
3.1.1 Copper Foil Pretreatment by Electro-polishing 59
3.1.2 CVD h-BN Sample Preparation 62
3.1.3 Silicon oxide Substrate Pretreatment: RCA Cleaning Process 65
3.1.4 Transfer hexagonal boron nitride to ???? substrate 66
3.2 Characterization 69
3.2.1 Scanning electron microscope 69
3.2.2 Atomic force microscopy 71
3.2.3 Optical Image from Optical Microscopy 71
3.2.4 Monolayer and Multilayer difference through ?-Raman spectrum 71
3.2.5 ARPES in NSRRC 73
Chapter 4. Results and discussion 76
4.1 Characterization 77
4.2 The hydrogen terminated effect on multilayer h-BN growth 86
4.3 The nitrogen gas effect on h-BN growth 93
4.4 Valence band structure of h-BN 100
Chapter 5. Conclusion 105
References 107
參考文獻 [1] D. Pacilé et al. The two-dimensional phase of boron nitride: Few-atomic-layer sheets
and suspended membranes Appl. Phys. Lett. 92, 133107 (2008)
[2] Jannik C Meyer et al. sputtering and atomic resolution imaging of atomically thin
boron nitride membranes. Nano Lett. 2009 Jul;9(7):2683-9.
[3] Nasim Alem et al. Atomically thin hexagonal boron nitride probed by ultrahighresolution transmission electron microscopy.
[4] Darshana Wickramaratne et al. Monolayer to Bulk properties of Hexagonal Boron
Nitride. J. Phys. Chem. C 2018, 122, 44, 25524–25529
[5] Piran R. et al. In Situ Observations during Chemical Vapor Deposition of Hexagonal
Boron Nitride on Polycrystalline Copper. Chem. Mater. 2014, 26, 22, 6380–6392
[6] Piran R. Kidambi et al. Observing Graphene Grow: Catalyst−Graphene Interactions
during Scalable Graphene Growth on Polycrystalline Copper. Nano Lett. 2013, 13,
10, 4769–4778
[7] Alem, N.; Erni et al. Atomically thin hexagonal boron nitride probed by
ultrahighresolution transmission electron microscopy. Phys. Rev. B: Condens. Matter
Mater. Phys. 2009, 80 (15), 155425.
[8] Darshana Wickramaratne et al. Monolayer to Bulk properties of Hexagonal Boron
Nitride. J. Phys. Chem. C 2018, 122, 44, 25524–25529
[9] Qiucheng Li et al. Grain Boundary Structures and Electronic Properties of Hexagonal
Boron Nitride on Cu(111). Nano Lett. 2015, 15, 9, 5804–5810
[10] Gorbachev, R.V. et al. (2011), Hunting for Monolayer Boron Nitride: Optical and
Raman Signatures. Small, 7: 465-468.
[11] Qiran Cai, et al. Raman signature and phonon dispersion of atomically thin boron
nitride. Nanoscale, 2017, 9, 3059
[12] Yuki Uchida et al. Epitaxial chemical vapour deposition growth of monolayer
hexagonal boron nitride on a Cu(111)/sapphire substrate, Phys. Chem. Chem. Phys.,
2017,19, 8230-8235
[13] David L. Miller et al. Giant secondary grain growth in Cu films on sapphire, AIP
Advances 3, 082105 (2013)
[14] Yimin A. Wu et al. Large Single Crystals of Graphene on Melted Copper Using
Chemical Vapor Deposition ACS Nano 2012 6 (6), 5010-5017
[15] Geng, D. et al. (2014), Self-Aligned Single-Crystal Graphene Grains. Adv. Funct.
Mater., 24: 1664-1670.
[16] Tan, L. et al. (2015). Self-Aligned Single-Crystalline Hexagonal Boron Nitride
Arrays: Toward Higher Integrated Electronic Devices. Adv. Electron. Mater., 1:
1500223.
[17] Chen, TA. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on
Cu (111). Nature 579, 219–223 (2020).
[18] Joo Song Lee et al. Wafer-scale single-crystal hexagonal boron nitride film via selfcollimated grain formation, SCIENCE 16 Nov 2018 Vol 362, Issue 6416 pp. 817-821
[19] Qing Zhang et al. Self-aligned stitching growth of centimeter-scale quasi-singlecrystalline hexagonal boron nitride monolayers on liquid copper. Nanoscale, 2022,14,
3112-3122
[20] Lu, G. et al. Synthesis of large single-crystal hexagonal boron nitride grains on Cu–
Ni alloy. Nat Commun 6, 6160 (2015).
[21] Samuel Frueh et al. Pyrolytic Decomposition of Ammonia Borane to Boron Nitride.
Inorganic Chemistry 2011 50 (3), 783-792
[22] Karthik Sridhara et al. Electrochemically Prepared Polycrystalline Copper Surface
for the Growth of Hexagonal Boron Nitride. Crystal Growth & Design 2017 17 (4),
1669-1678
[23] Roland Yingjie Tay et al. Growth of Large Single-Crystalline Two-Dimensional
Boron Nitride Hexagons on Electropolished Copper. Nano Letters 2014 14 (2), 839-
846
[24] Piran R. Kidambi et al. In Situ Observations during Chemical Vapor Deposition of
Hexagonal Boron Nitride on Polycrystalline Copper. Chemistry of Materials 2014 26
(22), 6380-6392
[25] Kim, S. et al. Synthesis of large-area multilayer hexagonal boron nitride for high
material performance. Nat Commun 6, 8662 (2015).
[26] Shengnan Wang et al. Epitaxial Intercalation Growth of Scalable Hexagonal Boron
Nitride/Graphene Bilayer Moiré Materials with Highly Convergent Interlayer Angles.
ACS Nano 2021 15 (9), 14384-14393
[27] Babenko et al. Time dependent decomposition of ammonia borane for the controlled
production of 2D hexagonal boron nitride. Sci Rep 7, 14297 (2017).
[28] Yifeng Chen et al. Photophysical Characteristics of Boron Vacancy-Derived Defect
Centers in Hexagonal Boron Nitride. J. Phys. Chem. C 2021, 125, 39, 21791–21802
[29] Yijing Y. Stehle et al. Anisotropic Etching of Hexagonal Boron Nitride and Graphene:
Question of Edge Terminations, Nano Lett. 2017, 17, 12, 7306–7314
[30] Yuejin Wang et al. Enhancement of p-type conductivity of monolayer hexagonal
boron nitride by driving Mg incorporation through low-energy path with N-rich
condition. Appl. Phys. Lett. 116, 212101 (2020)
[31] Rui Gu et al. Engineering and Microscopic Mechanism of Quantum Emitters
Induced by Heavy Ions in hBN, ACS Photonics 2021, 8, 10, 2912–2922
[32] Stefan Hüfner. Photoelectron Spectroscopy. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003: 662.
[33] Andrea Damascelli et al. “Angle-resolved photoemission studies of the cuprate
superconductors”. Reviews of Modern Physics, 2003-04: 473– 541.
[34] Victor Joco. Electronic structure of bulk and low dimensional systems analyzed by
Angle-Resolved Photoemission Spectroscopy. Madrid, 2008.
[35] Complementary Metal-Oxide Semiconductor (CMOS) Detector Range - Oxford
Instruments, https://www.ebsd.com/ois-ebsd-system/cmos-detector-range
[36] National Tsing Hua University, High Entropy Materials Center, National Tsing Hua
University.
[37] Nai-Jie Guo et al. Generation of Spin Defects by Ion Implantation in Hexagonal
Boron Nitride. ACS Omega 2022, 7, 1733−1739
[38] Jihene Zribi et al. Structural and electronic transitions in few layers of isotopically
pure hexagonal boron nitride. Phys. Rev. B 102, 115141
[39] R. E. Smallman & K. H. Westmacott (1957) Stacking faults in face-centred cubic
metals and alloys, The Philosophical Magazine: A Journal of Theoretical
Experimental and Applied Physics, 2:17, 669-683,
[40] Welyson T S Ramos et al. The role of hydrogen partial pressure on the annealing of
copper substrates for graphene CVD synthesis. 2016 Mater. Res. Express 3 045602
[41] Jian Liu et al. Effects of H2 annealing on polycrystalline copper substrates for
graphene growth during low pressure chemical vapor deposition, Materials Letters,
Volume 153, 2015, Pages 132-135, ISSN 0167-577X
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2023-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明