參考文獻 |
1. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′ tetracyanotetraphenylmethane]
BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
2. Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). 2013, 85 (8), 1715-1724.
3. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
4. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
5. Moghadam, P. Z.; Li, A.; Liu, X.-W.; Bueno-Perez, R.; Wang, S.-D.; Wiggin, S. B.; Wood, P. A.; Fairen-Jimenez, D., Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD). Chemical Science 2020, 11 (32), 8373-8387.
6. Li, B.; Wen, H.-M.; Zhou, W.; Chen, B., Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
7. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
8. Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y. S., Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Engineering Chemistry Research 2013, 52 (3), 1102-1108.
9. Li, S.; Chen, Y.; Pei, X.; Zhang, S.; Feng, X.; Zhou, J.; Wang, B., Water Purification: Adsorption over Metal-Organic Frameworks. Chinese Journal of Chemistry 2016, 34 (2), 175-185.
10. Dhakshinamoorthy, A.; Li, Z.; Garcia, H., Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews 2018, 47 (22), 8134-8172.
11. Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R., Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews 2017, 46 (1), 126-157.
12. Yang, Q.; Xu, Q.; Jiang, H.-L., Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews 2017, 46 (15), 4774-4808.
13. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
14. Zhou, J.; Wang, B., Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews 2017, 46 (22), 6927-6945.
15. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
16. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
17. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
18. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
19. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
20. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
21. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
22. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
23. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
24. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186-10191.
25. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45 (10), 1557-1559.
26. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.
27. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
28. Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, Y.; Deng, Q.; Dong, K.; Ren, J.; Qu, X., Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy. Journal of the American Chemical Society 2020, 142 (11), 5177-5183.
29. Alvarez, E.; Guillou, N.; Martineau, C.; Bueken, B.; Van de Voorde, B.; Le Guillouzer, C.; Fabry, P.; Nouar, F.; Taulelle, F.; de Vos, D.; Chang, J.-S.; Cho, K. H.; Ramsahye, N.; Devic, T.; Daturi, M.; Maurin, G.; Serre, C., The Structure of the Aluminum Fumarate Metal–Organic Framework A520. Angewandte Chemie International Edition 2015, 54 (12), 3664-3668.
30. Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U., The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications. Microporous and Mesoporous Materials 2012, 157, 131-136.
31. van Leewenhoeck, A., Observations, Communicated to the Publisher by Mr. Antony van Leewenhoeck, in a Dutch Letter of the 9th of Octob. 1676. Here English′d: concerning Little Animals by Him Observed in Rain-Well-Sea. and Snow Water; as Also in Water Wherein Pepper Had Lain Infused. Philosophical Transactions (1665-1678) 1677, 12, 821-831.
32. Escherich, T., Klinisch-therapeutische beobachtungen aus der choleraepidemie in Neapel. Mun Med Wochenschrift 1884, 31, 561-564.
33. Sezonov, G.; Joseleau-Petit, D.; D′Ari, R., Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology 2007, 189 (23), 8746-8749.
34. Duar, R. M.; Lin, X. B.; Zheng, J.; Martino, M. E.; Grenier, T.; Pérez-Muñoz, M. E.; Leulier, F.; Gänzle, M.; Walter, J., Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017, 41 (Supp_1), S27-s48.
35. Parlindungan, E.; Dekiwadia, C.; Tran, K. T. M.; Jones, O. A. H.; May, B. K., Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress. LWT 2018, 92, 556-563.
36. Addgene Depositor Full Sequence Map for pET28:GFP.
37. McCarthy, E. F., The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 2006, 26, 154-8.
38. Dang, L. H.; Bettegowda, C.; Huso, D. L.; Kinzler, K. W.; Vogelstein, B., Combination bacteriolytic therapy for the treatment of experimental tumors. Proceedings of the National Academy of Sciences 2001, 98 (26), 15155-15160.
39. Kasinskas, R. W.; Forbes, N. S., Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol Bioeng 2006, 94 (4), 710-21.
40. Leschner, S.; Westphal, K.; Dietrich, N.; Viegas, N.; Jablonska, J.; Lyszkiewicz, M.; Lienenklaus, S.; Falk, W.; Gekara, N.; Loessner, H.; Weiss, S., Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PLoS One 2009, 4 (8), e6692.
41. Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989, 49 (23), 6449-65.
42. Middlebrook, J. L.; Dorland, R. B., Bacterial toxins: cellular mechanisms of action. Microbiol Rev 1984, 48 (3), 199-221.
43. Lee, C. H.; Lin, S. T.; Liu, J. J.; Chang, W. W.; Hsieh, J. L.; Wang, W. K., Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway. Gene Ther 2014, 21 (3), 309-16.
44. Sznol, M.; Lin, S. L.; Bermudes, D.; Zheng, L. M.; King, I., Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest 2000, 105 (8), 1027-30.
45. Phan, T. X.; Nguyen, V. H.; Duong, M. T.; Hong, Y.; Choy, H. E.; Min, J. J., Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol Immunol 2015, 59 (11), 664-75.
46. Sfondrini, L.; Rossini, A.; Besusso, D.; Merlo, A.; Tagliabue, E.; Mènard, S.; Balsari, A., Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol 2006, 176 (11), 6624-30.
47. Saccheri, F.; Pozzi, C.; Avogadri, F.; Barozzi, S.; Faretta, M.; Fusi, P.; Rescigno, M., Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci Transl Med 2010, 2 (44), 44ra57.
48. Flentie, K.; Kocher, B.; Gammon, S. T.; Novack, D. V.; McKinney, J. S.; Piwnica-Worms, D., A bioluminescent transposon reporter-trap identifies tumor-specific microenvironment-induced promoters in Salmonella for conditional bacterial-based tumor therapy. Cancer Discov 2012, 2 (7), 624-37.
49. Jiang, S. N.; Park, S. H.; Lee, H. J.; Zheng, J. H.; Kim, H. S.; Bom, H. S.; Hong, Y.; Szardenings, M.; Shin, M. G.; Kim, S. C.; Ntziachristos, V.; Choy, H. E.; Min, J. J., Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther 2013, 21 (11), 1985-95.
50. Kocijancic, D.; Felgner, S.; Schauer, T.; Frahm, M.; Heise, U.; Zimmermann, K.; Erhardt, M.; Weiss, S., Local application of bacteria improves safety of Salmonella -mediated tumor therapy and retains advantages of systemic infection. Oncotarget 2017, 8 (30), 49988-50001.
51. Critchley-Thorne, R. J.; Stagg, A. J.; Vassaux, G., Recombinant Escherichia coli expressing invasin targets the Peyer′s patches: the basis for a bacterial formulation for oral vaccination. Mol Ther 2006, 14 (2), 183-91.
52. Cunningham, C.; Nemunaitis, J., A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum Gene Ther 2001, 12 (12), 1594-6.
53. Ghoneum, M.; Wang, L.; Agrawal, S.; Gollapudi, S., Yeast therapy for the treatment of breast cancer: a nude mice model study. In Vivo 2007, 21 (2), 251-8.
54. Liu, S.; Xu, X.; Zeng, X.; Li, L.; Chen, Q.; Li, J., Tumor-targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncol Lett 2014, 8 (6), 2359-2366.
55. Liang, K.; Richardson, J. J.; Cui, J.; Caruso, F.; Doonan, C. J.; Falcaro, P., Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials 2016, 28 (36), 7910-7914.
56. Riccò, R.; Liang, W.; Li, S.; Gassensmith, J. J.; Caruso, F.; Doonan, C.; Falcaro, P., Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano 2018, 12 (1), 13-23.
57. Kudryavtsev, A. V.; Guelpa, V.; Rougeot, P.; Lehmann, O.; Dembélé, S.; Sturm, P.; Le Fort-Piat, N., Autocalibration method for scanning electron microscope using affine camera model. Machine Vision and Applications 2020, 31 (7), 69.
58. Callister, W.; Rethwisch, D., Material Science and Engineering – An Introduction. 2007.
59. Kaszuba, M.; Corbett, J.; Watson, F. M.; Jones, A., High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368 (1927), 4439-4451.
60. Pate, K.; Safier, P., 12 - Chemical metrology methods for CMP quality. In Advances in Chemical Mechanical Planarization (CMP), Babu, S., Ed. Woodhead Publishing: 2016; pp 299-325.
61. Lo, W.-S.; Liu, S.-M.; Wang, S.-C.; Lin, H.-P.; Ma, N.; Huang, H.-Y.; Shieh, F.-K., A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Advances 2014, 4 (95), 52883-52886.
62. Parlindungan, E.; Dekiwadia, C.; Jones, O. A. H., Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochemistry 2021, 107, 18-26. |