參考文獻 |
1. Hoskins, B. F.; Robson, R., Design and construction of a new class of
scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked
molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures
and the synthesis and structure of the diamond-related frameworks
[N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-
tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American
Chemical Society 1990, 112 (4), 1546-1554.
2. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in
Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
3. Li, B.; Wen, H.-M.; Zhou, W.; Chen, B., Porous Metal–Organic
Frameworks for Gas Storage and Separation: What, How, and Why? The Journal
of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
4. Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y. S., Gas Separation
Properties of Metal Organic Framework (MOF-5) Membranes. Industrial &
Engineering Chemistry Research 2013, 52 (3), 1102-1108.
5. Dhakshinamoorthy, A.; Li, Z.; Garcia, H., Catalysis and photocatalysis by
metal organic frameworks. Chemical Society Reviews 2018, 47 (22), 8134-8172.
6. Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R., Multifunctional metal–
organic framework catalysts: synergistic catalysis and tandem reactions.
Chemical Society Reviews 2017, 46 (1), 126-157.
7. Yang, Q.; Xu, Q.; Jiang, H.-L., Metal–organic frameworks meet metal
nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews
2017, 46 (15), 4774-4808.
8. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R.
P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors.
Chemical Reviews 2012, 112 (2), 1105-1125.
9. Zhou, J.; Wang, B., Emerging crystalline porous materials as a
multifunctional platform for electrochemical energy storage. Chemical Society
Reviews 2017, 46 (22), 6927-6945.
10. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy.
Energy & Environmental Science 2013, 6 (6), 1656-1683.
11. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.;
Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks
in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
69
12. Yang, J.; Yang, Y. W., Metal-Organic Frameworks for Biomedical
Applications. Small 2020, e1906846.
13. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.;
O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate
Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.
14. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo,
F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and
thermal stability of zeolitic imidazolate frameworks. Proceedings of the National
Academy of Sciences 2006, 103 (27), 10186-10191.
15. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M.,
Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic
Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130
(38), 12626-12627.
16. Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, Y.; Deng, Q.; Dong, K.;
Ren, J.; Qu, X., Bioinspired Construction of a Nanozyme-Based H2O2
Homeostasis Disruptor for Intensive Chemodynamic Therapy. Journal of the
American Chemical Society 2020, 142 (11), 5177-5183.
17. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C., Water-based synthesis of
zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size.
Chemistry 2013, 19 (34), 11139-42.
18. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou,
L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K.,
Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous
Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–
Organic Framework Microcrystals. Journal of the American Chemical Society
2015, 137 (13), 4276-4279.
19. Li, H.; Kang, A.; An, B.; Chou, L. Y.; Shieh, F. K.; Tsung, C. K.;
Zhong, C., Encapsulation of bacterial cells in cytoprotective ZIF-90 crystals as
living composites. Materials Today Bio 2021, 10, 100097.
20. Hassanpour, S. H.; Dehghani, M., Review of cancer from perspective of
molecular. Journal of Cancer Research and Practice 2017, 4 (4), 127-129.
21. Pantel, K.; Alix-Panabières, C.; Riethdorf, S., Cancer micrometastases.
Nature Reviews Clinical Oncology 2009, 6 (6), 339-351.
22. 癌症防治組, 與乳癌的親密對話~台灣乳癌防治概況. 衛生福利部 國
民健康署 2022/01/25.
23. Jaiyesimi, I. A.; Buzdar, A. U.; Hortobagyi, G., Inflammatory breast cancer:
70
a review. Journal of Clinical Oncology 1992, 10 (6), 1014-1024.
24. Coffey, J. C.; Wang, J. H.; Smith, M. J. F.; Bouchier-Hayes, D.; Cotter,
T. G.; Redmond, H. P., Excisional surgery for cancer cure: therapy at a cost. The
Lancet Oncology 2003, 4 (12), 760-768.
25. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K. W., Cancer and radiation
therapy: current advances and future directions. Int J Med Sci 2012, 9 (3), 193-9.
26. Amjad, M. T.; Chidharla, A.; Kasi, A., Cancer Chemotherapy. StatPearls
Publishing, Treasure Island (FL): 2022.
27. McCarthy, E. F., The toxins of William B. Coley and the treatment of bone
and soft-tissue sarcomas. Iowa Orthop J 2006, 26, 154-8.
28. Dang, L. H.; Bettegowda, C.; Huso, D. L.; Kinzler, K. W.; Vogelstein,
B., Combination bacteriolytic therapy for the treatment of experimental tumors.
Proceedings of the National Academy of Sciences 2001, 98 (26), 15155-15160.
29. Kasinskas, R. W.; Forbes, N. S., Salmonella typhimurium specifically
chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol
Bioeng 2006, 94 (4), 710-21.
30. Jiang, S. N.; Park, S. H.; Lee, H. J.; Zheng, J. H.; Kim, H. S.; Bom,
H. S.; Hong, Y.; Szardenings, M.; Shin, M. G.; Kim, S. C.; Ntziachristos,
V.; Choy, H. E.; Min, J. J., Engineering of bacteria for the visualization of
targeted delivery of a cytolytic anticancer agent. Mol Ther 2013, 21 (11), 1985-
95.
31. Kocijancic, D.; Felgner, S.; Schauer, T.; Frahm, M.; Heise, U.;
Zimmermann, K.; Erhardt, M.; Weiss, S., Local application of bacteria
improves safety of Salmonella -mediated tumor therapy and retains advantages of
systemic infection. Oncotarget 2017, 8 (30), 49988-50001.
32. Critchley-Thorne, R. J.; Stagg, A. J.; Vassaux, G., Recombinant
Escherichia coli expressing invasin targets the Peyer′s patches: the basis for a
bacterial formulation for oral vaccination. Mol Ther 2006, 14 (2), 183-91.
33. Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood flow, oxygen and nutrient
supply, and metabolic microenvironment of human tumors: a review. Cancer Res
1989, 49 (23), 6449-65.
34. Liu, S.; Xu, X.; Zeng, X.; Li, L.; Chen, Q.; Li, J., Tumor-targeting
bacterial therapy: A potential treatment for oral cancer (Review). Oncol Lett 2014,
8 (6), 2359-2366.
35. Rosadini, C. V.; Kagan, J. C., Early innate immune responses to bacterial LPS.
Current Opinion in Immunology 2017, 44, 14-19.
36. Jang, J.; Hur, H. G.; Sadowsky, M. J.; Byappanahalli, M. N.; Yan, T.;
Ishii, S., Environmental Escherichia coli: ecology and public health
71
implications—a review. Journal of Applied Microbiology 2017, 123 (3), 570-581.
37. Liu, T.; Khosla, C., Genetic Engineering of Escherichia coli for Biofuel
Production. Annual Review of Genetics 2010, 44 (1), 53-69.
38. Fierfort, N.; Samain, E., Genetic engineering of Escherichia coli for the
economical production of sialylated oligosaccharides. Journal of Biotechnology
2008, 134 (3), 261-265.
39. Ingram, L. O.; Conway, T.; Clark, D. P.; Sewell, G. W.; Preston, J. F.,
Genetic engineering of ethanol production in Escherichia coli. Applied and
Environmental Microbiology 1987, 53 (10), 2420-2425.
40. Sepahdar, Z.; Miroliaei, M.; Bouzari, S.; Khalaj, V.; Salimi, M., Surface
Engineering of Escherichia coli–Derived OMVs as Promising Nano-Carriers to
Target EGFR-Overexpressing Breast Cancer Cells. Frontiers in Pharmacology
2021, 12, 719289.
41. Mamat, U.; Woodard, R. W.; Wilke, K.; Souvignier, C.; Mead, D.;
Steinmetz, E.; Terry, K.; Kovacich, C.; Zegers, A.; Knox, C., Endotoxinfree protein production—ClearColi™ technology. Nature Methods 2013, 10 (9),
916-916.
42. 張凱安, 大腸桿菌是好菌或壞菌?超標會怎樣?大腸桿菌常見疑問、感
染症狀一次看. Hello 醫師 2022/11/21.
43. Maeshima, N.; Fernandez, R., Recognition of lipid A variants by the TLR4-
MD-2 receptor complex. Frontiers in cellular and infection microbiology 2013,
3, 3.
44. Lu, Y. C.; Yeh, W. C.; Ohashi, P. S., LPS/TLR4 signal transduction pathway.
Cytokine 2008, 42 (2), 145-151.
45. Lawen, A., Apoptosis—an introduction. Bioessays 2003, 25 (9), 888-896.
46. Gabarin, R. S.; Li, M.; Zimmel, P. A.; Marshall, J. C.; Li, Y.; Zhang,
H., Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis:
Avenues for Novel Therapeutic Strategies. J Innate Immun 2021, 13 (6), 323-332.
47. Rathkey, J. K.; Zhao, J.; Liu, Z.; Chen, Y.; Yang, J.; Kondolf, H. C.;
Benson, B. L.; Chirieleison, S. M.; Huang, A. Y.; Dubyak, G. R.; Xiao, T.
S.; Li, X.; Abbott, D. W., Chemical disruption of the pyroptotic pore-forming
protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol
2018, 3 (26).
48. Wang, D.; Zheng, J.; Hu, Q.; Zhao, C.; Chen, Q.; Shi, P.; Chen, Q.;
Zou, Y.; Zou, D.; Liu, Q.; Pei, J.; Wu, X.; Gao, X.; Ren, J.; Lin, Z.,
Magnesium protects against sepsis by blocking gasdermin D N-terminal-induced
72
pyroptosis. Cell Death Differ 2020, 27 (2), 466-481.
49. Liang, K.; Richardson, J. J.; Cui, J.; Caruso, F.; Doonan, C. J.; Falcaro,
P., Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for
Living Cells. Advanced Materials 2016, 28 (36), 7910-7914.
50. Riccò, R.; Liang, W.; Li, S.; Gassensmith, J. J.; Caruso, F.; Doonan,
C.; Falcaro, P., Metal–Organic Frameworks for Cell and Virus Biology: A
Perspective. ACS Nano 2018, 12 (1), 13-23.
51. He, B. B.; Preckwinkel, U.; Smith, K. L. In COMPARISON BETWEEN
CONVENTIONAL AND TWO-DIMENSIONAL XRD, 2003.
52. Abd-Alameer, S.; G, H.; G.Rahid, H., Quality of medical microscope Image
at different lighting condition. IOP Conference Series: Materials Science and
Engineering 2020, 871, 012072.
53. Pomary, P. Exploring differences in protein metabolites in cerebrospinal fluid
from patients with Alzheimer′s disease, frontotemporal dementia or amyotrophic
lateral sclerosis : a pilot study. 2016.
54. Kurien, B. T.; Scofield, R. H., Western blotting. Methods 2006, 38 (4), 283-
293.
55. Malich, G.; Markovic, B.; Winder, C., The sensitivity and specificity of the
MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals
using human cell lines. Toxicology 1997, 124 (3), 179-192.
56. Sezonov, G.; Joseleau-Petit, D.; D′Ari, R., Escherichia coli Physiology in
Luria-Bertani Broth. Journal of Bacteriology 2007, 189 (23), 8746-8749.
57. Tisoncik, J. R.; Korth, M. J.; Simmons, C. P.; Farrar, J.; Martin, T. R.;
Katze, M. G., Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012,
76 (1), 16-32.
58. Cavaillon, J. M.; Adib-Conquy, M.; Fitting, C.; Adrie, C.; Payen, D.,
Cytokine cascade in sepsis. Scand J Infect Dis 2003, 35 (9), 535-44.
59. Kumar, V.; Weng, Y. C.; Wu, Y. C.; Huang, Y. T.; Liu, T. H.;
Kristian, T.; Liu, Y. L.; Tsou, H. H.; Chou, W. H., Genetic inhibition of PKCε
attenuates neurodegeneration after global cerebral ischemia in male mice. Journal
of Neuroscience Research 2019, 97 (4), 444-455.
60. Yang, J.; Zhao, Y.; Shao, F., Non-canonical activation of inflammatory
caspases by cytosolic LPS in innate immunity. Curr Opin Immunol 2015, 32, 78-
83.
61. Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao,
F., Inflammatory caspases are innate immune receptors for intracellular LPS.
Nature 2014, 514 (7521), 187-92.
62. Cheng, K. T.; Xiong, S.; Ye, Z.; Hong, Z.; Di, A.; Tsang, K. M.;
73
Gao, X.; An, S.; Mittal, M.; Vogel, S. M.; Miao, E. A.; Rehman, J.;
Malik, A. B., Caspase-11-mediated endothelial pyroptosis underlies
endotoxemia-induced lung injury. J Clin Invest 2017, 127 (11), 4124-4135. |