博碩士論文 110223058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.217.146.66
姓名 王鉅霖(Ju-Lin Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 類沸石咪唑骨架材料封裝大腸桿菌誘發癌症細胞細胞焦亡之研究
(Induction of Pyroptosis in Cancer Cells Using Escherichia Coli Encapsulation into Zeolitic Imidazole Frameworks)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 癌症又稱為惡性腫瘤, 傳統常見的癌症治療方如手術移除、放射治療
以及化學治療,但經常伴隨著嚴重的副作用例如抗藥性或是正常細胞也會
一併清除。細菌腫瘤療法(bacteria-mediated cancer therapy)提供癌症治療另外
一種群新的選擇,
但目前細菌癌症療法依舊存在一些困境,如何於常規滅菌方式下維持細
菌的活性,同時避免細菌外膜上的脂多醣(Lipopolysaccharide, LPS)外露而影
響輸送的精確性,造成患者的副作用。因此學者們致力於有機和無機材料結
合生物體的生物復合材料,進而改善細菌對於人體環境的適應性。
金屬有機骨架材料(Metal-Organic Frameworks, MOFs)具有相當的多樣
性,因此近年來常被應用在結合生物系統相關的研究。本研究利用類沸石咪
唑骨架材料-90(Zeolitic Imidazolate Frameworks, ZIF-90)包覆大腸桿菌
(Escherichia coli, E. coli)表面,形成單一晶體包覆大腸桿菌(E. coli@ZIF-90)
進行了多種癌症細胞療法相關的體外細胞實驗。實驗結果發現將 E. coli 以
單晶形式包覆在 ZIF-90 中,能夠防止 E. coli 外膜上的 LPS 暴露在巨噬細胞
中,有效降低巨噬細胞的免疫反應,表示 ZIF-90 作為藥物載體將能更安全
的在人體中輸送大腸桿菌。此外,在比較多種癌症細胞株後,發現 E.
coli@ZIF-90 對乳腺癌細胞具有 53 %毒殺效果證實 E. coli@ZIF-90 能夠誘
發乳腺癌細胞的發炎反應,並造成癌症細胞凋亡。由細胞中鋅離子濃度的差
ii
異,發現癌症細胞比正常細胞對 ZIF-90 吞噬能力較強,證明 E. coli@ZIF90 對乳腺癌細胞有較高專一性。最後透過檢測乳腺癌細胞凋亡過程觀察發
炎因子生成量,發現 E. coli 是透過 ZIF-90 送入細胞內,其外膜上的 LPS 引
發癌症細胞焦亡(Pyroptosis)的發生,造成癌細胞死亡。
本研究證實利用類沸石咪唑骨架材料作為藥物載體能更有效的將細菌
送入癌症細胞內部,封裝的細菌可以在腫瘤細胞酸性環境下釋放,露出細菌
外膜上的脂多醣,以此誘發細胞發炎並進一步導致細胞焦亡。此研究結果提
供細菌做為癌症療法的新方式,這類輸送的方式可以有效將且專一將細菌
釋放到癌細胞內部,不會對正常細胞產生傷害。這些實驗結果將有助於更進
一步地應用於癌症治療領域,提供更加有效和安全的治療方案。相信本研究
成果能為癌症治療帶來更多的突破。
摘要(英) Cancer, a leading cause of death worldwide, is traditionally treated with
surgery, radiation therapy, and chemotherapy, which can have adverse effects. To
overcome these limitations, bacteria-mediated cancer therapy targets cancer cells
selectively using bacteria and their toxins. This approach aims to minimize
damage to healthy tissue while activating the immune system against cancer cells.
However, bacterial cancer therapy faces challenges such as deactivation during
conventional sterilization methods and obstacles in delivering bacteria to tumor
locations due to the body′s immune response. Additionally, the presence of
lipopolysaccharide (LPS) on the outer membrane of bacteria can trigger immune
responses and lead to side effects. Thus, how to improve the adaptability of
bacteria to the human body is still a challenge.
In this study, we showcased the encapsulation of E. coli bacteria within
Zeolitic Imidazolate Framework-90 (ZIF-90), a subclass of Metal-Organic
Frameworks (MOFs). This encapsulation process enhances the bacteria′s
protection against lysozyme and antibiotics within the human body. In vitro
experiments demonstrated the successful delivery of E. coli into cancer cells using
ZIF-90 particles, resulting in reduced immune responses from macrophages and
specific targeting of breast cancer cells. Furthermore, the 53% toxicity effect of
E. coli@ZIF-90 on breast cancer cells confirmed that E. coli@ZIF-90 induced
inflammatory responses in breast cancer cells and caused apoptosis of cancer cells.
Moreover, the measurement of zinc ion concentration revealed the selective
targeting of cancer cells by E. coli@ZIF-90 while avoiding damage to normal
cells. Additionally, the study investigated the mechanism of intracellular
pyroptosis induced by E. coli, attributing it to the effects of LPS in cancer cells.
iv
This research provides a promising approach to cancer therapy by effectively
delivering bacteria into cancer cells and inducing inflammation and apoptosis.
The findings contribute to the development of more effective and safer treatment
options in the field of cancer therapy. It is expected that further advancements in
this research will lead to breakthroughs in cancer treatment.
關鍵字(中) ★ 細菌癌症療法
★ 類沸石咪唑骨架材料
★ 脂多醣
★ 乳腺癌細胞
★ 細胞焦亡
關鍵字(英) ★ : bacteria-mediated cancer therapy
★ Zeolitic Imidazolate Framework
★ lipopolysaccharide
★ breast cancer cells
★ pyroptosis
論文目次 中文摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xi
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-1-1 金屬有機骨架材料 1
1-1-2 類沸石咪唑骨架材料 2
1-1-3 類沸石咪唑骨架材料-90 3
1-2 癌症 6
1-2-1 癌症簡述 6
1-2-2 乳腺癌簡述 6
1-2-3 傳統常見癌症療法 7
1-3 細菌癌症療法 8
1-3-1 細菌癌症療法 8
1-3-2 細菌癌症療法問題 10
1-3-3 大腸桿菌(Escherichia coli, E. coli) 10
1-3-4 脂多醣(Lipopolysaccharide, LPS) 11
1-3-5 藥物載體 13
1-4 癌症細胞株和正常細胞株 14
1-4-1 胃腺癌細胞株(AGS) 14
1-4-2 鼻咽癌細胞(NPC-TW01) 14
1-4-3 肺癌細胞(A549) 14
1-4-4 鱗狀細胞癌(A431) 15
1-4-5 腎癌細胞(A498) 15
1-4-6 小鼠乳腺癌細胞(4T1) 15
1-4-7 人類乳腺癌細胞(Hs 578T) 16
1-4-8 人類正常乳腺上皮細胞(H184) 16
1-5 細胞死亡 17
1-5-1 細胞凋亡(Apoptosis) 17
1-5-2 細胞焦亡(Pyroptosis) 17
1-6 研究動機與目的 19
第二章 實驗部分 22
2-1 實驗藥品與設備 22
2-2 實驗儀器原理 26
2-2-1 X射線粉末繞射儀 (Powder X-ray Diffractometer, PXRD) . 26
2-2-2 螢光顯微鏡 27
2-2-3 紫外/可見光光譜儀 28
2-2-4 酵素連結免疫吸附測定法(Enzyme-linked immunosorbent assay) 28
2-2-5 西方墨點法(Western Blotting) 29
2-2-6 細胞存活率測試 31
2-3 實驗步驟 32
2-3-1 大腸桿菌之培養步驟 34
2-3-2 合成類沸石咪唑骨架材料-90 封裝大腸桿菌 35
2-3-3 細胞培養 36
2-3-4 酵素連結免疫吸附測定法(Enzyme-linked immunosorbent assay) 36
2-3-5 西方墨點法(Western Blotting) 37
第三章 結果與討論 41
3-1 大腸桿菌生物復合材料之相關鑑定 41
3-2 E. coli@ZIF-90 對多種癌症細胞株之存活率測試 44
3-3 E. coli@ZIF-90 誘發發炎反應測試 47
3-4 ClearColi@ZIF-90 之相關鑑定 50
3-5 乳腺癌細胞發炎反應測試 51
3-6 正常細胞之細胞存活率以及發炎反應測試 53
3-7 細胞對類沸石咪唑骨架材料-90 之吞噬能力測試 54
3-8 Lipopolysaccharide 所誘發之細胞焦亡驗證實驗 56
3-9 抑制 Gasdermin D 之細胞存活率測試 62
3-10 正常細胞中細胞焦亡反應 64
第四章 結論及未來展望 67
第五章 參考文獻 68
參考文獻 1. Hoskins, B. F.; Robson, R., Design and construction of a new class of
scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked
molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures
and the synthesis and structure of the diamond-related frameworks
[N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-
tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American
Chemical Society 1990, 112 (4), 1546-1554.
2. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in
Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
3. Li, B.; Wen, H.-M.; Zhou, W.; Chen, B., Porous Metal–Organic
Frameworks for Gas Storage and Separation: What, How, and Why? The Journal
of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
4. Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y. S., Gas Separation
Properties of Metal Organic Framework (MOF-5) Membranes. Industrial &
Engineering Chemistry Research 2013, 52 (3), 1102-1108.
5. Dhakshinamoorthy, A.; Li, Z.; Garcia, H., Catalysis and photocatalysis by
metal organic frameworks. Chemical Society Reviews 2018, 47 (22), 8134-8172.
6. Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R., Multifunctional metal–
organic framework catalysts: synergistic catalysis and tandem reactions.
Chemical Society Reviews 2017, 46 (1), 126-157.
7. Yang, Q.; Xu, Q.; Jiang, H.-L., Metal–organic frameworks meet metal
nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews
2017, 46 (15), 4774-4808.
8. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R.
P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors.
Chemical Reviews 2012, 112 (2), 1105-1125.
9. Zhou, J.; Wang, B., Emerging crystalline porous materials as a
multifunctional platform for electrochemical energy storage. Chemical Society
Reviews 2017, 46 (22), 6927-6945.
10. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy.
Energy & Environmental Science 2013, 6 (6), 1656-1683.
11. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.;
Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks
in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
69
12. Yang, J.; Yang, Y. W., Metal-Organic Frameworks for Biomedical
Applications. Small 2020, e1906846.
13. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.;
O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate
Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.
14. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo,
F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and
thermal stability of zeolitic imidazolate frameworks. Proceedings of the National
Academy of Sciences 2006, 103 (27), 10186-10191.
15. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M.,
Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic
Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130
(38), 12626-12627.
16. Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, Y.; Deng, Q.; Dong, K.;
Ren, J.; Qu, X., Bioinspired Construction of a Nanozyme-Based H2O2
Homeostasis Disruptor for Intensive Chemodynamic Therapy. Journal of the
American Chemical Society 2020, 142 (11), 5177-5183.
17. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C., Water-based synthesis of
zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size.
Chemistry 2013, 19 (34), 11139-42.
18. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou,
L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K.,
Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous
Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–
Organic Framework Microcrystals. Journal of the American Chemical Society
2015, 137 (13), 4276-4279.
19. Li, H.; Kang, A.; An, B.; Chou, L. Y.; Shieh, F. K.; Tsung, C. K.;
Zhong, C., Encapsulation of bacterial cells in cytoprotective ZIF-90 crystals as
living composites. Materials Today Bio 2021, 10, 100097.
20. Hassanpour, S. H.; Dehghani, M., Review of cancer from perspective of
molecular. Journal of Cancer Research and Practice 2017, 4 (4), 127-129.
21. Pantel, K.; Alix-Panabières, C.; Riethdorf, S., Cancer micrometastases.
Nature Reviews Clinical Oncology 2009, 6 (6), 339-351.
22. 癌症防治組, 與乳癌的親密對話~台灣乳癌防治概況. 衛生福利部 國
民健康署 2022/01/25.
23. Jaiyesimi, I. A.; Buzdar, A. U.; Hortobagyi, G., Inflammatory breast cancer:
70
a review. Journal of Clinical Oncology 1992, 10 (6), 1014-1024.
24. Coffey, J. C.; Wang, J. H.; Smith, M. J. F.; Bouchier-Hayes, D.; Cotter,
T. G.; Redmond, H. P., Excisional surgery for cancer cure: therapy at a cost. The
Lancet Oncology 2003, 4 (12), 760-768.
25. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K. W., Cancer and radiation
therapy: current advances and future directions. Int J Med Sci 2012, 9 (3), 193-9.
26. Amjad, M. T.; Chidharla, A.; Kasi, A., Cancer Chemotherapy. StatPearls
Publishing, Treasure Island (FL): 2022.
27. McCarthy, E. F., The toxins of William B. Coley and the treatment of bone
and soft-tissue sarcomas. Iowa Orthop J 2006, 26, 154-8.
28. Dang, L. H.; Bettegowda, C.; Huso, D. L.; Kinzler, K. W.; Vogelstein,
B., Combination bacteriolytic therapy for the treatment of experimental tumors.
Proceedings of the National Academy of Sciences 2001, 98 (26), 15155-15160.
29. Kasinskas, R. W.; Forbes, N. S., Salmonella typhimurium specifically
chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol
Bioeng 2006, 94 (4), 710-21.
30. Jiang, S. N.; Park, S. H.; Lee, H. J.; Zheng, J. H.; Kim, H. S.; Bom,
H. S.; Hong, Y.; Szardenings, M.; Shin, M. G.; Kim, S. C.; Ntziachristos,
V.; Choy, H. E.; Min, J. J., Engineering of bacteria for the visualization of
targeted delivery of a cytolytic anticancer agent. Mol Ther 2013, 21 (11), 1985-
95.
31. Kocijancic, D.; Felgner, S.; Schauer, T.; Frahm, M.; Heise, U.;
Zimmermann, K.; Erhardt, M.; Weiss, S., Local application of bacteria
improves safety of Salmonella -mediated tumor therapy and retains advantages of
systemic infection. Oncotarget 2017, 8 (30), 49988-50001.
32. Critchley-Thorne, R. J.; Stagg, A. J.; Vassaux, G., Recombinant
Escherichia coli expressing invasin targets the Peyer′s patches: the basis for a
bacterial formulation for oral vaccination. Mol Ther 2006, 14 (2), 183-91.
33. Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood flow, oxygen and nutrient
supply, and metabolic microenvironment of human tumors: a review. Cancer Res
1989, 49 (23), 6449-65.
34. Liu, S.; Xu, X.; Zeng, X.; Li, L.; Chen, Q.; Li, J., Tumor-targeting
bacterial therapy: A potential treatment for oral cancer (Review). Oncol Lett 2014,
8 (6), 2359-2366.
35. Rosadini, C. V.; Kagan, J. C., Early innate immune responses to bacterial LPS.
Current Opinion in Immunology 2017, 44, 14-19.
36. Jang, J.; Hur, H. G.; Sadowsky, M. J.; Byappanahalli, M. N.; Yan, T.;
Ishii, S., Environmental Escherichia coli: ecology and public health
71
implications—a review. Journal of Applied Microbiology 2017, 123 (3), 570-581.
37. Liu, T.; Khosla, C., Genetic Engineering of Escherichia coli for Biofuel
Production. Annual Review of Genetics 2010, 44 (1), 53-69.
38. Fierfort, N.; Samain, E., Genetic engineering of Escherichia coli for the
economical production of sialylated oligosaccharides. Journal of Biotechnology
2008, 134 (3), 261-265.
39. Ingram, L. O.; Conway, T.; Clark, D. P.; Sewell, G. W.; Preston, J. F.,
Genetic engineering of ethanol production in Escherichia coli. Applied and
Environmental Microbiology 1987, 53 (10), 2420-2425.
40. Sepahdar, Z.; Miroliaei, M.; Bouzari, S.; Khalaj, V.; Salimi, M., Surface
Engineering of Escherichia coli–Derived OMVs as Promising Nano-Carriers to
Target EGFR-Overexpressing Breast Cancer Cells. Frontiers in Pharmacology
2021, 12, 719289.
41. Mamat, U.; Woodard, R. W.; Wilke, K.; Souvignier, C.; Mead, D.;
Steinmetz, E.; Terry, K.; Kovacich, C.; Zegers, A.; Knox, C., Endotoxinfree protein production—ClearColi™ technology. Nature Methods 2013, 10 (9),
916-916.
42. 張凱安, 大腸桿菌是好菌或壞菌?超標會怎樣?大腸桿菌常見疑問、感
染症狀一次看. Hello 醫師 2022/11/21.
43. Maeshima, N.; Fernandez, R., Recognition of lipid A variants by the TLR4-
MD-2 receptor complex. Frontiers in cellular and infection microbiology 2013,
3, 3.
44. Lu, Y. C.; Yeh, W. C.; Ohashi, P. S., LPS/TLR4 signal transduction pathway.
Cytokine 2008, 42 (2), 145-151.
45. Lawen, A., Apoptosis—an introduction. Bioessays 2003, 25 (9), 888-896.
46. Gabarin, R. S.; Li, M.; Zimmel, P. A.; Marshall, J. C.; Li, Y.; Zhang,
H., Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis:
Avenues for Novel Therapeutic Strategies. J Innate Immun 2021, 13 (6), 323-332.
47. Rathkey, J. K.; Zhao, J.; Liu, Z.; Chen, Y.; Yang, J.; Kondolf, H. C.;
Benson, B. L.; Chirieleison, S. M.; Huang, A. Y.; Dubyak, G. R.; Xiao, T.
S.; Li, X.; Abbott, D. W., Chemical disruption of the pyroptotic pore-forming
protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol
2018, 3 (26).
48. Wang, D.; Zheng, J.; Hu, Q.; Zhao, C.; Chen, Q.; Shi, P.; Chen, Q.;
Zou, Y.; Zou, D.; Liu, Q.; Pei, J.; Wu, X.; Gao, X.; Ren, J.; Lin, Z.,
Magnesium protects against sepsis by blocking gasdermin D N-terminal-induced
72
pyroptosis. Cell Death Differ 2020, 27 (2), 466-481.
49. Liang, K.; Richardson, J. J.; Cui, J.; Caruso, F.; Doonan, C. J.; Falcaro,
P., Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for
Living Cells. Advanced Materials 2016, 28 (36), 7910-7914.
50. Riccò, R.; Liang, W.; Li, S.; Gassensmith, J. J.; Caruso, F.; Doonan,
C.; Falcaro, P., Metal–Organic Frameworks for Cell and Virus Biology: A
Perspective. ACS Nano 2018, 12 (1), 13-23.
51. He, B. B.; Preckwinkel, U.; Smith, K. L. In COMPARISON BETWEEN
CONVENTIONAL AND TWO-DIMENSIONAL XRD, 2003.
52. Abd-Alameer, S.; G, H.; G.Rahid, H., Quality of medical microscope Image
at different lighting condition. IOP Conference Series: Materials Science and
Engineering 2020, 871, 012072.
53. Pomary, P. Exploring differences in protein metabolites in cerebrospinal fluid
from patients with Alzheimer′s disease, frontotemporal dementia or amyotrophic
lateral sclerosis : a pilot study. 2016.
54. Kurien, B. T.; Scofield, R. H., Western blotting. Methods 2006, 38 (4), 283-
293.
55. Malich, G.; Markovic, B.; Winder, C., The sensitivity and specificity of the
MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals
using human cell lines. Toxicology 1997, 124 (3), 179-192.
56. Sezonov, G.; Joseleau-Petit, D.; D′Ari, R., Escherichia coli Physiology in
Luria-Bertani Broth. Journal of Bacteriology 2007, 189 (23), 8746-8749.
57. Tisoncik, J. R.; Korth, M. J.; Simmons, C. P.; Farrar, J.; Martin, T. R.;
Katze, M. G., Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012,
76 (1), 16-32.
58. Cavaillon, J. M.; Adib-Conquy, M.; Fitting, C.; Adrie, C.; Payen, D.,
Cytokine cascade in sepsis. Scand J Infect Dis 2003, 35 (9), 535-44.
59. Kumar, V.; Weng, Y. C.; Wu, Y. C.; Huang, Y. T.; Liu, T. H.;
Kristian, T.; Liu, Y. L.; Tsou, H. H.; Chou, W. H., Genetic inhibition of PKCε
attenuates neurodegeneration after global cerebral ischemia in male mice. Journal
of Neuroscience Research 2019, 97 (4), 444-455.
60. Yang, J.; Zhao, Y.; Shao, F., Non-canonical activation of inflammatory
caspases by cytosolic LPS in innate immunity. Curr Opin Immunol 2015, 32, 78-
83.
61. Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao,
F., Inflammatory caspases are innate immune receptors for intracellular LPS.
Nature 2014, 514 (7521), 187-92.
62. Cheng, K. T.; Xiong, S.; Ye, Z.; Hong, Z.; Di, A.; Tsang, K. M.;
73
Gao, X.; An, S.; Mittal, M.; Vogel, S. M.; Miao, E. A.; Rehman, J.;
Malik, A. B., Caspase-11-mediated endothelial pyroptosis underlies
endotoxemia-induced lung injury. J Clin Invest 2017, 127 (11), 4124-4135.
指導教授 謝發坤 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明