博碩士論文 110222020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.191.103.46
姓名 張芷瑛(Chih-Ying Chang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Study of Qubit Dispersive Readout Optimization)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測★ 二維電子氣體中量子點接觸 與量子點製作及量測
★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為★ 單一超導量子位元控制與狀態讀取
★ 超導量子干涉元件製作★ 工程化超導電路上三維腔量子電動力學系統
★ Characterizing single-qubit gate fidelity on superconducting qubits★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator
★ 超導雙量子位元電路的實現★ Developing Flux-Driven Josephson Parametric Amplifer
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在量子計算領域中,精確地控制和讀取量子位元(qubits)是至關重要的。實現高保真度的讀取需要進行徹底的優化過程。在我們的研究中,我們專注於在超導電路框架內優化讀取過程。具體來說,我們設計了一個電容耦合到讀取諧振器的跨閘(transmon)量子位元,並精心選擇了參數來優化讀取條件。我們採用了色散讀取方案,其中量子位元狀態信息編碼在通過讀取諧振器的散射光中。通過優化讀取設置和條件,我們能夠高效準確地確定量子位元的狀態。
摘要(英) In the field of quantum computing, precise control and readout of qubits are crucial. Achieving high-fidelity readout requires a thorough optimization procedure. In our study, we focus on optimizing the readout process within the framework of superconducting circuits. Specifically, we design a transmon qubit capacitively coupled to a readout resonator, with carefully chosen parameters to optimize the readout conditions. We employ a dispersive readout scheme, where the qubit-state information is encoded in the scattered light passing through the readout resonator. By optimizing the readout setup and conditions, we can efficiently and accurately determine the state of the qubit.
關鍵字(中) ★ 超導量子位元
★ 電路量子電動力學
★ 讀取優化
★ 跨閘量子位元
關鍵字(英) ★ Superconducting qubit
★ Circuit quantum electrodynamics
★ Readout Optimization
★ Transmon qubit
論文目次 Abstract ii
Contents i
List of Figures iii
List of Tables v
Glossary vi
Acronym........................................ vi
Symbol ........................................ vi
1 Introduction 1
2 Circuit QED 4
2.1 Quantum LC Circuit ............................... 5
2.2 Quarter Waveguide Resonator....................... 6
2.3 Superconducting Qubit............................. 9
2.3.1 Bloch Sphere .................................. 10
2.3.2 Josephson Junction............................. 11
2.3.3 Cooper Pair Box ............................... 13
2.3.4 Transmon ...................................... 14
2.4 circuit QED...................................... 17
2.4.1 Jaynes Cumming Model .......................... 18
2.4.2 Dispersive Coupled Regime ..................... 20
2.5 Qubit State Readout ............................. 23
3 Design and Experiment Setup ....................... 28
3.1 Layout Design.................................... 28
3.1.1 Readout Resonator.............................. 30
3.1.2 Xmon Qubit..................................... 31
3.1.3 Coupling Strength ............................. 32
3.2 Measurement Setup................................ 33
3.3 IQ demodulation ................................. 35
4 Experimental Result ............................... 37
4.1 Spectroscopy measurement......................... 38
4.1.1 One-tone spectroscopy ......................... 38
4.1.2 Two-tone spectroscopy.......................... 39
4.2 Puls measurement ................................ 42
4.2.1 Time Rabi and power Rabi ...................... 43
4.2.2 Readout Calibration ........................... 45
4.2.3 T1 relaxation ................................. 48
4.2.4 Ramsey fringe.................................. 48
4.2.5 Readout pulse time trace....................... 49
4.2.6 Single shot measurement........................ 50
5 Conclusion and Future Works ........................55
Bibliography..........................................56
參考文獻 [1] Alexandre Blais, Steven M Girvin, and William D Oliver. Quantum information pro-
cessing and quantum optics with circuit quantum electrodynamics. Nature Physics,
16(3):247–256, 2020.
[2] Martin G ̈oppl, A Fragner, M Baur, R Bianchetti, Stefan Filipp, Johannes M Fink, Pe-
ter J Leek, G Puebla, L Steffen, and Andreas Wallraff. Coplanar waveguide resonators
for circuit quantum electrodynamics. Journal of Applied Physics, 104(11):113904,
2008.
[3] David Isaac Schuster. Circuit quantum electrodynamics. Yale University, 2007.
[4] Zijun Chen. Metrology of Quantum Control and Measurement in Superconducting
Qubits. PhD thesis, UC Santa Barbara, 2018.
[5] Jay Gambetta, Alexandre Blais, Maxime Boissonneault, Andrew A Houck, DI Schus-
ter, and Steven M Girvin. Quantum trajectory approach to circuit qed: Quantum
jumps and the zeno effect. Physical Review A, 77(1):012112, 2008.
[6] Rainee N Simons. Coplanar waveguide circuits, components, and systems. John
Wiley & Sons, 2004.
[7] David M Pozar. Microwave engineering. John wiley & sons, 2011.
[8] John Clarke, Andrew N Cleland, Michel H Devoret, Daniel Esteve, and John M
Martinis. Quantum mechanics of a macroscopic variable: the phase difference of a
josephson junction. Science, 239(4843):992–997, 1988.
[9] Brian David Josephson. Possible new effects in superconductive tunnelling. Physics
letters, 1(7):251–253, 1962.
[10] Jens Koch, M Yu Terri, Jay Gambetta, Andrew A Houck, David I Schuster, Jo-
hannes Majer, Alexandre Blais, Michel H Devoret, Steven M Girvin, and Robert J
Schoelkopf. Charge-insensitive qubit design derived from the cooper pair box. Phys-
ical Review A, 76(4):042319, 2007.
[11] Audrey Cottet. Implementation of a quantum bit in a superconducting circuit. PhD
thesis, PhD Thesis, Universit ́e Paris 6, 2002.
[12] R Miller, TE Northup, KM Birnbaum, ADBA Boca, AD Boozer, and HJ Kimble.
Trapped atoms in cavity qed: coupling quantized light and matter. Journal of Physics
B: Atomic, Molecular and Optical Physics, 38(9):S551, 2005.
[13] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and
William D Oliver. A quantum engineer’s guide to superconducting qubits. Applied
physics reviews, 6(2):021318, 2019.
[14] Rami Barends, Julian Kelly, Anthony Megrant, Daniel Sank, Evan Jeffrey, Yu Chen,
Yi Yin, Ben Chiaro, Josh Mutus, Charles Neill, et al. Coherent josephson qubit suit-
able for scalable quantum integrated circuits. Physical review letters, 111(8):080502,
2013.
[15] Terry C Edwards and Michael B Steer. Foundations for microstrip circuit design.
John Wiley & Sons, 2016.
[16] Sebastian Probst, FB Song, Pavel A Bushev, Alexey V Ustinov, and Martin Weides.
Efficient and robust analysis of complex scattering data under noise in microwave
resonators. Review of Scientific Instruments, 86(2):024706, 2015.
[17] Deanna M Abrams, Nicolas Didier, Shane A Caldwell, Blake R Johnson, and Colm A
Ryan. Methods for measuring magnetic flux crosstalk between tunable transmons.
Physical Review Applied, 12(6):064022, 2019.
[18] X Dai, DM Tennant, R Trappen, AJ Martinez, D Melanson, MA Yurtalan, Y Tang,
S Novikov, JA Grover, SM Disseler, et al. Calibration of flux crosstalk in large-scale
flux-tunable superconducting quantum circuits. PRX Quantum, 2(4):040313, 2021.
[19] WH Haydl, T Kitazawa, J Braunstein, R Bosch, and M Schlechtweg. Millimeter-
wave coplanar transmission lines on gallium arsenide, indium phosphide and quartz
with finite metalization thickness. In 1991 IEEE MTT-S International Microwave
Symposium Digest, pages 691–694. IEEE, 1991.
58
指導教授 陳永富(Yung-Fu Chen) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明