博碩士論文 110324029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.225.98.39
姓名 莊博勛(Bo-Xun Zhuang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 低溫錫鉍合金與銅基材之濕潤性質探討
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 隨著先進電子構裝的技術提升,由於多層堆疊的結構中內含有各種不同性質的材料,高溫製程容易造成晶片翹曲及長期可靠度的問題,Sn-58Bi銲料之熔點為138度、具有好的抗潛變能力。濕潤性質對於迴焊是非常重要的,所以本實驗選用助焊劑含鹵素及不含鹵素之Sn-58Bi銲料及不含鹵素之Sn-56Bi1Ag0.2C銲料探討其在銅基板上於不同迴焊溫度及時間的濕潤性質。
從TG-DTA結果發現,有無鹵素對銲料熔點並無影響,然而添加銅銀之後銲料熔點下降了一度,含鹵素之SnBi銲料之接觸角不論時間長短或迴焊時間長短都大於18度,說明溫度對於該銲料濕潤性質影響不大,然而不含鹵素的SnBi銲料接觸角都比含鹵素銲料低,說明其濕潤性質較好。從前面的熱分析結果發現,在到達熔點後其熱重損失率有鹵素銲料為無鹵素銲料的兩倍多,代表助焊劑在迴焊過程中快速的揮發,來不及保護銲料及基板被氧化,造成濕潤性質下降,另外再添加了銀銅的SnBi銲料因為銀具有良好的抗氧化性,使銲料之接觸角降低,同時使濕潤性質變好。
摘要(英) With advancements in advanced electronic packaging technologies, the inclusion of various materials with different properties in multilayer stack structures poses challenges such as chip warpage and long-term reliability issues when subjected to high-temperature processes. Sn-58Bi solder, with a melting point of 138°C, exhibits excellent resistance to creep deformation. Wetting property is crucial during reflow, thus in this experiment, both halogen-containing and halogen-free Sn-Bi solder, as well as halogen-free Sn-56Bi1Ag0.2C solder, were selected to investigate their wetting characteristics on copper substrates at different reflow temperatures and times.
From the TG-DTA results, it was observed that the addition of halogens had no impact on the solder′s melting point. The addition of copper-silver to the solder resulted in a one-degree decrease in the melting point. For the halogen-containing SnBi solder, the contact angle was consistently above 18 degrees. This indicates that temperature had minimal effect on the wetting property . On the other hand, the halogen-free solder exhibited lower contact angles compared to the halogen-containing solder, indicating better wetting characteristics. The thermal analysis results showed that the halogen-containing solder had a rapidly weight loss rate after reaching the melting point. This suggests that the flux in the halogen-containing solder evaporated rapidly during the reflow process, possibly leading to insufficient protection of the solder and substrate from oxidation, resulting in a decrease in wetting property. The addition of silver and copper to the SnBi solder improved wetting characteristics, as silver possesses excellent antioxidation properties, leading to better wetting properties.
關鍵字(中) ★ 濕潤性
★ 接觸角
★ 錫鉍
★ 銲料
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
1 第一章 緒論 1
1-1 前言 1
1-2 電子構裝簡介 2
1-3 電子構裝技術 4
1-3-1 通孔插裝技術 (Through-Hole Technology) 5
1-3-2 表面貼裝技術 (Surface Mount Technology) 6
1-3-3 覆晶構裝 (Flip Chip Technology) 7
1-3-4 三維積體電路構裝 (Three-dimensional Integrated Circuit) 9
1-4 低溫銲料簡介 13
1-4-1 Sn-Bi銲料 14
1-4-2 Sn-Bi銲料添加元素 20
1-5 濕潤性質(wettability) 23
1-6 研究動機 26
2 第二章 實驗方法 27
2-1 銲料及樣品製備 27
2-2 試片分析 28
2-2-1 原子力顯微鏡 (Atomic force microscope, AFM) 29
2-2-2 熱重熱示差分析儀(Thermogravimetry/Differential Thermal Analyzer, TG-DTA) 29
2-2-3 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 30
3 第三章 結果與討論 31
3-1 熱性質分析 31
3-2 Sn-Bi銲料之濕潤性探討 34
3-2-1 鹵素對於Sn-Bi銲料的濕潤性影響 34
3-2-2 Sn-56Bi-1Ag-0.2Cu銲料濕潤性質 40
4 第四章 結論 44
參考文獻 45
參考文獻 [1] R. R. Schaller, "Moore′s law: past, present and future," IEEE spectrum, vol. 34, no. 6, pp. 52-59, 1997.
[2] G. Han, S. Sun, and M. "Dong, Capacity Collaboration in Semiconductor Supply Chain with Failure Risk and Long-term Profit,": Supply Chain Management, G. Han Ed. New York: InTech, 2011, pp.185-200.
[3] 蕭宏,半導體製程技術導論,全華圖書,2014,25-38頁。
[4] M. P. Groover, "Electronics assembly and packaging," Fundamentals of modern manufacturing: materials, processes, and systems, M. P. Groover Ed. Hoboken: John Wiley & Sons, 2010, pp.831-835
[5] M. Rahko, "Theory for the QT feasibility qualification parameters" A qualification tool for component package feasibility in infrastructure products, M. Rahko Ed. Linnanmaa: Oulu University Oulu, 2011, pp.63-66
[6] K.-N. Tu, "Introduction," in Solder Joint Technology: Materials, Properties, and Reliability, K.-N. Tu Ed. New York, NY: Springer New York, 2007, pp. 1-33.
[7] M. A. Aziz, M. Abdullah, C. Khor, and F. C. Ani, "Influence of pin offset in PCB through-hole during wave soldering process: CFD modeling approach," International Communications in Heat and Mass Transfer, vol. 48, pp. 116-123, 2013.
[8] C. Durand, M. Klingler, D. Coutellier, and H. Naceur, "Power cycling reliability of power module: A survey," IEEE Transactions on Device and Materials Reliability, vol. 16, no. 1, pp. 80-97, 2016.
[9] K.-N. Tu, J.-o. Suh, A. T.-C. Wu, N. Tamura, and C.-H. Tung, "Mechanism and prevention of spontaneous tin whisker growth," Materials transactions, vol. 46, no. 11, pp. 2300-2308, 2005.
[10] B. Huang and N.-C. Lee, "Solder bumping via paste reflow for area array packages," in 27th Annual IEEE/SEMI International Electronics Manufacturing Technology Symposium, 2002: IEEE, pp. 1-17.
[11] R. Beica, "Flip chip market and technology trends," in 2013 Eurpoean Microelectronics Packaging Conference (EMPC), 2013: IEEE, pp. 1-4.
[12] J. Lau et al., "Redistribution layers (RDLs) for 2.5 D/3D IC integration," Journal of Microelectronics and Electronic Packaging, vol. 11, no. 1, pp. 16-24, 2014.
[13] T. Kim, H. Son, S.-K. Lim, Y. Song, and S. Suh, "Silicon interposer BGA package with a Cu-filled through silicon via and a multilayer redistribution layer fabricated via electroplating," Journal of Nanoscience and Nanotechnology, vol. 14, no. 12, pp. 8987-8992, 2014.
[14] G. Kumar, T. Bandyopadhyay, V. Sukumaran, V. Sundaram, S. K. Lim, and R. Tummala, "Ultra-high I/O density glass/silicon interposers for high bandwidth smart mobile applications," in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), 2011: IEEE, pp. 217-223.
[15] S. F. Al-Sarawi, D. Abbott, and P. D. Franzon, "A review of 3-D packaging technology," IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, vol. 21, no. 1, pp. 2-14, 1998.
[16] K. N. Tu, "Reliability challenges in 3D IC packaging technology," Microelectron. Reliab, vol. 51, no. 3, pp. 517-523, 2011.
[17] M. Vujosevic, "Thermally induced deformations in die-substrate assembly," Theoretical and Applied Mechanics, vol. 35, pp. 305-322, 2008.
[18] M. Loomans, S. Vaynman, G. Ghosh, and M. Fine, "Investigation of multi-component lead-free solders," Journal of electronic materials, vol. 23, pp. 741-746, 1994.
[19] Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, and G.-H. Hu, "Fundamentals, processes and applications of high-permittivity polymer–matrix composites," Progress in materials science, vol. 57, no. 4, pp. 660-723, 2012.
[20] Z. Mei, H. A. Holder, and H. A. Vander Plas, "Low-temperature solders," Hewlett Packard Journal, vol. 47, pp. 91-98, 1996.
[21] M. Abtew and G. Selvaduray, "Lead-free solders in microelectronics," Materials Science and Engineering, vol. 27, no. 5-6, pp. 95-141, 2000.
[22] S. M. Abdelaziz, H. Zahran, and A. Abd El-Rehim, "Microstructure and mechanical properties of tin-bismuth solder alloy reinforced by antimony oxide nanoparticles," International Journal of Advances in Engineering & Technology, vol. 10, no. 1, p. 73, 2017.
[23] C.-H. Yeh, L.-S. Chang, and B. Straumal, "Wetting transition of grain boundaries in the Sn-rich part of the Sn–Bi phase diagram," Journal of materials science, vol. 46, pp. 1557-1562, 2011.
[24] H. Kim, H. Liou, and K.-N. Tu, "Morphology of instability of the wetting tips of eutectic SnBi, eutectic SnPb, and pure Sn on Cu," Journal of materials research, vol. 10, no. 3, pp. 497-504, 1995.
[25] X. Chen, F. Xue, J. Zhou, and Y. Yao, "Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn–Bi based lead-free solder," Journal of Alloys and Compounds, vol. 633, pp. 377-383, 2015. 
[26] A. K. Gain and L. Zhang, "Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin–bismuth (Sn–Bi) solder," Journal of Materials Science: Materials in Electronics, vol. 27, pp. 781-794, 2016.
[27] W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, "Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy," Journal of Electronic Materials, vol. 37, pp. 982-991, 2008.
[28] F. Wang, Y. Huang, Z. Zhang, and C. Yan, "Interfacial reaction and mechanical properties of Sn-Bi solder joints," Materials, vol. 10, no. 8, pp. 920, 2017.
[29] Q. Xu, X. Liu, and H. Zhang, "Current enhanced wettability of eutectic SnBi melt on Cu substrate," Materials Science and Technology, vol. 27, no. 3, pp. 666-669, 2011.
[30] M. Ribas et al., "Development of low-temperature drop shock resistant solder alloys for handheld devices," in 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013), 2013: IEEE, pp. 48-52.
[31] F. Wang, L. Zhou, X. Wang, and P. He, "Microstructural evolution and joint strength of Sn-58Bi/Cu joints through minor Zn alloying substrate during isothermal aging," Journal of Alloys and compounds, vol. 688, pp. 639-648, 2016.
[32] P. Shang, Z. Liu, D. Li, and J. Shang, "Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints," Scripta Materialia, vol. 58, no. 5, pp. 409-412, 2008.
[33] D. Ye, C. Du, M. Wu, and Z. Lai, "Microstructure and mechanical properties of Sn–x Bi solder alloy," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 3629-3637, 2015.
[34] Z. Wang, Q. Zhang, Y. Chen, and Z. Song, "Influences of Ag and In alloying on Sn-Bi eutectic solder and SnBi/Cu solder joints," Journal of Materials Science: Materials in Electronics, vol. 30, pp. 18524-18538, 2019.
[35] P. T. Vianco and D. R. Frear, "Issues in the replacement of lead-bearing solders," JOM, vol. 45, pp. 14-19, 1993.
[36] N. Eustathopoulos, "Dynamics of wetting in reactive metal/ceramic systems," Acta Materialia, vol. 46, no. 7, pp. 2319-2327, 1998.
[37] S. Jung, "Fluid characterisation and drop impact in inkjet printing for organic semiconductor devices," University of Cambridge, pp.25-29, 2011.
[38] N.-C. Lee, "Solder pasre technology," Reflow soldering processes and troubleshooting : SMT, BGA, CSP, and flip chip technologies, N.-C. Lee Ed. Boston: Newnes Boston, 2002. pp,37-43.
[39] D. Bušek et al., "Flux effect on void quantity and size in soldered joints," Microelectron. Reliab, vol. 60, pp. 135-140, 2016. 
[40] A. M. Erer, S. Oguz, and Y. Türen, "Influence of bismuth (Bi) addition on wetting characteristics of Sn-3Ag-0.5 Cu solder alloy on Cu substrate," Engineering Science and Technology, an International Journal, vol. 21, no. 6, pp. 1159-1163, 2018.
[41] R. Sayyadi and H. Naffakh-Moosavy, "The role of intermetallic compounds in controlling the microstructural, physical and mechanical properties of Cu-[Sn-Ag-Cu-Bi]-Cu solder joints," Scientific Reports, vol. 9, no. 1, p. 8389, 2019.
指導教授 吳子嘉 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明