參考文獻 |
1. Haifan, Lin., Neuroblasts: a model for the asymmetric division of stem cells. Trends Genet, 1997. 13(1): p. 33-9.
2. J, E, TILL., et al., A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS. Proc Natl Acad Sci U S A, 1964. 51(1): p. 29-36.
3. SIMINOVITCH, L., et al., The Distribution of Colony-forming Cells Among Spleen Colonies. J Cell Comp Physiol, 1963. 62: p. 327-36.
4. Peter, Szaraz., et al., In Vitro Differentiation of Human Mesenchymal Stem Cells into
Functional Cardiomyocyte-like Cells. J Vis Exp, 2017. 126: p. 1-14.
5. Mackenzie, M, Shipley., Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.
J Vis Exp, 2016. 108: p. 1-11.
6. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science,
1998. 282(5391): p. 1145-7.
7. Takahashi, K., et al., Induction of pluripotent stem cells from mouse embryonic and adult
fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
8. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by
defined factors. Cell, 2007. 131(5): p. 861-72.
9. Takahashi, K., et al., Induced pluripotent stem cells in medicine and biology. Development,
2013. 140(12): p. 2457-61.
10. Mouka, A., et al., Induced pluripotent stem cell generation from a man carrying a complex
chromosomal rearrangement as a genetic model for infertility studies. Sci Rep, 2017. 7:
39760.
11. Mitalipov, S., et al., Totipotency, Pluripotency and Nuclear Reprogramming. Adv Biochem
Eng Biotechnol, 2009. 114: p. 185-99.
12. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,
2002. 418(6893): p. 41-9.
13. Tallone, T., et al., Adult Human Adipose Tissue Contains Several Types of Multipotent Cells.
J Cardiovasc Transl Res, 2011. 4(2): p. 200-10.
14. Seaberg, R.M., et al., Stem and progenitor cells: the premature desertion of rigorous
definitions. Trends Neurosci, 2003. 26(3): p. 125-31.
15. Humanbiotechnology as Social Challenge: an Interdisciplinary Introduction to Bioethics,
by Nikolaus Knoepffler, Dagmar Schipanski and Stefan Lorenz Sorgner. Human
Reproduction & Genetic Ethics, 2008. 14(1): p. 40-40.
16. Sudulaguntla, A., et al., A REVIEW: STEM CELLS AND CLASSIFICATION OF STEM
CELLS BASED ON THEIR ORIGIN. WJPPS, 2016. 5(11): p. 534-56.
17. Sell, S., Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest, 1994. 70(1): p. 6-22.
18. Nunes, T., et al., Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci, 2018. 19(12): 4036.
19. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105- 11.
20. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-8.
21. Bonnet, D., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
22. Barker, N., et al., Identification of stem cells in small intestine and colon by marker gene
Lgr5. Nature, 2007. 449(7165): p. 1003-7.
23. Barker, N., et al., Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 2009.
457(7229): p. 608-11.
24. Marsh, V., Epithelial Pten is dispensable for intestinal homeostasis but suppresses
adenoma development and progression after Apc mutation. Nat Genet, 2008. 40(12): p.
1436-44.
25. Schulz, A., Cancer Stem Cells and Radioresistance: DNA Repair and Beyond. Cancers
(Basel), 2019. 11(6): 862.
26. Jin, X., et al., Cancer stem cells and differentiation therapy. Tumour Biol, 2017. 39(10):
1010428317729933.
27. Aceto, N., et al., Circulating tumor cell clusters are oligoclonal precursors of breast cancer
metastasis. Cell, 2014. 158(5): p. 1110-1122.
28. Qianghua, Q., et al., Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype
leading the collective invasion. Cancer Sci, 2020. 111(2): p. 467-476.
29. D,C, Danila., et al., Circulating tumors cells as biomarkers: progress toward biomarker
qualification. Cancer J, 2011. 17(6): p. 438-50.
30. Marzagalli, M., et al., Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel),
2021. 13(3): 376.
31. Varillas, JI., et al., Microfluidic Isolation of Circulating Tumor Cells and Cancer Stem-Like
Cells from Patients with Pancreatic Ductal Adenocarcinoma. Theranostics, 2019. 9(5): p. 1417-1425.
32. Pastushenko, I., et al., Identification of the tumour transition states occurring during EMT. Nature, 2018. 556(7702): p. 463-468.
33. Tirino, V., et al., TGF-β1 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133+ A549 cell fraction. Cell Death Dis, 2013. 4(5): e620.
34. Masciale, V., et al., The Influence of Cancer Stem Cells on the Risk of Relapse in Adenocarcinoma and Squamous Cell Carcinoma of the Lung: A Prospective Cohort Study. Stem Cells Transl Med, 2022. 11(3): p. 239-247.
35. Kallergi, G., et al., Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res, 2011. 13(3): R59.
36. Aramini, B., et al., Cancer Stem Cells (CSCs), Circulating Tumor Cells (CTCs) and Their Interplay with Cancer Associated Fibroblasts (CAFs): A New World of Targets and
Treatments. Cancers (Basel), 2022. 14(10): 2408.
37. Yang, C., et al., Circulating tumor cells in precision oncology: clinical applications in
liquid biopsy and 3D organoid model. Cancer Cell Int, 2019. 19: 341.
38. Alfarouk, K., et al., Tumor Acidity as Evolutionary Spite. Cancers (Basel), 2011. 3(1): p.
408-14.
39. Joyce, JA., et al., T cell exclusion, immune privilege, and the tumor microenvironment.
Science, 2015. 348(6230): p. 74-80.
40. Leigh, S., The importance of breast cancer research from a patient’s view: the voices and
visions of advocates. Breast Cancer Res, S.01 (2000).
41. Orimo, A., et al., Stromal Fibroblasts Present in Invasive Human Breast Carcinomas
Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion.
Cell, 2005. 121(3): p. 335-48.
42. Jolly, LA., et al., Fibroblast-Mediated Collagen Remodeling Within the Tumor
Microenvironment Facilitates Progression of Thyroid Cancers Driven by BrafV600E and
Pten Loss. Cancer Res, 2016. 76(7): p. 1804-13.
43. Erez, N., et al., Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to
Orchestrate Tumor-Promoting Inflammation in an NF-kB-Dependent Manner. Cancer
Cell, 2010. 17(2): p. 135-47.
44. Shiga, K., et al., Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in
Tumor Growth. Cancers (Basel), 2015. 7(4):2443-58.
45. Sahai, E., et al., et al., A framework for advancing our understanding of cancer-associated
fibroblasts. Nat Rev Cancer, 2020. 20(3): p. 174-186.
46. Donovan, J., et al., Platelet-derived growth factor signaling in mesenchymal cells. Front
Biosci (Landmark Ed), 2013. 18(1):106-19.
47. Augsten, M., Cancer-associated fibroblasts as another polarized cell type of the tumor
microenvironment. Front Oncol, 2014. 4: 62.
48. Jorge, B., et al., Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol, 2019. 56: p. 71-79.
49. DeClerck, YA., Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer, 2000. 36(10): p. 1258-68.
50. Itoh, Y., Proteolytic modulation of tumor microenvironment signals during cancer progression. Front Oncol, 2022. 12: 935231.
51. Liao, X., et al., Fluorescence-activated Cell Sorting for Purification of Plasmacytoid Dendritic Cells from the Mouse Bone Marrow. J Vis Exp, 2016. 117: 54641.
52. Bonner, WA., et al., Fluorescence activated cell sorting. Rev Sci Instrum, 1972. 43(3): p. 404-9.
53. Darevsky, IS., et al., Flow cytometry in biodiversity surveys: methods, utility, and constraints. Amphibia-Reptilia, 1997. 18: p. 1–13.
54. Tung JW., et al., Modern Flow Cytometry: A Practical Approach. Clin Lab Med, 2007. 27(3): p. 453-68.
55. Meifang, H., et al., Fluorescence-Activated Cell Sorting Analysis of Heterotypic Cell-in- Cell Structures. Sci Rep, 2015. 5: 9588.
56. Adan, A., et al., Flow cytometry: basic principles and applications. Crit Rev Biotechnol, 2017. 37(2): p. 163-176.
57. Davies D. (2010). Cell sorting by flow cytometry. In: Macey MG, ed. Flow cytometry: principles and applications. Totowa (NJ): Humana Press, 257–76.
58. Pereira, H., et al., Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Research, 2018. 30: p. 113-20.
59. Seal, SH., A SIEVE FOR THE ISOLATION OF CANCER CELLS AND OTHER LARGE CELLS FROM THE BLOOD. Cancer, 1964. 17: p. 637-42.
60. Higuchi, A., et al., Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes. J Biomed Mater Res A, 2006. 78(3): p. 491-9.
61. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. J Biomed Mater Res A, 2008. 85(4): p. 853-61.
62. Higuchi, A., et al., Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials, 2014. 35(14): p. 4278-87.
63. Higuchi, A., et al., Enrichment of cancer-initiating cells from colon cancer cells through porous polymeric membranes by a membrane filtration method. J Mater Chem B, 2020. 8(46): p. 10577-10585.
64. Higuchi, A., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-39.
65. Köhler, G., et al., Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975. 256(5517): p. 495-7.
66. Bernard, A., et al., Human leukocyte differentiation antigens. Presse Medicale, 1984. 13(38): p. 2311-2316.
67. Fiebig, H., et al., Characterization of a series of monoclonal antibodies against human T cells. Allerg Immunol (Leipz), 1984. 30(4): p. 242-50.
68. Islam, F., et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res, 2015. 335(1): p. 135-47.
69. Lixiazi, H., et al., CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia. EMBO Mol Med, 2022. 14(4):
e14990.
70. Mastelaro, de, Rezende, M., et al., Leukemia stem cell immunophenotyping tool for
diagnostic, prognosis, and therapeutics. J Cell Physiol, 2020. 235(6): p. 4989-4998.
71. Biserova, K., et al., Cancer Stem Cells: Significance in Origin, Pathogenesis and Treatment
of Glioblastoma. Cells , 2021. 10(3): 621.
72. Liu, T., et al., Construction and Identification of New Molecular Markers of Triple-
Negative Breast Cancer Stem Cells. Front Oncol, 2021. 11: 647291.
73. Bai, X., et al., Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev,
2018. 69: p. 152-163.
74. Jimin, P., et al., Role of CD133/NRF2 Axis in the Development of Colon Cancer Stem Cell-
Like Properties. Front Oncol, 2022. 11: 808300.
75. Hao Zhe, C., et al., LGR5 promotes cancer stem cell traits and chemoresistance in cervical
cancer. Cell Death Dis, 2017. 8(9): e3039.
76. Wu, K., et al., LncRNA SLCO4A1-AS1 modulates colon cancer stem cell properties by
binding to miR-150-3p and positively regulating SLCO4A1. Lab Invest, 2021. 101(7): p.
908-920.
77. Sun, JH., et al., Liver cancer stem cell markers: Progression and therapeutic implications.
World J Gastroenterol, 2016. 22(13): p. 3547-57.
78. Muñoz, Galván, S., et al., Targeting Cancer Stem Cells to Overcome Therapy Resistance in
Ovarian Cancer. Cells, 2020. 9(6): 1402.
79. Mihanfar, A., et al., Ovarian cancer stem cell: A potential therapeutic target for overcoming
multidrug resistance. J Cell Physiol, 2019. 234(4): p. 3238-3253.
80. Junjie, L., et al., Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of
Ovarian Cancer Stem Cells. Cell Stem Cell, 2017. 20(3): p. 303-314.
81. Xia. P., et al., Cancer stem cell markers for liver cancer and pancreatic cancer. Stem Cell
Res, 2022. 60: 102701.
82. Elisabeth, IH., et al., Overexpression of the Pluripotent Stem Cell Marker Podocalyxin in Prostate Cancer. Anticancer Res, 2018. 38(11): p. 6361-6366.
83. Tang, DG., Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol, 2022. 82: p. 68-93.
84. Collene, R, J., et al., NANOG in cancer stem cells and tumor development: An update and outstanding questions. Stem Cells, 2015. 33(8): p. 2381-90.
85. Peitzsch, C., et al., Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications. Cancers (Basel), 2019. 11(5): 616.
86. Oihana, MS., et al., CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget, 2014. 5(16): p. 6854-66.
87. Maiuthed, A., et al., Lung Cancer Stem Cells and Cancer Stem Cell-targeting Natural Compounds. Anticancer Res, 2018. 38(7): p. 3797-3809.
88.
2022. 12(6): 929.
89. Nakane, P, K., et al., Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem, 1966. 14(12): p. 929-31.
90. Engvall, E., et al., Enzyme-linked immunosorbent assay (ELISA) Quantitative assay of immunoglobulin G. Immunochemistry, 1971. 8(9): p. 871-4.
91. Engvall, E., The ELISA, enzyme-linked immunosorbent assay. Clin Chem, 2010. 56(2): p. 319-20.
92.Denis, H., et al., Enzyme-linked immunosorbent assay for amitriptyline and other antidepressants using a monoclonal antibody. Clin Chim Acta, 1986. 159(3): p. 257-67.
93. Stevens ,PW., et al., Assessment of adsorption and adhesion of proteins to polystyrene microwells by sequential enzyme-linked immunosorbent assay analysis. Anal Biochem, 1995. 225(2): p. 197-205.
94. Lin, AV., Indirect ELISA. Methods Mol Biol, 2015. 1318: p. 51-9.
95. Suleyman, A., A short history, principles, and types of ELISA, and our laboratory
experience with peptide/protein analyses using ELISA. Peptides, 2015. 72: p. 4-15.
96. Kohl, TO., et al., Direct Competitive Enzyme-Linked Immunosorbent Assay (ELISA). Cold
Spring Harb Protoc, 2017. 2017(7): pdb.prot093740.
97. Gold, P., et al., Specific carcinoembryonic antigens of the human digestive system. J Exp
Wuputra, K., et al., Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. J Pers Med,
Med, 1965. 122(3): p. 467-81.
98. Grunnet, M., et al., Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung
Cancer, 2012. 76(2): p. 138-43.
99. Von, Kleist, S., et al., Identification of an Antigen from Normal Human Tissue That
Crossreacts with the Carcinoembryonic Antigen. Proc Natl Acad Sci U S A, 1972. 69(9): p. 2492-4.
100. PUCK, TT., et al., Action of x-rays on mammalian cells. J Exp Med, 1956. 103(5): p. 653- 66.
101. Radek, F., et al., Automatic Cell Cloning Assay for Determining the Clonogenic Capacity of Cancer and Cancer Stem-Like Cells. Cytometry A, 2013. 83(5): p. 472-82.
102. Nazilah, Abdul, S., et al., Novel triple‐positive markers identified in human non‐small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics. Oncol Rep, 2018. 40(2): p. 669-681.
103. Franken, NA., et al., Clonogenic assay of cells in vitro. Nat Protoc, 2006. 1(5): p. 2315-9. 104. Du, F., et al., Soft Agar Colony Formation Assay as a Hallmark of Carcinogenesis. Bio
Protoc, 2017. 7(12): e2351.
105. Hamburger, AW., et al., Primary Bioassay of Human Tumor Stem Cells. Science, 1977.
197(4302): p. 461-3.
106. Horibata, S., et al., Utilization of the Soft Agar Colony Formation Assay to Identify
Inhibitors of Tumorigenicity in Breast Cancer Cells. J Vis Exp, 2015. (99): e52727.
107. Im, K., et al., An introduction to Performing Immunofluorescence Staining. Methods Mol
Biol, 2019. 1897: p. 299-311.
108. Donaldson, JG., Immunofluorescence Staining. Curr Protoc Cell Biol, 2015. 69: 4.3.1-
4.3.7.
109. Byron, F, Brehm-Stecher., et al., Single-Cell Microbiology: Tools, Technologies, and
Applications. Microbiol Mol Biol Rev, 2004. 68(3): p.538-59.
110. Betterle, C., et al., The immunofluorescence techniques in the diagnosis of endocrine
autoimmune diseases. Auto Immun Highlights, 2012. 3(2): p. 67-78.
111. Haaijman, JJ., Immunofluorescence: quantitative considerations. Acta Histochem Suppl,
1988. 35: p. 77-83.
112. Barbedo, J., Automatic Object Counting In Neubauer Chambers. 2013. |