博碩士論文 110324023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.117.104.132
姓名 朱哲維(Zhe-Wei Zhu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用膜過濾法分離結腸癌幹細胞株
(Isolation of colon cancer cells using membrane filtration method)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-20以後開放)
摘要(中) 結腸癌是全球最致命和常見的腸道癌症之一。癌症起始細胞(CIC)或癌症幹細胞 (CSC)對腫瘤的產生、生長和轉移具有重大意義。從原發性結腸腫瘤組織中純化和分 離具有致腫瘤潛能的結腸 CSC(CIC),將有助於未來開發新的診斷和個性化治療方法。
在本研究中,我們利用耐倫薄膜和聚乳酸-聚乙二醇酸薄膜(PLGA/SK)過濾器的膜 過濾法純化了結腸癌細胞株 CoLo205 和 SW480 的 CSC (CIC)並作為原發性結腸癌細 胞的模型。純化效率將通過(i)CD44 和 CD133 標記的表達,(ii)集落形成單位試驗, 和(iii)癌胚抗原(CEA)的濃度進行檢測。實驗結果顯示,在細胞通過薄膜後,與滲 透液和回收液中的細胞相比,CSC(CIC)在遷移的細胞中具有更高的純度。然而,與滲 透液和回收液中的細胞相比,遷移的細胞產生了類似的集落形成單位效率。
接著我們將結腸癌細胞株與人類成纖維細胞 CG1639 共培養,且分別用細胞追蹤劑: 紅色與藍色染劑來進行標記。以便在使用膜過濾法將結腸癌細胞與成纖維細胞分離時, 可以利用流式細胞儀及螢光顯微鏡進行鑑定。我們的實驗結果表明,回收溶液的 CoLo205 細胞的純度可以從 50%提高到 80%,表明有更高比例的癌細胞殘留。
當結腸癌細胞和成纖維細胞的混合溶液通過膜時,結腸癌細胞保留在回收液中。因 此,使用本研究開發的膜過濾法,預計可以從患者的腫瘤組織中分離出高比例的結腸 CSC(CIC)。
摘要(英) Colon carcinoma is one of the most fatal and common gastrointestinal cancers in the world. Cancer-initiation cells (CICs) or cancer stem cells (CSCs), are responsible for tumor initiation, growth, and metastasis. The purification and isolation of tumorigenic colon CSCs (CICs) from primary colon tumor tissues should be valuable for the development of novel diagnostic and personal therapeutic treatments in the future. In this study, CSCs (CICs) of colon carcinoma cell line CoLo205 and SW480 (model of primary colon carcinoma cells) were purified from human fibroblasts (CG1639). Furthermore, the primary colon carcinoma cells were purified from colon tumor tissues of patients utilizing the membrane filtration method via nylon mesh filters and poly(lactide-co-glycolic acid)/silk screen (PLGA/SK) filters. In the separation of colon carcinoma cells from fibroblasts, both cells were stained with Cell Tracker Red and Blue, respectively for their identification using flow cytometry. CoLo205 purity was enhanced from 50% to 80% in the recovery fraction, which showed the higher cancer cells remaining. The isolation efficiency was characterized using (i) CD44 and CD133 marker expression, (ii) colony-forming unit assay, and (iii) carcinoembryonic antigen (CEA) production. Especially, CSCs (CICs) were purified in the migrated cells compared to the cells in permeation solution and recovery solution, when CoLo205 or SW480 cells were permeated through the membranes. However, the migrated cells generated similar efficiency of colony forming unit compared to the cells in the permeate solution and recovery solution. The colon cancer cells remained in the recovery solution, when the mixed solution of colon cancer cells and fibroblasts were permeated through the membranes. Therefore, a high proportion of colon CSCs (CICs) from the patient’s tumor tissue is expected to be isolated using the membrane filtration method developed in this study.
關鍵字(中) ★ 癌症幹細胞
★ 結腸癌
★ 薄膜過濾法
關鍵字(英) ★ Cancer stem cells
★ Colon cancer
★ Membrane filtration method
★ PLGA/SK membrane
論文目次 Abstract ....................................................................................................................................... I 摘要 ............................................................................................................................................II Index of Contents ..................................................................................................................... III Index of Figure ......................................................................................................................... VI Index of Table.............................................................................................................................. I Chapter 1 Introduction .......................................................................................................... 2
1-1 Stem cells and cancer stem cells .................................................................................. 2 1-1-1 Stem cells.......................................................................................................... 2
1-1-2 Cancer and cancer stem cells............................................................................ 4 1-2 Relationship between cancer cells and microenvironment .......................................... 6 1-2-1 Circulating tumor cells (CTCs) ........................................................................ 6
1-2-2 Cancer associated fibroblasts (CAFs)............................................................... 7
1-2-3 Extracellular Matrix (ECM) ............................................................................. 8 1-3 Isolation process of cancer cells ................................................................................ 10 1-3-1 Fluorescence-activated cell sorting (FACS) ................................................... 10
1-3-2 Membrane filtration method........................................................................... 11 1-4 Identification of cancer stem cells ............................................................................. 13 1-4-1 Surface marker expression of cancer stem cells ............................................. 13
1-4-2 Carcinoembryonic antigen (CEA) detection using ELISA ............................ 14
1-4-3 Colony formation assay (CFA) ....................................................................... 16
1-4-4 Immunofluorescence staining (IF).................................................................. 18
1-5 Goal of this study ....................................................................................................... 19 Chapter 2 Materials and methods............................................................................................. 20 2-1 Experimental materials .............................................................................................. 20
2-1-1 Cell sources..................................................................................................... 20 2-1-2 Membranes ..................................................................................................... 20 2-1-3 Cell cultivation dishes .................................................................................... 21
2-1-4 Digestion and passage process ....................................................................... 21
2-1-5 Ammonium-Chloride-Potassium (ACK) lysing buffer .................................. 21 2-1-6 Phosphate buffered saline solution (PBS) ...................................................... 21 2-1-7 Cell culture medium ....................................................................................... 21 2-1-8 Evaluation of cancer stem cells ...................................................................... 22
2-1-9 CellTracker staining........................................................................................ 22 2-2 Cell culture methods .................................................................................................. 22 2-2-1 Preparation of cell culture medium ................................................................ 22
2-2-2 Cell cultivations .............................................................................................. 23 2-2-3 CellTracker staining and coculture method .................................................... 23 2-2-4 Preparation of phosphate buffered saline solution (PBS)............................... 25 2-2-5 Preparation of Ammonium-Chloride-Potassium (ACK) lysing buffer........... 25 2-2-6 Preparation of collagenase digestion agent .................................................... 26 2-2-7 Passage of cell lines ........................................................................................ 26 2-2-8 Cell density measurement............................................................................... 27 2-2-9 Extraction of primary cancer cells.................................................................. 28
2-2-10 Preparation of PLGA-silk screen (PLGA/SK) membranes .......................... 29 2-3 Cell sorting method.................................................................................................... 30 2-3-1 Membrane filtration method ........................................................................... 30 2-4 Identification of cancer stem cells ............................................................................. 32 2-4-1 Surface marker analysis (flow cytometry) of cancer stem cells ..................... 32
2-4-2 Soft agar colony formation assay ................................................................... 32
2-4-3 Evaluation of carcinoembryonic antigen concentration (CEA) in cell culture
medium..................................................................................................................... 35 2-5 Characterization of membranes ................................................................................. 37 2-5-1 Primos-CR measurements .............................................................................. 37
2-5-2 Zeta potential measurements .......................................................................... 37 Chapter 3 Results and discussion ............................................................................................. 39
3-1 Characterization of membranes ................................................................................. 39 3-1-1 Primos-CR measurements .............................................................................. 39
3-1-2 Zeta potential measurements .......................................................................... 41 3-2 Characterization of colon cancer cell lines ................................................................ 43
3-2-1 Isolation of cancer stem cells from CoLo205 cell line by membrane filtration method...................................................................................................................... 43 3-2-2 Isolation of cancer stem cells from SW480 cell line by membrane filtration method...................................................................................................................... 45 3-2-3 Flow cytometry analysis of cancer stem cells surface marker ....................... 47 3-2-4 Soft agar colony formation assay of cancer cell lines .................................... 60
3-2-5 Carcinoembryonic antigen (CEA) concentration of cancer cell lines ............ 67 3-3 Characterization of primary colon cancer cells ......................................................... 69 3-3-1 Extraction of cancer cells from primary colon cancer tissue.......................... 69
3-3-2 Isolation of primary colon cancer cells by membrane filtration method........ 71
3-3-3 Flow cytometry analysis of primary colon cancer cells ................................. 72
3-3-4 Soft agar colony formation assay of primary colon cancer cells.................... 76 3-4 Coculture cancer cells and fibroblasts cells and Celltracker staining........................ 78 3-4-1 Flow cytometry analysis of cancer cells and fibroblasts ................................ 78
3-4-2 Isolation cancer cells from different ratio mixing solution by membrane
filtration method ....................................................................................................... 81
Chapter 4 Conclusion ............................................................................................................... 85 Reference.................................................................................................................................. 87
參考文獻 1. Haifan, Lin., Neuroblasts: a model for the asymmetric division of stem cells. Trends Genet, 1997. 13(1): p. 33-9.
2. J, E, TILL., et al., A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS. Proc Natl Acad Sci U S A, 1964. 51(1): p. 29-36.
3. SIMINOVITCH, L., et al., The Distribution of Colony-forming Cells Among Spleen Colonies. J Cell Comp Physiol, 1963. 62: p. 327-36.
4. Peter, Szaraz., et al., In Vitro Differentiation of Human Mesenchymal Stem Cells into
Functional Cardiomyocyte-like Cells. J Vis Exp, 2017. 126: p. 1-14.
5. Mackenzie, M, Shipley., Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.
J Vis Exp, 2016. 108: p. 1-11.
6. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science,
1998. 282(5391): p. 1145-7.
7. Takahashi, K., et al., Induction of pluripotent stem cells from mouse embryonic and adult
fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
8. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by
defined factors. Cell, 2007. 131(5): p. 861-72.
9. Takahashi, K., et al., Induced pluripotent stem cells in medicine and biology. Development,
2013. 140(12): p. 2457-61.
10. Mouka, A., et al., Induced pluripotent stem cell generation from a man carrying a complex
chromosomal rearrangement as a genetic model for infertility studies. Sci Rep, 2017. 7:
39760.
11. Mitalipov, S., et al., Totipotency, Pluripotency and Nuclear Reprogramming. Adv Biochem
Eng Biotechnol, 2009. 114: p. 185-99.
12. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,
2002. 418(6893): p. 41-9.
13. Tallone, T., et al., Adult Human Adipose Tissue Contains Several Types of Multipotent Cells.
J Cardiovasc Transl Res, 2011. 4(2): p. 200-10.
14. Seaberg, R.M., et al., Stem and progenitor cells: the premature desertion of rigorous
definitions. Trends Neurosci, 2003. 26(3): p. 125-31.
15. Humanbiotechnology as Social Challenge: an Interdisciplinary Introduction to Bioethics,
by Nikolaus Knoepffler, Dagmar Schipanski and Stefan Lorenz Sorgner. Human
Reproduction & Genetic Ethics, 2008. 14(1): p. 40-40.
16. Sudulaguntla, A., et al., A REVIEW: STEM CELLS AND CLASSIFICATION OF STEM
CELLS BASED ON THEIR ORIGIN. WJPPS, 2016. 5(11): p. 534-56.
17. Sell, S., Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest, 1994. 70(1): p. 6-22.
18. Nunes, T., et al., Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci, 2018. 19(12): 4036.
19. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105- 11.
20. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-8.
21. Bonnet, D., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
22. Barker, N., et al., Identification of stem cells in small intestine and colon by marker gene
Lgr5. Nature, 2007. 449(7165): p. 1003-7.
23. Barker, N., et al., Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 2009.
457(7229): p. 608-11.
24. Marsh, V., Epithelial Pten is dispensable for intestinal homeostasis but suppresses
adenoma development and progression after Apc mutation. Nat Genet, 2008. 40(12): p.
1436-44.
25. Schulz, A., Cancer Stem Cells and Radioresistance: DNA Repair and Beyond. Cancers
(Basel), 2019. 11(6): 862.
26. Jin, X., et al., Cancer stem cells and differentiation therapy. Tumour Biol, 2017. 39(10):
1010428317729933.
27. Aceto, N., et al., Circulating tumor cell clusters are oligoclonal precursors of breast cancer
metastasis. Cell, 2014. 158(5): p. 1110-1122.
28. Qianghua, Q., et al., Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype
leading the collective invasion. Cancer Sci, 2020. 111(2): p. 467-476.
29. D,C, Danila., et al., Circulating tumors cells as biomarkers: progress toward biomarker
qualification. Cancer J, 2011. 17(6): p. 438-50.
30. Marzagalli, M., et al., Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel),
2021. 13(3): 376.
31. Varillas, JI., et al., Microfluidic Isolation of Circulating Tumor Cells and Cancer Stem-Like
Cells from Patients with Pancreatic Ductal Adenocarcinoma. Theranostics, 2019. 9(5): p. 1417-1425.
32. Pastushenko, I., et al., Identification of the tumour transition states occurring during EMT. Nature, 2018. 556(7702): p. 463-468.
33. Tirino, V., et al., TGF-β1 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133+ A549 cell fraction. Cell Death Dis, 2013. 4(5): e620.
34. Masciale, V., et al., The Influence of Cancer Stem Cells on the Risk of Relapse in Adenocarcinoma and Squamous Cell Carcinoma of the Lung: A Prospective Cohort Study. Stem Cells Transl Med, 2022. 11(3): p. 239-247.
35. Kallergi, G., et al., Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res, 2011. 13(3): R59.
36. Aramini, B., et al., Cancer Stem Cells (CSCs), Circulating Tumor Cells (CTCs) and Their Interplay with Cancer Associated Fibroblasts (CAFs): A New World of Targets and
Treatments. Cancers (Basel), 2022. 14(10): 2408.
37. Yang, C., et al., Circulating tumor cells in precision oncology: clinical applications in
liquid biopsy and 3D organoid model. Cancer Cell Int, 2019. 19: 341.
38. Alfarouk, K., et al., Tumor Acidity as Evolutionary Spite. Cancers (Basel), 2011. 3(1): p.
408-14.
39. Joyce, JA., et al., T cell exclusion, immune privilege, and the tumor microenvironment.
Science, 2015. 348(6230): p. 74-80.
40. Leigh, S., The importance of breast cancer research from a patient’s view: the voices and
visions of advocates. Breast Cancer Res, S.01 (2000).
41. Orimo, A., et al., Stromal Fibroblasts Present in Invasive Human Breast Carcinomas
Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion.
Cell, 2005. 121(3): p. 335-48.
42. Jolly, LA., et al., Fibroblast-Mediated Collagen Remodeling Within the Tumor
Microenvironment Facilitates Progression of Thyroid Cancers Driven by BrafV600E and
Pten Loss. Cancer Res, 2016. 76(7): p. 1804-13.
43. Erez, N., et al., Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to
Orchestrate Tumor-Promoting Inflammation in an NF-kB-Dependent Manner. Cancer
Cell, 2010. 17(2): p. 135-47.
44. Shiga, K., et al., Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in
Tumor Growth. Cancers (Basel), 2015. 7(4):2443-58.
45. Sahai, E., et al., et al., A framework for advancing our understanding of cancer-associated
fibroblasts. Nat Rev Cancer, 2020. 20(3): p. 174-186.
46. Donovan, J., et al., Platelet-derived growth factor signaling in mesenchymal cells. Front
Biosci (Landmark Ed), 2013. 18(1):106-19.
47. Augsten, M., Cancer-associated fibroblasts as another polarized cell type of the tumor
microenvironment. Front Oncol, 2014. 4: 62.
48. Jorge, B., et al., Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol, 2019. 56: p. 71-79.
49. DeClerck, YA., Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer, 2000. 36(10): p. 1258-68.
50. Itoh, Y., Proteolytic modulation of tumor microenvironment signals during cancer progression. Front Oncol, 2022. 12: 935231.
51. Liao, X., et al., Fluorescence-activated Cell Sorting for Purification of Plasmacytoid Dendritic Cells from the Mouse Bone Marrow. J Vis Exp, 2016. 117: 54641.
52. Bonner, WA., et al., Fluorescence activated cell sorting. Rev Sci Instrum, 1972. 43(3): p. 404-9.
53. Darevsky, IS., et al., Flow cytometry in biodiversity surveys: methods, utility, and constraints. Amphibia-Reptilia, 1997. 18: p. 1–13.
54. Tung JW., et al., Modern Flow Cytometry: A Practical Approach. Clin Lab Med, 2007. 27(3): p. 453-68.
55. Meifang, H., et al., Fluorescence-Activated Cell Sorting Analysis of Heterotypic Cell-in- Cell Structures. Sci Rep, 2015. 5: 9588.
56. Adan, A., et al., Flow cytometry: basic principles and applications. Crit Rev Biotechnol, 2017. 37(2): p. 163-176.
57. Davies D. (2010). Cell sorting by flow cytometry. In: Macey MG, ed. Flow cytometry: principles and applications. Totowa (NJ): Humana Press, 257–76.
58. Pereira, H., et al., Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Research, 2018. 30: p. 113-20.
59. Seal, SH., A SIEVE FOR THE ISOLATION OF CANCER CELLS AND OTHER LARGE CELLS FROM THE BLOOD. Cancer, 1964. 17: p. 637-42.
60. Higuchi, A., et al., Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes. J Biomed Mater Res A, 2006. 78(3): p. 491-9.
61. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. J Biomed Mater Res A, 2008. 85(4): p. 853-61.
62. Higuchi, A., et al., Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials, 2014. 35(14): p. 4278-87.
63. Higuchi, A., et al., Enrichment of cancer-initiating cells from colon cancer cells through porous polymeric membranes by a membrane filtration method. J Mater Chem B, 2020. 8(46): p. 10577-10585.
64. Higuchi, A., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-39.
65. Köhler, G., et al., Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975. 256(5517): p. 495-7.
66. Bernard, A., et al., Human leukocyte differentiation antigens. Presse Medicale, 1984. 13(38): p. 2311-2316.
67. Fiebig, H., et al., Characterization of a series of monoclonal antibodies against human T cells. Allerg Immunol (Leipz), 1984. 30(4): p. 242-50.
68. Islam, F., et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res, 2015. 335(1): p. 135-47.
69. Lixiazi, H., et al., CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia. EMBO Mol Med, 2022. 14(4):
e14990.
70. Mastelaro, de, Rezende, M., et al., Leukemia stem cell immunophenotyping tool for
diagnostic, prognosis, and therapeutics. J Cell Physiol, 2020. 235(6): p. 4989-4998.
71. Biserova, K., et al., Cancer Stem Cells: Significance in Origin, Pathogenesis and Treatment
of Glioblastoma. Cells , 2021. 10(3): 621.
72. Liu, T., et al., Construction and Identification of New Molecular Markers of Triple-
Negative Breast Cancer Stem Cells. Front Oncol, 2021. 11: 647291.
73. Bai, X., et al., Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev,
2018. 69: p. 152-163.
74. Jimin, P., et al., Role of CD133/NRF2 Axis in the Development of Colon Cancer Stem Cell-
Like Properties. Front Oncol, 2022. 11: 808300.
75. Hao Zhe, C., et al., LGR5 promotes cancer stem cell traits and chemoresistance in cervical
cancer. Cell Death Dis, 2017. 8(9): e3039.
76. Wu, K., et al., LncRNA SLCO4A1-AS1 modulates colon cancer stem cell properties by
binding to miR-150-3p and positively regulating SLCO4A1. Lab Invest, 2021. 101(7): p.
908-920.
77. Sun, JH., et al., Liver cancer stem cell markers: Progression and therapeutic implications.
World J Gastroenterol, 2016. 22(13): p. 3547-57.
78. Muñoz, Galván, S., et al., Targeting Cancer Stem Cells to Overcome Therapy Resistance in
Ovarian Cancer. Cells, 2020. 9(6): 1402.
79. Mihanfar, A., et al., Ovarian cancer stem cell: A potential therapeutic target for overcoming
multidrug resistance. J Cell Physiol, 2019. 234(4): p. 3238-3253.
80. Junjie, L., et al., Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of
Ovarian Cancer Stem Cells. Cell Stem Cell, 2017. 20(3): p. 303-314.
81. Xia. P., et al., Cancer stem cell markers for liver cancer and pancreatic cancer. Stem Cell
Res, 2022. 60: 102701.
82. Elisabeth, IH., et al., Overexpression of the Pluripotent Stem Cell Marker Podocalyxin in Prostate Cancer. Anticancer Res, 2018. 38(11): p. 6361-6366.
83. Tang, DG., Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol, 2022. 82: p. 68-93.
84. Collene, R, J., et al., NANOG in cancer stem cells and tumor development: An update and outstanding questions. Stem Cells, 2015. 33(8): p. 2381-90.
85. Peitzsch, C., et al., Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications. Cancers (Basel), 2019. 11(5): 616.
86. Oihana, MS., et al., CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget, 2014. 5(16): p. 6854-66.
87. Maiuthed, A., et al., Lung Cancer Stem Cells and Cancer Stem Cell-targeting Natural Compounds. Anticancer Res, 2018. 38(7): p. 3797-3809.
88.
2022. 12(6): 929.
89. Nakane, P, K., et al., Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem, 1966. 14(12): p. 929-31.
90. Engvall, E., et al., Enzyme-linked immunosorbent assay (ELISA) Quantitative assay of immunoglobulin G. Immunochemistry, 1971. 8(9): p. 871-4.
91. Engvall, E., The ELISA, enzyme-linked immunosorbent assay. Clin Chem, 2010. 56(2): p. 319-20.
92.Denis, H., et al., Enzyme-linked immunosorbent assay for amitriptyline and other antidepressants using a monoclonal antibody. Clin Chim Acta, 1986. 159(3): p. 257-67.
93. Stevens ,PW., et al., Assessment of adsorption and adhesion of proteins to polystyrene microwells by sequential enzyme-linked immunosorbent assay analysis. Anal Biochem, 1995. 225(2): p. 197-205.
94. Lin, AV., Indirect ELISA. Methods Mol Biol, 2015. 1318: p. 51-9.
95. Suleyman, A., A short history, principles, and types of ELISA, and our laboratory
experience with peptide/protein analyses using ELISA. Peptides, 2015. 72: p. 4-15.
96. Kohl, TO., et al., Direct Competitive Enzyme-Linked Immunosorbent Assay (ELISA). Cold
Spring Harb Protoc, 2017. 2017(7): pdb.prot093740.
97. Gold, P., et al., Specific carcinoembryonic antigens of the human digestive system. J Exp
Wuputra, K., et al., Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. J Pers Med,
Med, 1965. 122(3): p. 467-81.
98. Grunnet, M., et al., Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung
Cancer, 2012. 76(2): p. 138-43.
99. Von, Kleist, S., et al., Identification of an Antigen from Normal Human Tissue That
Crossreacts with the Carcinoembryonic Antigen. Proc Natl Acad Sci U S A, 1972. 69(9): p. 2492-4.
100. PUCK, TT., et al., Action of x-rays on mammalian cells. J Exp Med, 1956. 103(5): p. 653- 66.
101. Radek, F., et al., Automatic Cell Cloning Assay for Determining the Clonogenic Capacity of Cancer and Cancer Stem-Like Cells. Cytometry A, 2013. 83(5): p. 472-82.
102. Nazilah, Abdul, S., et al., Novel triple‐positive markers identified in human non‐small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics. Oncol Rep, 2018. 40(2): p. 669-681.
103. Franken, NA., et al., Clonogenic assay of cells in vitro. Nat Protoc, 2006. 1(5): p. 2315-9. 104. Du, F., et al., Soft Agar Colony Formation Assay as a Hallmark of Carcinogenesis. Bio
Protoc, 2017. 7(12): e2351.
105. Hamburger, AW., et al., Primary Bioassay of Human Tumor Stem Cells. Science, 1977.
197(4302): p. 461-3.
106. Horibata, S., et al., Utilization of the Soft Agar Colony Formation Assay to Identify
Inhibitors of Tumorigenicity in Breast Cancer Cells. J Vis Exp, 2015. (99): e52727.
107. Im, K., et al., An introduction to Performing Immunofluorescence Staining. Methods Mol
Biol, 2019. 1897: p. 299-311.
108. Donaldson, JG., Immunofluorescence Staining. Curr Protoc Cell Biol, 2015. 69: 4.3.1-
4.3.7.
109. Byron, F, Brehm-Stecher., et al., Single-Cell Microbiology: Tools, Technologies, and
Applications. Microbiol Mol Biol Rev, 2004. 68(3): p.538-59.
110. Betterle, C., et al., The immunofluorescence techniques in the diagnosis of endocrine
autoimmune diseases. Auto Immun Highlights, 2012. 3(2): p. 67-78.
111. Haaijman, JJ., Immunofluorescence: quantitative considerations. Acta Histochem Suppl,
1988. 35: p. 77-83.
112. Barbedo, J., Automatic Object Counting In Neubauer Chambers. 2013.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明