博碩士論文 110324013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.147.6.176
姓名 張博凱(Po-Kai, Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧電漿表面處理對感光性介電材料與金屬薄膜界面附著力之影響
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 電漿表面改質技術已廣泛應用於高分子材料,表面改質可改變接觸角與官能基團,進而影響表面親疏水性質,也能使表面粗糙度產生變化。此外,也將使用不同於業界常用的PI感光性介電材料,改為使用新式的感光性介電材料來當作本研究附著力的材料。此種介電材料具較低的烘烤硬化溫度 (<200℃) 也有良好的顯影解析度,最重要的是能減少RDL生產成本。若能讓金屬導電層附著於其上不輕易發生剝離現象,便能進一步思考能否實際應用於產業界。實驗將藉由氧氣電漿蝕刻製程的氧離子轟擊打斷PID表面原子之間的化學鍵,藉此在材料表面形成特定的官能基團與帶有懸浮鍵之原子,並與金屬產生鍵結。首先分析氧氣電漿對感光性介電材料表面的化學組成與表面形貌產生何種改變,並且在表面處理後,以磁控射頻濺鍍法製備Ti/Cu金屬薄膜,觀察異質界面PID/Ti/Cu之接合情形;最後使用百格刀測試初步評估附著性,亦利用電鍍法增厚Cu層至20微米模擬實際應用之銅導線厚度,再次評估附著性。從結果得知,氧氣電漿能提高表面含氧基團的比例也能提升表面粗糙度,濺鍍薄膜具良好的附著性,卻因微結構不同而在電鍍後附著力有顯著差異,可見鍍膜製程對薄膜附著力之影響。總而言之,本實驗導入新式感光性介電材料並使用氧電漿進行表面處理,利用材料分析方法找出影響附著力的因素,為往後異質界面的接合技術提供一個改善附著力的標準作業流程。
摘要(英) Plasma surface modification techniques have been widely used for polymer materials. Surface modification can alter contact angles and functional groups, thereby affecting surface hydrophilicity or hydrophobicity. It can also lead to changes in surface roughness. Furthermore, this study intends to replace the commonly used photo-imageable dielectric material, PI, with a new type of photo-imageable dielectric (PID) material for adhesion testing purposes. This PID has a lower curing temperature (<200℃) and excellent development resolution, which significantly reduce redistribution layers (RDL) production costs. If a strong adhesion behavior between the metal layer and the dielectric material layer can be achieved, potential industrial applications can be explored.
The experiment involves O2 plasma etching, which breaks chemical bonds between atoms on the surface of the PID. This process creates specific functional groups and dangling bonds on the surface of polymer, interacting with metals. On the first step, the changes in chemical composition and surface morphology of the PID after O2 plasma treatment was analyzed using XPS. After surface modification, Ti/Cu thin films were deposited using magnetron sputtering, and the microstructure at the interface of PID/Ti/Cu was observed by SEM. Adhesion property was preliminarily assessed using a cross-cut test, and then cross-cut test was conducted again to re-evaluate the electroplated Cu foil with a thickness of 20 μm.
As a result of this study, oxygen plasma treatment increases the proportion of oxygen-containing functional groups on the surface and enhances surface roughness. In addition, the sputter-deposited film exhibits good adhesion; however, significant differences in adhesion after electroplating were observed due to some difference observed in microstructure. This highlights the influence of the thin-film deposition process.
In conclusion, this study introduces a novel PID and employs oxygen plasma surface treatment. It utilizes material analysis methods to identify factors influencing adhesion, establishing a standard operation procedure to material characterization for future of hybrid bonding technology for heterogeneous integration.
關鍵字(中) ★ 氧電漿
★ 感光性介電材料
★ 附著力
關鍵字(英) ★ oxygen plasma
★ photosensitive dielectric
★ photo-imageable dielectric
★ adhesion
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 viii
表目錄 ix
第一章 緒論 1
1-1 半導體發展概述 1
1-1-1 積體電路製程簡介 1
1-2 先進封裝製程 2
1-2-1 覆晶封裝 3
1-2-2 立體封裝技術 3
1-3 重分布層與介電質 4
1-3-1 附著力 5
1-3-2 附著力機制 5
1-4 研究目的與動機 6
第二章 文獻探討 7
2-1 物理氣相沉積 7
2-1-1 薄膜沉積機制 7
2-1-2 射頻磁控濺鍍. 8
2-2 高分子介電材料與金屬的附著力 10
2-2-1 電漿表面處理 (表面改質) 對附著力的影響 10
2-2-2 不同接著層對附著力的影響 10
第三章 實驗方法 11
3-1 實驗設計 11
3-2 實驗流程 11
3-2-1 試片製作 11
3-2-2 試片分析 12
3-3 材料分析方法 13
3-3-1 X光光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 13
3-3-2 接觸角量測儀 (Contact angle meter) 14
3-3-3 原子力顯微鏡 (Atomic force microscope, AFM) 14
3-3-4 掃描式電子顯微鏡 (Scanning electronic microscope, SEM) 15
3-3-5 聚焦離子束顯微鏡 (Focused ion beam, FIB) 16
3-3-6 X光繞射儀 (X-ray diffractometer, XRD) 17
3-3-7 百格測試 (Cross-cut test) 18
第四章 結果與討論 19
4-1 氧氣電漿表面處理對表面性質的影響 19
4-1-1 以動態接觸角量測儀觀測水滴在PID上形貌 19
4-1-2 AFM表面粗糙度量測 20
4-1-3 XPS對不同種類之PID化學鍵結及元素分析 21
4-2 濺鍍Ti/Cu薄膜分析及附著力測試 25
4-2-1 於PID上濺鍍之金屬Ti/Cu薄膜XRD圖分析 25
4-2-2 濺鍍金屬Ti/Cu薄膜百格測試 26
4-2-3 濺鍍金屬Ti/Cu薄膜之顯微影像分析 26
4-2-4 濺鍍Ti/Cu薄膜製程優化及電鍍參數調整 28
第五章 結論 31
5-1 結論與未來展望 31
參考文獻與資料 32
參考文獻 [1] 蕭宏:《半導體製程技術導論》,全華圖書,2014,3-14頁。
[2] G. E. Moore, "Cramming more components onto integrated circuits," Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, 1998.
[3] Wikipedia contributors, "Huang′s law," in Wikipedia, The Free Encyclopedia., ed.
[4] C. Mahandran, A. Y. Abd Fatah, N. Bani, H. Mad Kaidi, M. N. Muhtazaruddin, and M. Amran, "Thermal oxidation improvement in semiconductor wafer fabrication," International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, p. 1141, 2019.
[5] J. C. Suhling and P. Lall, "Electronic Packaging Applications," in Springer Handbook of Experimental Solid Mechanics, W. N. Sharpe Ed. Boston, MA: Springer US, 2008, pp. 1015-1044.
[6] K.-N. Tu, "Introduction," in Solder Joint Technology: Materials, Properties, and Reliability, K.-N. Tu Ed. New York, NY: Springer New York, 2007, pp. 1-33.
[7] J. H. Lau, "3D IC Integration and 3D IC Packaging," in Semiconductor Advanced Packaging, J. H. Lau Ed. Singapore: Springer Singapore, 2021, pp. 343-378.
[8] https://3dfabric.tsmc.com/english/dedicatedFoundry/technology/3DFabric.htm
[9] 邱秋燕、陳振榕、陳盟升、賴信助、張致吉:〈迎接高頻高速物聯網時代—銅箔產業因應之道〉,《工業材料雜誌》,工業技術研究院,2014,75-81頁。
[10] 莊貴貽:〈IC構裝載板用介電絕緣材料簡介〉,《工業材料雜誌》,工業技術研究院,2013,104-110頁。
[11] 黃冠燁、黃思瑜:〈高速高頻時代來臨—低介電損耗絕緣材料發展現況〉,《 工業材料雜誌》,工業技術研究院,2021,42-52頁。
[12] J. H. Lau, "2D, 2.1D, and 2.3D IC Integration," in Semiconductor Advanced Packaging, J. H. Lau Ed. Singapore: Springer Singapore, 2021, pp. 239-298.
[13] 鄭志龍:〈圖案化介電材料在先進構裝之發展趨勢(上)〉,《工業材料雜誌》,工業技術研究院,2021,148-156頁。
[14] F. Awaja, M. Gilbert, G. Kelly, B. Fox, and P. J. Pigram, "Adhesion of polymers," (in English), Prog. Polym. Sci., Review vol. 34, no. 9, pp. 948-968, 2009.
[15] Y. Li, Y. Wang, Y. Wang, and Y. Wu, "Achieving Good Bonding Strength of the Cu Layer on PET Films by Pretreatment of a Mixed Plasma of Carbon and Copper," ACS Appl Mater Interfaces, vol. 15, no. 9, pp. 12590-12602, 2023.
[16] C.-H. Lu, Y.-T. Kho, C.-P. Chen, B.-L. Tsai, and K.-N. Chen, "Adhesion and Material Properties Between Polyimide and Passivation Layers for Polymer/Metal Hybrid Bonding in 3-D Integration," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, no. 3, pp. 412-418, 2019.
[17] Y. Oh, E. J. Kim, Y. Kim, K. Choi, W. B. Han, H.-S. Kim, and C. S. Yoon, "Adhesion of sputter-deposited Cu/Ti film on plasma-treated polymer substrate," Thin Solid Films, vol. 600, pp. 90-97, 2016.
[18] J. N. Borges, T. Belmonte, J. Guillot, D. Duday, M. Moreno-Couranjou, P. Choquet, and H.-N. Migeon, "Functionalization of Copper Surfaces by Plasma Treatments to Improve Adhesion of Epoxy Resins," Plasma Processes and Polymers, vol. 6, no. S1, pp. S490-S495, 2009.
[19] M. Harsdorff, "The influence of charged point defects and contamination of substrate surfaces on nucleation," Thin Solid Films, vol. 116, no. 1, pp. 55-74, 1984.
[20] J. A. Venables, G. D. T. Spiller, and M. Hanbucken, "Nucleation and growth of thin films," Reports on Progress in Physics, vol. 47, no. 4, p. 399, 1984.
[21] K. Eiji, "Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review," Applied Science and Convergence Technology, vol. 28, no. 6, pp. 179-185, 2019.
[22] F. D. Egitto and L. J. Matienzo, "Plasma modification of polymer surfaces for adhesion improvement," IBM Journal of Research and Development, vol. 38, no. 4, pp. 423-439, 1994.
[23] T. P. Nguyen, A. Lahmar, and P. Jonnard, "Adhesion Improvement of Poly(Phenylene-Vinylene) Substrates Induced by Argon-Oxygen Plasma Treatment," The Journal of Adhesion, vol. 66, no. 1-4, pp. 303-317, 1998.
[24] S. H. Kim, S. H. Cho, N. E. Lee, H. M. Kim, Y. W. Nam, and Y.-H. Kim, "Adhesion properties of Cu/Cr films on polyimide substrate treated by dielectric barrier discharge plasma," Surface and Coatings Technology, vol. 193, no. 1, pp. 101-106, 2005.
[25] S. H. Kim, S. W. Na, N. E. Lee, Y. W. Nam, and Y.-H. Kim, "Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma," Surface and Coatings Technology, vol. 200, no. 7, pp. 2072-2079, 2005.
[26] Z. Gao, "Modification of surface properties of polyamide 6 films with atmospheric pressure plasma," Applied Surface Science, vol. 257, no. 14, pp. 6068-6072, 2011.
[27] T. Mehmood, A. Kaynak, X. J. Dai, A. Kouzani, K. Magniez, D. Rubin de Celis, C. J. Hurren, and J. du Plessis, "Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion," Materials Chemistry and Physics, vol. 143, no. 2, pp. 668-675, 2014.
[28] F. Faupel, R. Willecke, and A. Thran, "Diffusion of metals in polymers," Materials Science and Engineering: R: Reports, vol. 22, no. 1, pp. 1-55, 1998.
[29] F. Faupel, V. Zaporojtchenko, A. Thran, T. Strunskus, and M. Kiene, "7 - Metal Diffusion in Polymers and on Polymer Surfaces," in Diffusion Processes in Advanced Technological Materials, D. Gupta Ed. Norwich, NY: William Andrew Publishing, 2005, pp. 333-363.
[30] https://kartyush.wordpress.com/2012/05/18/history-of-photoelectron-spectroscopy/
[31] https//www.mces.titech.ac.jp/authors/hosono/facilities/AFM.html
[32] Wikipedia contributors, "Electron microscope," in Wikipedia, The Free Encyclopedia., ed.
[33] D. B. Williams and C. B. Carter, "Specimen Preparation," in Transmission Electron Microscopy: A Textbook for Materials Science, D. B. Williams and C. B. Carter Eds. Boston, MA: Springer US, 2009, pp. 173-193.
指導教授 吳子嘉 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明