參考文獻 |
1. The Future of Hydrogen. IEA 2019.
2. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238 (5358), 37-38.
3. Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium dioxide photocatalysis. J. Photoch. Photobio. C. 2000, 1 (1), 1-21.
4. Zhang, Q.; Gu, H.; Wang, X.; Li, L.; Zhang, J.; Zhang, H.; Li, Y.-F.; Dai, W.-L., Robust hollow tubular ZnIn2S4 modified with embedded metal-organic-framework-layers: extraordinarily high photocatalytic hydrogen evolution activity under simulated and real sunlight irradiation. Appl. Catal. B 2021, 298, 120632.
5. Zhang, Y. F.; Heo, Y. J.; Lee, J. W.; Lee, J. H.; Bajgai, J.; Lee, K. J.; Park, S. J., Photocatalytic hydrogen evolution via water splitting: a short review. Catalysts 2018, 8 (12), 655.
6. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43 (22), 7520-7535.
7. Maeda, K.; Domen, K., Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1 (18), 2655-2661.
8. Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photoch. Photobio. C. 2010, 11 (4), 179-209.
9. Wang, Q.; Domen, K., Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120 (2), 919-985.
10. Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M., Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 2010, 25 (1), 3-16.
11. Kumaravel, V.; Imam, M. D.; Badreldin, A.; Chava, R. K.; Do, J. Y.; Kang, M.; Abdel-Wahab, A., Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts 2019, 9 (3), 276.
12. Eliseeva, S. V.; Bünzli, J.-C. G., Rare earths: jewels for functional materials of the future. New J. Chem. 2011, 35 (6), 1165-1176.
13. Zhu, S.; Wang, D., Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7 (23), 1700841.
14. Mao, S. S.; Chen, X., Selected nanotechnologies for renewable energy applications. Int. J. Energy Res. 2007, 31 (6‐7), 619-636.
15. Mamiyev, Z.; Balayeva, N. O., Metal sulfide photocatalysts for hydrogen generation: a review of recent advances. Catalysts 2022, 12 (11), 1316.
16. Wang, J.; Fan, Y.; Pan, R.; Hao, Q.; Wu, Y.; van Ree, T.; Holze, R., Regulating graphitic carbon nitride/cocatalyst by an amorphous MoS2 conformal multifunctional intermediate layer for photocatalytic hydrogen evolution. ACS A.E.M. 2021, 4 (11), 13288-13296.
17. Chen, F.; Feng, H.-F.; Luo, W.; Wang, P.; Yu, H.-G.; Fan, J.-J., Simultaneous realization of direct photodeposition and high H2-production activity of amorphous cobalt sulfide nanodot-modified rGO/TiO2 photocatalyst. Rare Metals 2021, 40 (11), 3125-3134.
18. Yin, X.-L.; Li, L.-L.; Gao, G.-M.; Lu, Y.; Shang, Q.-Q.; Zhao, H.-T.; Li, D.-C.; Dou, J.-M., Direct Z-Scheme NiWO4/CdS nanosheets-on-nanorods nanoheterostructure for efficient visible-light-driven H2 generation. Int. J. Hydrog. Energy 2022, 47 (17), 9895-9904.
19. Liu, H.; Chen, J.; Guo, W.; Xu, Q.; Min, Y., A high efficiency water hydrogen production method based on CdS/WN composite photocatalytic. J. Colloid Interface Sci. 2022, 613, 652-660.
20. Xu, J.; Zhong, W.; Gao, D.; Wang, X.; Wang, P.; Yu, H., Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H2 evolution of CdS. Chem. Eng. J. 2022, 439, 135758.
21. Lei, Y.; Ng, K. H.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Lai, Y., One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H2 evolution under visible light irradiation. Chem. Eng. J. 2022, 434, 134689.
22. Lian, Z.; Li, Z.; Wu, F.; Zhong, Y.; Liu, Y.; Wang, W.; Zi, J.; Yang, W., Photogenerated hole traps in metal-organic-framework photocatalysts for visible-light-driven hydrogen evolution. Commun. Chem. 2022, 5 (1), 93.
23. Wang, Y.; Jin, H.; Li, Y.; Fang, J.; Chen, C., Ce-based organic framework enhanced the hydrogen evolution ability of ZnCdS photocatalyst. Int. J. Hydrog. Energy 2022, 47 (2), 962-970.
24. Liu, C.; Liu, Y.; Xiang, Z.; Liu, D.; Yang, Q., Bimetallic MOF-derived sulfides with heterojunction interfaces synthesized for photocatalytic hydrogen evolution. Ind. Eng. Chem. Res. 2021, 60 (30), 11439-11449.
25. Jin, Z.; Gong, H.; Li, H., Visible-light-driven two dimensional metal-organic framework modified manganese cadmium sulfide for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 603, 344-355.
26. Wang, Y.; Hu, Z.; Wang, W.; He, H.; Deng, L.; Zhang, Y.; Huang, J.; Zhao, N.; Yu, G.; Liu, Y.-N., Design of well-defined shell–core covalent organic frameworks/metal sulfide as an efficient Z-scheme heterojunction for photocatalytic water splitting. Chem. Sci. 2021, 12 (48), 16065-16073.
27. Wang, W.; Tao, Y.; Du, L.; Wei, Z.; Yan, Z.; Chan, W. K.; Lian, Z.; Zhu, R.; Phillips, D. L.; Li, G., Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution. Appl. Catal. B 2021, 282, 119568.
28. Wang, C.; Zhang, W.; Fan, J.; Sun, W.; Liu, E., S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution. Ceram. Int. 2021, 47 (21), 30194-30202.
29. Ma, X.; Lei, Z.; Wang, C.; Fu, Z.; Hu, X.; Fan, J.; Liu, E., Fabrication of P-doped Co9S8/g-C3N4 heterojunction for excellent photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 2021, 46 (74), 36781-36791.
30. Li, K.; Chen, X.; Zhao, J.; She, H.; Huang, J.; Wang, L.; Wang, Q., Photodeposition synthesis of CdS@ Ni2P composites for efficacious photocatalytic hydrogen evolution. ACS A.E.M. 2022, 5 (8), 10207-10215.
31. Romeo, N.; Dallaturca, A.; Braglia, R.; Sberveglieri, G., Charge storage in ZnIn2S4 single crystals. Appl. Phys. Lett. 1973, 22 (1), 21-22.
32. Sriram, M.; McMichael, P.; Waghray, A.; Kumta, P.; Misture, S.; Wang, X.-L., Chemical synthesis of the high-pressure cubic-spinel phase of ZnIn2S4. J. Mater. Sci. 1998, 33, 4333-4339.
33. Yang, W.; Liu, B.; Fang, T.; Jennifer, W.-A.; Christophe, L.; Li, Z.; Zhang, X.; Jiang, X., Layered crystalline ZnIn2S4 nanosheets: CVD synthesis and photo-electrochemical properties. Nanoscale 2016, 8 (42), 18197-18203.
34. Mora, S.; Paorici, C.; Romeo, N., Properties of the ternary compound ZnIn2S4 at high electric field. J. Appl. Phys. 1971, 42 (5), 2061-2064.
35. Shen, S.; Guo, P.; Zhao, L.; Du, Y.; Guo, L., Insights into photoluminescence property and photocatalytic activity of cubic and rhombohedral ZnIn2S4. J. Solid State Chem. 2011, 184 (8), 2250-2256.
36. Jia, G.; Pang, Y.; Ning, J.; Banin, U.; Ji, B., Heavy‐metal‐free colloidal semiconductor nanorods: recent advances and future perspectives. Adv. Mater. 2019, 31 (25), 1900781.
37. Ren, D.; Liang, Z.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X., Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem. Eng. J. 2020, 390, 124496.
38. Wang, J.; Sun, S. J.; Zhou, R.; Li, Y. Z.; He, Z. T.; Ding, H.; Chen, D. M.; Ao, W. H., A review: synthesis, modification and photocatalytic applications of ZnIn2S4. J. Mater. Sci. Technol. 2021, 78, 1-19.
39. Zuo, G.; Wang, Y.; Teo, W. L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W., Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew. Chem. 2020, 132 (28), 11383-11388.
40. Yang, G.; Ding, H.; Chen, D.; Feng, J.; Hao, Q.; Zhu, Y., Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Appl. Catal. B 2018, 234, 260-267.
41. Ye, L.; Wen, Z., ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation. Int. J. Hydrog. Energy 2019, 44 (7), 3751-3759.
42. Xiao, Y.; Peng, Z.; Zhang, W.; Jiang, Y.; Ni, L., Self-assembly of Ag2O quantum dots on the surface of ZnIn2S4 nanosheets to fabricate pn heterojunctions with wonderful bifunctional photocatalytic performance. Appl. Surf. Sci. 2019, 494, 519-531.
43. Hosogi, Y.; Tanabe, K.; Kato, H.; Kobayashi, H.; Kudo, A., Energy structure and photocatalytic activity of niobates and tantalates containing Sn (II) with a 5s2 electron configuration. Chem. Lett. 2004, 33 (1), 28-29.
44. Hosogi, Y.; Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A., Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M= Nb and Ta) and their photocatalytic properties. Chem. Mater. 2008, 20 (4), 1299-1307.
45. Suzuki, H.; Kunioku, H.; Higashi, M.; Tomita, O.; Kato, D.; Kageyama, H.; Abe, R., Lead bismuth oxyhalides PbBiO2X (X= Cl, Br) as visible-light-responsive photocatalysts for water oxidation: role of lone-pair electrons in valence band engineering. Chem. Mater. 2018, 30 (17), 5862-5869.
46. Wakayama, H.; Utimula, K.; Ichibha, T.; Kuriki, R.; Hongo, K.; Maezono, R.; Oka, K.; Maeda, K., Light absorption properties and electronic band structures of lead titanium oxyfluoride photocatalysts Pb2Ti4O9F2 and Pb2Ti2O5.4F1.2. J. Phys. Chem. 2018, 122 (46), 26506-26511.
47. Yoshimura, J.; Ebina, Y.; Kondo, J.; Domen, K.; Tanaka, A., Visible light-induced photocatalytic behavior of a layered perovskite-type rubidium lead niobate, RbPb2Nb3O10. J. Phys. Chem. 1993, 97 (9), 1970-1973.
48. Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Glans, P.-A.; Guo, J.; Ager, J. W.; Yano, J.; Sharp, I. D., Electronic structure of monoclinic BiVO4. Chem. Mater. 2014, 26 (18), 5365-5373.
49. Chun, W.-J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K., Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. 2003, 107 (8), 1798-1803.
50. Maeda, K.; Domen, K., New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 2007, 111 (22), 7851-7861.
51. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. science 2001, 293 (5528), 269-271.
52. Yuan, Y.-J.; Tu, J.-R.; Ye, Z.-J.; Chen, D.-Q.; Hu, B.; Huang, Y.-W.; Chen, T.-T.; Cao, D.-P.; Yu, Z.-T.; Zou, Z.-G., MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: a highly efficient photocatalyst for solar hydrogen generation. Appl. Catal. B 2016, 188, 13-22.
53. Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J. Photochem. Photobiol. A 1995, 85 (3), 247-255.
54. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y., Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44 (10), 2893-2939.
55. Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J., S-scheme heterojunction photocatalyst. Chem. 2020, 6 (7), 1543-1559.
56. Mu, J.; Teng, F.; Miao, H.; Wang, Y.; Hu, X., In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting. Appl. Surf. Sci. 2020, 501, 143974.
57. He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J., Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese J. Catal. 2020, 41 (1), 9-20.
58. Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G., Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl. Catal. B 2019, 248, 193-201.
59. He, Y.; Rao, H.; Song, K.; Li, J.; Yu, Y.; Lou, Y.; Li, C.; Han, Y.; Shi, Z.; Feng, S., 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv. Funct. Mater. 2019, 29 (45), 1905153.
60. Li, Z.-Q.; Wang, A.; Guo, C.-Y.; Tai, Y.-F.; Qiu, L.-G., One-pot synthesis of metal–organic framework@SiO2 core–shell nanoparticles with enhanced visible-light photoactivity. Dalton Trans. 2013, 42 (38), 13948-13954.
61. Liang, R.; Shen, L.; Jing, F.; Wu, W.; Qin, N.; Lin, R.; Wu, L., NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Appl. Catal. B 2015, 162, 245-251.
62. Chen, Z.; Li, D.; Zhang, W.; Chen, C.; Li, W.; Sun, M.; He, Y.; Fu, X., Low-temperature and template-free synthesis of ZnIn2S4 microspheres. Inorg. Chem. 2008, 47 (21), 9766-9772.
63. Wang, X.; Liu, K.; Luo, T.; Zhang, Y.; Huang, J.; Zhang, H.; Xi, S.; Wang, J.; Zhao, B.; Peng, F., Facile synthesis of amino-functionalized indium-based metal–organic frameworks and their superior light photocatalytic activity for degradation of tetracycline in water. New J. Chem. 2022, 46 (41), 19675-19684.
64. Wu, L.; Xue, M.; Qiu, S. L.; Chaplais, G.; Simon-Masseron, A.; Patarin, J., Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Microporous Mesoporous Mater. 2012, 157, 75-81.
65. Todorova, T. K.; Rozanska, X.; Gervais, C.; Legrand, A.; Ho, L. N.; Berruyer, P.; Lesage, A.; Emsley, L.; Farrusseng, D.; Canivet, J.; Mellot-Draznieks, C., Molecular level characterization of the structure and interactions in peptide-functionalized metal-organic frameworks. Chem. 2016, 22 (46), 16531-16538.
66. Pi, Y.; Li, X.; Xia, Q.; Wu, J.; Li, Z.; Li, Y.; Xiao, J., Formation of willow leaf-like structures composed of NH2-MIL68 (In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr (VI). Nano Res. 2017, 10, 3543-3556.
67. Cao, W.; Yuan, Y.; Yang, C.; Wu, S.; Cheng, J., In-situ fabrication of g-C3N4/MIL-68 (In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen. Chem. Eng. J. 2020, 391, 123608.
68. Wei, L.; Chen, Y.; Lin, Y.; Wu, H.; Yuan, R.; Li, Z., MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl. Catal. B 2014, 144, 521-527.
69. Zhang, S.; Liu, X.; Liu, C.; Luo, S.; Wang, L.; Cai, T.; Zeng, Y.; Yuan, J.; Dong, W.; Pei, Y., MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS nano 2018, 12 (1), 751-758.
70. Xu, S.; Dai, J.; Yang, J.; You, J.; Hao, J., Facile synthesis of novel CaIn2S4/ZnIn2S4 composites with efficient performance for photocatalytic reduction of Cr (VI) under simulated sunlight irradiation. Nanomaterials 2018, 8 (7), 472.
71. Goswami, T.; Yadav, D. K.; Bhatt, H.; Kaur, G.; Shukla, A.; Babu, K. J.; Ghosh, H. N., Defect-mediated slow carrier recombination and broad photoluminescence in non-metal-doped ZnIn2S4 nanosheets for enhanced photocatalytic activity. J. Phys. Chem. Lett. 2021, 12 (20), 5000-5008.
72. Zhang, W.; Hu, Y.; Ge, J.; Jiang, H.-L.; Yu, S.-H., A facile and general coating approach to moisture/water-resistant metal–organic frameworks with intact porosity. J. Am. Chem. Soc. 2014, 136 (49), 16978-16981.
73. Zhang, M.; Yao, J.; Arif, M.; Qiu, B.; Yin, H.; Liu, X.; Chen, S.-m., 0D/2D CeO2/ZnIn2S4 Z-scheme heterojunction for visible-light-driven photocatalytic H2 evolution. Appl. Surf. Sci. 2020, 526, 145749.
74. Tateishi, I.; Furukawa, M.; Katsumata, H.; Kaneco, S., The effect of Cu and Ga doped ZnIn2S4 under visible light on the high generation of H2 production. Chem. Eng. J. 2019, 3 (4), 79.
75. An, H.; Li, M.; Wang, W.; Lv, Z.; Deng, C.; Huang, J.; Yin, Z., Construction of ternary rGO/1D TiO2 nanotubes/3D ZnIn2S4 microsphere heterostructure and mutually-reinforcing synergy for high-efficiency H2 production photoactivity under visible light. Ceram. Int. 2019, 45 (12), 14976-14982.
76. Zhang, Q.; Zhang, J.; Zhang, L.; Cao, M.; Yang, F.; Dai, W.-L., Facile construction of flower-like black phosphorus nanosheet@ZnIn2S4 composite with highly efficient catalytic performance in hydrogen production. Appl. Surf. Sci. 2020, 504, 144366.
77. An, H.; Wang, H.; Huang, J.; Li, M.; Wang, W.; Yin, Z., TiO2 nanosheets with exposed {001} facets co-modified by AgxAu1− x NPs and 3D ZnIn2S4 microsphere for enhanced visible light absorption and photocatalytic H2 production. Appl. Surf. Sci. 2019, 484, 1168-1175.
78. Wang, Z.; Su, B.; Xu, J.; Hou, Y.; Ding, Z., Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H2 evolution. Int. J. Hydrog. Energy 2020, 45 (7), 4113-4121.
79. Jin, P.; Wang, L.; Ma, X.; Lian, R.; Huang, J.; She, H.; Zhang, M.; Wang, Q., Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl. Catal. B 2021, 284, 119762.
80. Lai, L.; Xing, F.; Cheng, C.; Huang, C., Hierarchical 0D NiSe2/2D ZnIn2S4 nanosheet‐assembled microflowers for enhanced photocatalytic hydrogen evolution. Adv. Mater. Interfaces 2021, 8 (9), 2100052.
81. Li, Y.; Hou, Y.; Fu, Q.; Peng, S.; Hu, Y. H., Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Appl. Catal. B 2017, 206, 726-733.
82. 王鵬華, 「提升SiO2@ZnIn2S4奈米核殼結構光觸媒光催化產氫研究」. 國立中央大學化學工程與材料工程學系 2020. |