博碩士論文 109324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.147.56.125
姓名 范聿瑄(Yu-Hsuan Fan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 MIL-68-NH2@ZnIn2S4中空管狀結構光觸媒之光催化產氫研究
(Hollow Tubular Structured MIL-68-NH2@ZnIn2S4 for Photocatalyst Hydrogen Production)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-14以後開放)
摘要(中) 能源議題近年來倍受關注,尤其環保及能源逐年匱乏經常是該議題中最具挑戰的項目,因此發展再生能源成為能源短缺和永續發展最好的解方,能源載體(energy carrier)之一的氫能為一種潔淨能源,可以取代傳統化石燃料且對環境汙染極低,是非常具有潛力的能源。過渡金屬硫化物為現今光催化進行水分解產氫的領域中效能較好的觸媒之一,但其光生載流子快速複合使產氫效率下降是目前面臨的一大挑戰,因此在本研究中,我們嘗試改質過渡金屬硫化物,以提高其光催化效率。
本研究藉由簡易的低溫溶劑熱法合成由有機金屬骨架(MOF)MIL-68-NH2與過渡金屬硫化物ZnIn2S4(ZIS)組成的異質結構複合物,進一步提升ZIS光催化產氫的性能。MIL-68-NH2具有高比表面積和獨特的管狀結構,因此,引入MIL-68-NH2增加的比表面積可以捕獲更多光子,此外,在MIL-68-NH2@ZnIn2S4複合物形成的同時,MIL-68-NH2形成中空結構,進一步提高活性位點的數量,而MIL-68-NH2吸收光波長範圍落在近紅外光處,ZnIn2S4與其複合後可有效地擴展光吸收範圍。為了減少材料成本,本研究於實驗中並無額外加入貴金屬(如:鉑、金等)作為共觸媒來提高產氫效率,並在室溫下以100mW/cm2的光強度照射進行反應,其中MIL10020@ZIS為最佳比例之複合物,以光觸媒總重計算得到之最高產氫效率為1901µmol/g/h。
摘要(英) Recently, increasing attention has been paid to energy issues, especially in relation to environmental protection and energy scarcity, which are the most challenging aspects of the future. Therefore, the development of renewable energy has become the best solution for addressing energy shortages and promoting sustainable development. Hydrogen energy is one type of renewable and clean energies carrier, whose representative reaction is light-driven water splitting for hydrogen evolution. It can replace fossil fuels without causing environmental pollution. Hence, it’s important to develop efficient photocatalysts that can be used in hydrogen energy. Transition metal sulfides are among the most efficient photocatalysts in the field of photocatalytic hydrogen evolution, but their hydrogen evolution efficiency is hindered by the rapid recombination of photogenerated charge carriers, presenting a major challenge. Therefore, in this study, we attempted to modify transition metal sulfides to improve their photocatalytic efficiency.
We synthesized a heterostructured composite consisting of the organic metal-organic framework (MOF) MIL-68-NH2 and the transition metal sulfide ZnIn2S4 (ZIS) by a simple oil bath method to further enhance the photocatalytic hydrogen evolution performance of ZIS. MIL-68-NH2 possesses a high surface area and a unique tubular structure. Therefore, the introduction of MIL-68-NH2 not only increases the surface area of the photocatalyst for light absorption but also exposes more active sites for reaction. In addition, during the formation of the MIL-68-NH2@ZnIn2S4 composite, MIL-68-NH2 forms a hollow structure, further increasing the number of active sites. Moreover, the heterostructure composite effectively expands the light absorption range.
In order to keep the cost down, t this study didn’t add any additional precious metals, e.g., Pt and Au as co-catalyst in the reaction. The highest hydrogen evolution rate of the optimal ratio sample MIL10020@ZIS reaches up to 1901 µmol/g/h under 100 mW/cm2 of visible light intensity at room temperature.
關鍵字(中) ★ ZnIn2S4
★ MIL-68-NH2
★ 光觸媒產氫
★ 異質結構
關鍵字(英) ★ ZnIn2S4
★ MIL-68-NH2
★ photocatalyst hydrogen evolution
★ heterostructure
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xiii
第1章 緒論 1
1-1 前言 1
1-2 研究動機 3
第2章 文獻回顧 5
2-1 光觸媒裂解水產氫 5
2-2 光觸媒材料 7
2-3 ZnIn2S4光觸媒 11
2-4 改善光觸媒產氫效率的方式 13
2-4-1 能帶調節 13
2-4-2 元素摻雜 16
2-4-3 擔載共觸媒(co-catalyst loading) 17
2-4-4 建立異質結構 18
2-4-5 缺陷(vacancy)工程 21
2-5 金屬有機骨架 22
第3章 實驗方法及步驟 24
3-1 實驗藥品 24
3-2 分析與實驗儀器 25
3-3 實驗步驟 27
3-3-1 製備不同合成溫度之MIL-68-NH2 27
3-3-2 油浴法製備不同硫前驅物(TAA)比例之ZnIn2S4 27
3-3-3 油浴法製備MIL-68-NH2與ZnIn2S4之複合物 28
3-3-4 粉體光觸媒產氫量測 29
3-3-5 產氫檢量線量測 32
第4章 結果與討論 34
4-1 前導 34
4-2 不同溫度下製備之MIL-68-NH2 35
4-2-1 MIL-68-NH2形貌分析 (SEM) 35
4-2-2 傅立葉轉換紅外線光譜分析 36
4-2-3 X光繞射分析 37
4-2-4 X-ray光電子能譜儀 38
4-2-5 紫外光-可見光光譜分析 41
4-2-6 螢光光譜分析 43
4-3 不同前驅物比例下合成之ZnIn2S4 44
4-3-1 ZIS形貌分析 (HR-STEM) 44
4-3-2 X光繞射分析 46
4-3-3 X-ray光電子能譜儀 48
4-3-4 紫外光-可見光光譜分析 51
4-3-5 螢光光譜分析 52
4-3-6 產氫效率 53
4-4 不同溫度下製備之MIL-68-NH2與ZIS組成之異質結構 54
4-4-1 MN@ZIS形貌分析 55
4-4-2 X光繞射分析 58
4-4-3 紫外光-可見光光譜分析 60
4-4-4 螢光光譜分析 62
4-4-5 產氫效率 63
第5章 結論與未來展望 67
第6章 附錄 69
6-1 合成ZnIn2S4之前驅物探討 69
6-2 H2BDC-NH2添加量對MIL-68-NH2光吸收範圍之影響 70
6-3 MIL-68-NH2之產氫效率 71
參考文獻 72
參考文獻 1. The Future of Hydrogen. IEA 2019.
2. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238 (5358), 37-38.
3. Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium dioxide photocatalysis. J. Photoch. Photobio. C. 2000, 1 (1), 1-21.
4. Zhang, Q.; Gu, H.; Wang, X.; Li, L.; Zhang, J.; Zhang, H.; Li, Y.-F.; Dai, W.-L., Robust hollow tubular ZnIn2S4 modified with embedded metal-organic-framework-layers: extraordinarily high photocatalytic hydrogen evolution activity under simulated and real sunlight irradiation. Appl. Catal. B 2021, 298, 120632.
5. Zhang, Y. F.; Heo, Y. J.; Lee, J. W.; Lee, J. H.; Bajgai, J.; Lee, K. J.; Park, S. J., Photocatalytic hydrogen evolution via water splitting: a short review. Catalysts 2018, 8 (12), 655.
6. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43 (22), 7520-7535.
7. Maeda, K.; Domen, K., Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1 (18), 2655-2661.
8. Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photoch. Photobio. C. 2010, 11 (4), 179-209.
9. Wang, Q.; Domen, K., Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120 (2), 919-985.
10. Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M., Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 2010, 25 (1), 3-16.
11. Kumaravel, V.; Imam, M. D.; Badreldin, A.; Chava, R. K.; Do, J. Y.; Kang, M.; Abdel-Wahab, A., Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts 2019, 9 (3), 276.
12. Eliseeva, S. V.; Bünzli, J.-C. G., Rare earths: jewels for functional materials of the future. New J. Chem. 2011, 35 (6), 1165-1176.
13. Zhu, S.; Wang, D., Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7 (23), 1700841.
14. Mao, S. S.; Chen, X., Selected nanotechnologies for renewable energy applications. Int. J. Energy Res. 2007, 31 (6‐7), 619-636.
15. Mamiyev, Z.; Balayeva, N. O., Metal sulfide photocatalysts for hydrogen generation: a review of recent advances. Catalysts 2022, 12 (11), 1316.
16. Wang, J.; Fan, Y.; Pan, R.; Hao, Q.; Wu, Y.; van Ree, T.; Holze, R., Regulating graphitic carbon nitride/cocatalyst by an amorphous MoS2 conformal multifunctional intermediate layer for photocatalytic hydrogen evolution. ACS A.E.M. 2021, 4 (11), 13288-13296.
17. Chen, F.; Feng, H.-F.; Luo, W.; Wang, P.; Yu, H.-G.; Fan, J.-J., Simultaneous realization of direct photodeposition and high H2-production activity of amorphous cobalt sulfide nanodot-modified rGO/TiO2 photocatalyst. Rare Metals 2021, 40 (11), 3125-3134.
18. Yin, X.-L.; Li, L.-L.; Gao, G.-M.; Lu, Y.; Shang, Q.-Q.; Zhao, H.-T.; Li, D.-C.; Dou, J.-M., Direct Z-Scheme NiWO4/CdS nanosheets-on-nanorods nanoheterostructure for efficient visible-light-driven H2 generation. Int. J. Hydrog. Energy 2022, 47 (17), 9895-9904.
19. Liu, H.; Chen, J.; Guo, W.; Xu, Q.; Min, Y., A high efficiency water hydrogen production method based on CdS/WN composite photocatalytic. J. Colloid Interface Sci. 2022, 613, 652-660.
20. Xu, J.; Zhong, W.; Gao, D.; Wang, X.; Wang, P.; Yu, H., Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H2 evolution of CdS. Chem. Eng. J. 2022, 439, 135758.
21. Lei, Y.; Ng, K. H.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Lai, Y., One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H2 evolution under visible light irradiation. Chem. Eng. J. 2022, 434, 134689.
22. Lian, Z.; Li, Z.; Wu, F.; Zhong, Y.; Liu, Y.; Wang, W.; Zi, J.; Yang, W., Photogenerated hole traps in metal-organic-framework photocatalysts for visible-light-driven hydrogen evolution. Commun. Chem. 2022, 5 (1), 93.
23. Wang, Y.; Jin, H.; Li, Y.; Fang, J.; Chen, C., Ce-based organic framework enhanced the hydrogen evolution ability of ZnCdS photocatalyst. Int. J. Hydrog. Energy 2022, 47 (2), 962-970.
24. Liu, C.; Liu, Y.; Xiang, Z.; Liu, D.; Yang, Q., Bimetallic MOF-derived sulfides with heterojunction interfaces synthesized for photocatalytic hydrogen evolution. Ind. Eng. Chem. Res. 2021, 60 (30), 11439-11449.
25. Jin, Z.; Gong, H.; Li, H., Visible-light-driven two dimensional metal-organic framework modified manganese cadmium sulfide for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 603, 344-355.
26. Wang, Y.; Hu, Z.; Wang, W.; He, H.; Deng, L.; Zhang, Y.; Huang, J.; Zhao, N.; Yu, G.; Liu, Y.-N., Design of well-defined shell–core covalent organic frameworks/metal sulfide as an efficient Z-scheme heterojunction for photocatalytic water splitting. Chem. Sci. 2021, 12 (48), 16065-16073.
27. Wang, W.; Tao, Y.; Du, L.; Wei, Z.; Yan, Z.; Chan, W. K.; Lian, Z.; Zhu, R.; Phillips, D. L.; Li, G., Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution. Appl. Catal. B 2021, 282, 119568.
28. Wang, C.; Zhang, W.; Fan, J.; Sun, W.; Liu, E., S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution. Ceram. Int. 2021, 47 (21), 30194-30202.
29. Ma, X.; Lei, Z.; Wang, C.; Fu, Z.; Hu, X.; Fan, J.; Liu, E., Fabrication of P-doped Co9S8/g-C3N4 heterojunction for excellent photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 2021, 46 (74), 36781-36791.
30. Li, K.; Chen, X.; Zhao, J.; She, H.; Huang, J.; Wang, L.; Wang, Q., Photodeposition synthesis of CdS@ Ni2P composites for efficacious photocatalytic hydrogen evolution. ACS A.E.M. 2022, 5 (8), 10207-10215.
31. Romeo, N.; Dallaturca, A.; Braglia, R.; Sberveglieri, G., Charge storage in ZnIn2S4 single crystals. Appl. Phys. Lett. 1973, 22 (1), 21-22.
32. Sriram, M.; McMichael, P.; Waghray, A.; Kumta, P.; Misture, S.; Wang, X.-L., Chemical synthesis of the high-pressure cubic-spinel phase of ZnIn2S4. J. Mater. Sci. 1998, 33, 4333-4339.
33. Yang, W.; Liu, B.; Fang, T.; Jennifer, W.-A.; Christophe, L.; Li, Z.; Zhang, X.; Jiang, X., Layered crystalline ZnIn2S4 nanosheets: CVD synthesis and photo-electrochemical properties. Nanoscale 2016, 8 (42), 18197-18203.
34. Mora, S.; Paorici, C.; Romeo, N., Properties of the ternary compound ZnIn2S4 at high electric field. J. Appl. Phys. 1971, 42 (5), 2061-2064.
35. Shen, S.; Guo, P.; Zhao, L.; Du, Y.; Guo, L., Insights into photoluminescence property and photocatalytic activity of cubic and rhombohedral ZnIn2S4. J. Solid State Chem. 2011, 184 (8), 2250-2256.
36. Jia, G.; Pang, Y.; Ning, J.; Banin, U.; Ji, B., Heavy‐metal‐free colloidal semiconductor nanorods: recent advances and future perspectives. Adv. Mater. 2019, 31 (25), 1900781.
37. Ren, D.; Liang, Z.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X., Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem. Eng. J. 2020, 390, 124496.
38. Wang, J.; Sun, S. J.; Zhou, R.; Li, Y. Z.; He, Z. T.; Ding, H.; Chen, D. M.; Ao, W. H., A review: synthesis, modification and photocatalytic applications of ZnIn2S4. J. Mater. Sci. Technol. 2021, 78, 1-19.
39. Zuo, G.; Wang, Y.; Teo, W. L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W., Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew. Chem. 2020, 132 (28), 11383-11388.
40. Yang, G.; Ding, H.; Chen, D.; Feng, J.; Hao, Q.; Zhu, Y., Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Appl. Catal. B 2018, 234, 260-267.
41. Ye, L.; Wen, Z., ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation. Int. J. Hydrog. Energy 2019, 44 (7), 3751-3759.
42. Xiao, Y.; Peng, Z.; Zhang, W.; Jiang, Y.; Ni, L., Self-assembly of Ag2O quantum dots on the surface of ZnIn2S4 nanosheets to fabricate pn heterojunctions with wonderful bifunctional photocatalytic performance. Appl. Surf. Sci. 2019, 494, 519-531.
43. Hosogi, Y.; Tanabe, K.; Kato, H.; Kobayashi, H.; Kudo, A., Energy structure and photocatalytic activity of niobates and tantalates containing Sn (II) with a 5s2 electron configuration. Chem. Lett. 2004, 33 (1), 28-29.
44. Hosogi, Y.; Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A., Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M= Nb and Ta) and their photocatalytic properties. Chem. Mater. 2008, 20 (4), 1299-1307.
45. Suzuki, H.; Kunioku, H.; Higashi, M.; Tomita, O.; Kato, D.; Kageyama, H.; Abe, R., Lead bismuth oxyhalides PbBiO2X (X= Cl, Br) as visible-light-responsive photocatalysts for water oxidation: role of lone-pair electrons in valence band engineering. Chem. Mater. 2018, 30 (17), 5862-5869.
46. Wakayama, H.; Utimula, K.; Ichibha, T.; Kuriki, R.; Hongo, K.; Maezono, R.; Oka, K.; Maeda, K., Light absorption properties and electronic band structures of lead titanium oxyfluoride photocatalysts Pb2Ti4O9F2 and Pb2Ti2O5.4F1.2. J. Phys. Chem. 2018, 122 (46), 26506-26511.
47. Yoshimura, J.; Ebina, Y.; Kondo, J.; Domen, K.; Tanaka, A., Visible light-induced photocatalytic behavior of a layered perovskite-type rubidium lead niobate, RbPb2Nb3O10. J. Phys. Chem. 1993, 97 (9), 1970-1973.
48. Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Glans, P.-A.; Guo, J.; Ager, J. W.; Yano, J.; Sharp, I. D., Electronic structure of monoclinic BiVO4. Chem. Mater. 2014, 26 (18), 5365-5373.
49. Chun, W.-J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K., Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. 2003, 107 (8), 1798-1803.
50. Maeda, K.; Domen, K., New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 2007, 111 (22), 7851-7861.
51. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. science 2001, 293 (5528), 269-271.
52. Yuan, Y.-J.; Tu, J.-R.; Ye, Z.-J.; Chen, D.-Q.; Hu, B.; Huang, Y.-W.; Chen, T.-T.; Cao, D.-P.; Yu, Z.-T.; Zou, Z.-G., MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: a highly efficient photocatalyst for solar hydrogen generation. Appl. Catal. B 2016, 188, 13-22.
53. Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J. Photochem. Photobiol. A 1995, 85 (3), 247-255.
54. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y., Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44 (10), 2893-2939.
55. Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J., S-scheme heterojunction photocatalyst. Chem. 2020, 6 (7), 1543-1559.
56. Mu, J.; Teng, F.; Miao, H.; Wang, Y.; Hu, X., In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting. Appl. Surf. Sci. 2020, 501, 143974.
57. He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J., Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese J. Catal. 2020, 41 (1), 9-20.
58. Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G., Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl. Catal. B 2019, 248, 193-201.
59. He, Y.; Rao, H.; Song, K.; Li, J.; Yu, Y.; Lou, Y.; Li, C.; Han, Y.; Shi, Z.; Feng, S., 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv. Funct. Mater. 2019, 29 (45), 1905153.
60. Li, Z.-Q.; Wang, A.; Guo, C.-Y.; Tai, Y.-F.; Qiu, L.-G., One-pot synthesis of metal–organic framework@SiO2 core–shell nanoparticles with enhanced visible-light photoactivity. Dalton Trans. 2013, 42 (38), 13948-13954.
61. Liang, R.; Shen, L.; Jing, F.; Wu, W.; Qin, N.; Lin, R.; Wu, L., NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Appl. Catal. B 2015, 162, 245-251.
62. Chen, Z.; Li, D.; Zhang, W.; Chen, C.; Li, W.; Sun, M.; He, Y.; Fu, X., Low-temperature and template-free synthesis of ZnIn2S4 microspheres. Inorg. Chem. 2008, 47 (21), 9766-9772.
63. Wang, X.; Liu, K.; Luo, T.; Zhang, Y.; Huang, J.; Zhang, H.; Xi, S.; Wang, J.; Zhao, B.; Peng, F., Facile synthesis of amino-functionalized indium-based metal–organic frameworks and their superior light photocatalytic activity for degradation of tetracycline in water. New J. Chem. 2022, 46 (41), 19675-19684.
64. Wu, L.; Xue, M.; Qiu, S. L.; Chaplais, G.; Simon-Masseron, A.; Patarin, J., Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Microporous Mesoporous Mater. 2012, 157, 75-81.
65. Todorova, T. K.; Rozanska, X.; Gervais, C.; Legrand, A.; Ho, L. N.; Berruyer, P.; Lesage, A.; Emsley, L.; Farrusseng, D.; Canivet, J.; Mellot-Draznieks, C., Molecular level characterization of the structure and interactions in peptide-functionalized metal-organic frameworks. Chem. 2016, 22 (46), 16531-16538.
66. Pi, Y.; Li, X.; Xia, Q.; Wu, J.; Li, Z.; Li, Y.; Xiao, J., Formation of willow leaf-like structures composed of NH2-MIL68 (In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr (VI). Nano Res. 2017, 10, 3543-3556.
67. Cao, W.; Yuan, Y.; Yang, C.; Wu, S.; Cheng, J., In-situ fabrication of g-C3N4/MIL-68 (In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen. Chem. Eng. J. 2020, 391, 123608.
68. Wei, L.; Chen, Y.; Lin, Y.; Wu, H.; Yuan, R.; Li, Z., MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl. Catal. B 2014, 144, 521-527.
69. Zhang, S.; Liu, X.; Liu, C.; Luo, S.; Wang, L.; Cai, T.; Zeng, Y.; Yuan, J.; Dong, W.; Pei, Y., MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS nano 2018, 12 (1), 751-758.
70. Xu, S.; Dai, J.; Yang, J.; You, J.; Hao, J., Facile synthesis of novel CaIn2S4/ZnIn2S4 composites with efficient performance for photocatalytic reduction of Cr (VI) under simulated sunlight irradiation. Nanomaterials 2018, 8 (7), 472.
71. Goswami, T.; Yadav, D. K.; Bhatt, H.; Kaur, G.; Shukla, A.; Babu, K. J.; Ghosh, H. N., Defect-mediated slow carrier recombination and broad photoluminescence in non-metal-doped ZnIn2S4 nanosheets for enhanced photocatalytic activity. J. Phys. Chem. Lett. 2021, 12 (20), 5000-5008.
72. Zhang, W.; Hu, Y.; Ge, J.; Jiang, H.-L.; Yu, S.-H., A facile and general coating approach to moisture/water-resistant metal–organic frameworks with intact porosity. J. Am. Chem. Soc. 2014, 136 (49), 16978-16981.
73. Zhang, M.; Yao, J.; Arif, M.; Qiu, B.; Yin, H.; Liu, X.; Chen, S.-m., 0D/2D CeO2/ZnIn2S4 Z-scheme heterojunction for visible-light-driven photocatalytic H2 evolution. Appl. Surf. Sci. 2020, 526, 145749.
74. Tateishi, I.; Furukawa, M.; Katsumata, H.; Kaneco, S., The effect of Cu and Ga doped ZnIn2S4 under visible light on the high generation of H2 production. Chem. Eng. J. 2019, 3 (4), 79.
75. An, H.; Li, M.; Wang, W.; Lv, Z.; Deng, C.; Huang, J.; Yin, Z., Construction of ternary rGO/1D TiO2 nanotubes/3D ZnIn2S4 microsphere heterostructure and mutually-reinforcing synergy for high-efficiency H2 production photoactivity under visible light. Ceram. Int. 2019, 45 (12), 14976-14982.
76. Zhang, Q.; Zhang, J.; Zhang, L.; Cao, M.; Yang, F.; Dai, W.-L., Facile construction of flower-like black phosphorus nanosheet@ZnIn2S4 composite with highly efficient catalytic performance in hydrogen production. Appl. Surf. Sci. 2020, 504, 144366.
77. An, H.; Wang, H.; Huang, J.; Li, M.; Wang, W.; Yin, Z., TiO2 nanosheets with exposed {001} facets co-modified by AgxAu1− x NPs and 3D ZnIn2S4 microsphere for enhanced visible light absorption and photocatalytic H2 production. Appl. Surf. Sci. 2019, 484, 1168-1175.
78. Wang, Z.; Su, B.; Xu, J.; Hou, Y.; Ding, Z., Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H2 evolution. Int. J. Hydrog. Energy 2020, 45 (7), 4113-4121.
79. Jin, P.; Wang, L.; Ma, X.; Lian, R.; Huang, J.; She, H.; Zhang, M.; Wang, Q., Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl. Catal. B 2021, 284, 119762.
80. Lai, L.; Xing, F.; Cheng, C.; Huang, C., Hierarchical 0D NiSe2/2D ZnIn2S4 nanosheet‐assembled microflowers for enhanced photocatalytic hydrogen evolution. Adv. Mater. Interfaces 2021, 8 (9), 2100052.
81. Li, Y.; Hou, Y.; Fu, Q.; Peng, S.; Hu, Y. H., Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Appl. Catal. B 2017, 206, 726-733.
82. 王鵬華, 「提升SiO2@ZnIn2S4奈米核殼結構光觸媒光催化產氫研究」. 國立中央大學化學工程與材料工程學系 2020.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明