博碩士論文 110223001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.135.214.226
姓名 陳宏澤(Hung-Tse Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 應用於高穩定性反式錫鈣鈦礦太陽能電池之氧化亞錫電洞傳遞材料研究
(Highly stability Inverted Tin Perovskite Solar Cell Using Tin(II) oxide as the Hole Transport Material)
相關論文
★ 一步驟無反溶劑法在大氣下製備鈣鈦礦膜且開發Cu摻雜ZnCo2O4尖晶石作為電洞傳遞層之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-31以後開放)
摘要(中) 反式錫鈣鈦礦太陽能電池(Tin perovskite solar cells, 簡稱TPSCs)中錫鈣鈦礦吸收層容易受到水氣分解使元件長時間穩定性不佳,部分原因是使用會吸水的鹽類摻雜之有機電洞傳遞層(HTL,如:PTAA、PEDOT:PSS),因此開發不受水氣影響且具有熱穩定、寬的能隙、高的穿透度和高電洞遷移率等之無機HTLs成為重要研究主題,但無機材料與錫鈣鈦礦層存在介面相容性的問題須解決。本研究以真空熱蒸鍍製備SnO膜做為電洞傳遞層,並透過UV-O3後處理SnO降低Valence band至-5.33 eV與本實驗室所使用錫鈣鈦礦層FA0.98EDA0.01SnI3的Valence band -5.80 eV接近,以減少電洞傳遞時的能量損失,SnO 做為電洞傳遞層所組裝成元件的光伏表現中為 Jsc = 20.99 mA/cm2,Voc = 0.63 V,FF = 52 %,PCE =6.97%。為解決SnO與錫鈣鈦礦介面的問題。使用具有兩性性質高分子PDTON做為電洞傳遞層與錫鈣鈦礦層間的介面層。從FTIR光譜可見加入SnI2之PDTON的ester C-O stretching 和amine C-N stretching,兩者皆往高波數位移,顯示PDTON上之氧與胺基的孤對電子,能與錫鈣鈦礦層未飽和配位的Sn2+作用。經SCLC理論計算得到SnO/PDTON電洞遷移率為1.74*10-4 cm2V-1s-1大於PEDOT:PSS的電洞遷移率1.45*10-4 cm2V-1s-1,FA0.98EDA0.01SnI3沉積於玻璃或SnO/PDTON之TRPL數據顯示,載子生命期由 0.97 ns 縮短至0.25 ns,代表PDTON使SnO能更有效的萃取傳遞錫鈣鈦礦的電洞。以SnO/PDTON 做為電洞傳遞層所組裝之元件的光伏參數為 Jsc = 23.39 mA/cm2,Voc = 0.59 V,FF = 67%,PCE =9.19%,與SnO做為電洞傳遞層所組裝之元件相比,FF得到明顯變化。而以PEDOT:PSS做為電洞傳遞層所組裝之元件光伏參數為 Jsc = 24.57 mA/cm2,Voc = 0.53 V,FF = 68%,PCE =8.93%。以SnO/PDTON做為電洞傳遞層所組裝之元件在沒有封裝的情況下放置在氮氣手套箱中並在室內光照下放置 3240 小時,仍維持其原始效率的 76%,元件表現良好的穩定性,而PEDOT:PSS做為電洞傳遞層所組裝之元件在相同條件下僅維持原效率66%。可見SnO/PDTON與PEDOT:PSS之光伏表現相似。而大氣下穩定性測試中,將元件置於溫度27℃、相對濕度40%的環境中, SnO/PDTON做為電洞傳遞層所組裝之元件經過兩小時仍能維持原效率的64%,而PEDOT:PSS做為電洞傳遞層所組裝之元件在相同條件下僅維持原效率8%,顯現無機材料做為電洞傳遞層的穩定性優勢。
摘要(英) The perovskite absorber layer in tin perovskite solar cells(TPSCs) is susceptible decomposition by water, partically due to the hole transoorting layer(HTL) (e.g., PTAA, PEDOT:PSS)was generally doped with hyderophilic salt.Searching for high stability, transpartent inorganic HTL is an important work for advancing TPSCs. Moreover, these may have an interacial problem between inorganic HTLs and perovskite layers. In this study, SnO films were prepared by vacuum thermal evaporation as the hole transport layer, and the valence band of SnO was lowered to -5.33 eV which is close to the valence band of -5.57 eV of the perovskite layer FA0.98EDA0.01SnI3 used in our laboratory after treat with UV-O3 for 20 min, to reduce the energy loss during hole transport. The photovoltaic performance of the device base on SnO HTL is Jsc = 20.99 mA/cm2, Voc = 0.63 V, FF = 52%, and PCE = 6.97%. To solve the interface problem between SnO and perovskite. The amphiphilic polymer PDTON was used as the interface agent. FTIR spectra show the ester C-O stretching and amine C-N stretching shifted to low wavenumbers, when mixed with SnI2 indicating that the lone pair of electrons on the oxygen and amine groups of PDTON can interact with the unsaturated coordinated Sn2+ in tin perovskite. The TRPL data of FA0.98EDA0.01SnI3 deposited in glass or SnO/PDTON showed that the carrier lifetime is 0.97 ns and 0.25 ns, respectively which means that SnO/PDTON can effectively extract the holes of tin perovskite. The photovoltaic parameters of SnO/PDTON based device are Jsc = 23.39 mA/cm2, Voc = 0.59 V, FF = 67%, and PCE = 9.19%. The PV parameters of the PEDOT:PSS based device are Jsc = 24.57 mA/cm2, Voc = 0.53 V, FF = 68%, and PCE = 8.93%. When device used SnO/PDTON HTL was placed in the nitrogen filled glove box without encapsulating and under room light illumination for 3240 hours, 76% of its original efficiency was maintained. While cell based on PEDOT:PSS HTL lost 34% of the initial efficiency. In the atmospheric stability test, when the device was placed in the environment of 27℃ and 40% relative humidity, SnO/PDTON based device maintained 64% of its original efficiency after two hours, whereas PEDOT:PSS based device maintained only 8% of its original efficiency under the same conditions, which demonstrates the stability advantage of inorganic materials as the hole propagation layer.
關鍵字(中) ★ 錫鈣鈦礦太陽能電池
★ 電洞傳遞層
★ 無機電洞傳遞層
★ 氧化亞錫
關鍵字(英) ★ Tin Perovskite solar cell
★ Hole transport material
★ Inorganic hole transport material
★ Tin(II) oxide
論文目次 摘要 i
Abstract iii
Graphical Abstract v
誌謝 vi
目錄 vii
圖目錄 xv
表目錄 xxiii
第1章 、 緒論 1
1-1、 前言 1
1-2、 鈣鈦礦太陽能電池(Perovskite Solar Cell, PSC) 5
1-2-1. 鈣鈦礦太陽能電池的架構 5
1-2-2. 反式鈣鈦礦太陽能電池的工作原理 6
1-2-3. 應用於反式錫鈣鈦礦太陽能電池之電洞傳遞層(HTL)所須具備的性質 8
1-2-4. 無機電洞傳遞層材料之優點 9
1-2-5. 無機電洞傳遞層應用於鈣鈦礦太陽能電池具有高長時間穩定性 10
1-2-6. 鈣鈦礦太陽能電池的光電轉換效率 11
1-3、 錫鈣鈦礦太陽能電池的研究歷程 13
1-3-1. 第一個以MASnI3作為吸光層作為錫鈣鈦礦太陽能電池研究 13
1-3-2. 第一個以CsSnI3作為吸收層的錫鈣鈦礦太陽能電池的研究 15
1-3-3. 第一個以FASnI3作為吸收層並以SnF2作為添加劑的錫鈣鈦礦太陽能電池研究 16
1-3-4. 目前文獻中錫鈣鈦礦太陽能電池的最高光電轉換效率 19
1-4、 製備錫鈣鈦礦膜的方法 21
1-4-1. 以一步驟合成法製備鈣鈦礦膜 21
1-4-2. 以兩步驟合成法製備鈣鈦礦膜 22
1-4-3. 以一步驟反溶劑法合成製備鈣鈦礦膜 23
1-5、 不同無機電洞傳遞層組裝成反式錫鈣鈦礦太陽能電池研究 24
1-5-1. 以 MoO3 作為反式鉛鈣鈦礦太陽能之電洞傳遞層 24
1-5-2. 電漿處理錫金屬製備SnOx作為反式錫鈣鈦礦太陽能電池之電洞傳遞層及錫鈣鈦礦保護層 25
1-6、 兩性的高分子PDTON 應用於鈣鈦礦太陽能電池電洞傳輸層或緩衝層 26
1-7、 介面修飾層雙官能基5-AVA可同時與電洞傳遞層NiMgLiO與鉛鈣鈦礦層作用 28
1-8、 研究動機 31
第2章 、 實驗方法 32
2-1、 實驗藥品與儀器 32
2-1-1. 藥品 32
2-1-2. 儀器設備 35
2-2、 反式錫鈣鈦礦太陽能電池組裝步驟 36
2-2-1. 藥品配製及導電玻璃的蝕刻 36
A. 介面修飾層PDTON及各類噻吩衍生物溶液配製 36
B. 錫鈣鈦礦前驅溶液的製備 36
C. 圖案型ITO玻璃的製備 37
D. 圖案型FTO玻璃的製備 37
2-2-2. 元件組裝步驟 38
A. 電洞傳遞層PEDOT : PSS的製備 38
B. 電洞傳遞層SnO的製備 39
C. 介面修飾層PDTON及噻吩衍生物的膜製備 40
D. 錫鈣鈦礦膜的製備 40
E. C60 (電子傳遞層)與BCP (電洞阻擋層)的蒸鍍 41
F. 金屬銀電極的蒸鍍 41
2-3、 儀器原理及樣品製備 42
2-3-1. 太陽光模擬器的原理及光電轉換效率、暗電流與遲滯現象的量測(Solar Simulator, Enlitech SS-F5) 42
紫外光/可見光/近紅外光吸收光譜儀(Ultraviolet–visible-NIR spectroscopy, HITACHI U-4100 45
2-3-2. 太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficiency (IPCE), QE-S3011) 46
2-3-3. 空間電荷限制電流的原理及理論(Space Charge-Limited Current, SCLC) 46
2-3-4. UPS紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy, Thermo VG-Scientific/Sigma Probe) 49
2-3-5. X-ray光電子能譜儀(X-Ray photoelectron spectroscopy, Thermo VG-Scientific/Sigma Probe) 50
2-3-6. 紫外光/可見光/近紅外光吸收光譜儀(Ultraviolet-visible-NIR spectroscopy, HITACHI U-4100) 51
2-3-7. 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope(FE-SEM), Nova nano SEM 230) 52
2-3-8. 光致螢光及時間解析螢光光譜儀(Photoluminescence Spectrometer, Time-Resolved photoluminescence, Uni think UniRAM) 53
2-3-9. 傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer(FTIR), Jasco 4100) 55
2-3-10. X-Ray 繞射光譜儀(X-Ray Diffractometer, XRD, BRUKER D8 Discover) 57
2-3-11. 接觸角量測儀(Contact angle, Grandhand Ctag01) 58
2-3-12. 恆電位儀(Potentiostat, Metrohm Autolab PGSTAT30 )與電化學阻抗頻譜圖(Electrochemical impedance spectroscopy, EIS) 59
第3章 、 結果與討論 61
3-1、 電洞傳遞層SnO 的製備條件篩選 61
3-1-1. 篩選電洞傳遞層SnO 的厚度 61
3-1-2. 電洞傳遞層SnO 的後處理 63
A. 聯胺(N2H4)還原電洞傳遞層SnO膜 63
B. UV/O3或氧電漿後處理電洞傳遞層SnO膜 65
3-1-3. 篩選UV-O3後處理SnO時間做為電洞傳遞層組裝成元件之光伏參數。 67
3-2、 介面修飾層的選擇及製備條件篩選 69
3-2-4. 噻吩衍生物作為介面修飾劑組裝成元件之光伏參數 69
3-2-5. 高分子PDTON作為介面修飾劑組裝成元件之光伏參數 71
A. 不同濃度之PDTON氯苯溶液處理SnO所組裝錫鈣鈦礦太陽能元件之結果 73
B. 不同轉速製備 PDTON膜作為介面修飾層並組裝錫鈣鈦礦太陽能元件之光伏參數 75
3-3、 錫鈣鈦礦層的製備條件篩選 77
3-3-6. 不同錫鈣鈦礦加熱溫度製備鈣鈦礦層吸收層所組裝錫鈣鈦礦太陽能元件之光伏參數 77
3-3-7. 前驅溶液中含不同錫鈣鈦礦組成所製備錫鈣鈦礦吸收層所組裝錫鈣鈦礦太陽能元件之光伏參數 79
3-4、 比較不同電洞傳遞層組裝之元件光伏參數 81
3-5、 三種電洞傳遞層所組裝之錫鈣鈦礦太陽能電池元件之光伏參數與入射光子–電子轉換效率(Incident Photon-Electron Conversion Efficiency, IPCE) 84
3-6、 以SnO /PDTON作為電洞傳遞層之反式錫鈣鈦礦太陽能電池元件之遲滯因子 85
3-7、 不同電洞傳遞層所組裝之最高效率元件的最大功率點穩態電流密度 87
3-8、 不同電洞傳遞層所組裝之最高效率元件的暗電流與EIS 88
3-9、 三種不同電洞傳遞層所組裝之元件的長時間穩定性測試 89
3-10、 UV-O3後處理對電洞傳遞層SnO的影響探討 90
3-10-1. UV-O3後處理對SnO氧化態的影響 91
3-10-2. SnO膜具有高的穿透度 93
3-11、 不同電洞傳遞層UV-Vis吸收光譜及tauc plot 95
3-11-3. 不同電洞傳遞層之Valence band 95
3-11-4. 沉積在不同電洞傳遞層的錫鈣鈦礦層的Valence band、UV-Vis吸收光譜圖及tauc plot 97
3-11-5. 元件各層之前置軌域能階圖 99
3-12、 探討不同電洞傳遞層對錫鈣鈦礦電洞萃取能力 100
3-13、 不同電洞傳遞層之水接觸角與錫鈣鈦礦前驅液接觸角 105
3-14、 介面修飾劑PDTON與錫鈣鈦礦層中SnI2的相互作用 106
3-15、 介面修飾層PDTON與電洞傳遞層中SnO的相互作用 108
3-16、 不同電洞傳遞層表面的SEM表面形貌圖 109
3-17、 錫鈣鈦礦沉積在不同電洞傳遞層SEM表面形貌及剖面圖 110
3-18、 不同電洞傳遞層的電洞遷移率及沉積在不同電洞傳遞層上的鈣鈦礦缺陷密度 113
3-19、 錫鈣鈦礦沉積在不同電洞傳遞層之上的XPS Sn 3d圖 117
第4章 、 結論 120
參考文獻 122
參考文獻 1. Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22. Adv Mater 2016, 28 (42), 9333-9340.
2. Kim, M.; Jeong, J.; Lu, H.; Lee, T. K.; Eickemeyer, F. T.; Liu, Y.; Choi, I. W.; Choi, S. J.; Jo, Y.; Kim, H. B.; Mo, S. I.; Kim, Y. K.; Lee, H.; An, N. G.; Cho, S.; Tress, W. R.; Zakeeruddin, S. M.; Hagfeldt, A.; Kim, J. Y.; Grätzel, M.; Kim, D. S., Conformal Quantum dot-SnO(2) Layers as Electron Transporters for Efficient Perovskite Solar Cells. Science 2022, 375 (6578), 302-306.
3. Jokar, E.; Chien, C.-H.; Fathi, A.; Rameez, M.; Chang, Y.-H.; Diau, E. W.-G., Slow Surface Passivation and Crystal Relaxation with Additives to Improve Device Performance and Durability for Tin-based Perovskite Solar Cells. Energy & Environmental Science 2018, 11 (9), 2353-2362.
4. Yu, B.-B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z., Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%. Advanced Materials 2021, 33 (36), 2102055.
5. Arumugam, G. M.; Karunakaran, S. K.; Liu, C.; Zhang, C.; Guo, F.; Wu, S.; Mai, Y., Inorganic Hole Transport Layers in Inverted Perovskite Solar Cells: A Review. Nano Select 2021, 2 (6), 1081-1116.
6. Xie, F.; Chen, C.-C.; Wu, Y.; Li, X.; Cai, M.; Liu, X.; Yang, X.; Han, L., Vertical Recrystallization for Highly Efficient and Stable Formamidinium-based Inverted-structure Perovskite Solar Cells. Energy & Environmental Science 2017, 10 (9), 1942-1949.
7. Sun, W.; Ye, S.; Rao, H.; Li, Y.; Liu, Z.; Xiao, L.; Chen, Z.; Bian, Z.; Huang, C., Room-temperature and Solution-processed Copper Iodide as the Hole Transport Layer for Inverted Planar Perovskite Solar Cells. Nanoscale 2016, 8 (35), 15954-15960.
8. Zhang, H.; Wang, H.; Zhu, H.; Chueh, C.-C.; Chen, W.; Yang, S.; Jen, A. K.-Y., Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (13), 1702762.
9. Sun, W.; Li, Y.; Ye, S.; Rao, H.; Yan, W.; Peng, H.; Li, Y.; Liu, Z.; Wang, S.; Chen, Z.; Xiao, L.; Bian, Z.; Huang, C., High-performance Inverted Planar Heterojunction Perovskite Solar Cells Based on a Solution-processed CuOx Hole Transport Layer. Nanoscale 2016, 8 (20), 10806-10813.
10. Rao, H.; Sun, W.; Ye, S.; Yan, W.; Li, Y.; Peng, H.; Liu, Z.; Bian, Z.; Huang, C., Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (12), 7800-7805.
11. Yao, X.; Qi, J.; Xu, W.; Jiang, X.; Gong, X.; Cao, Y., Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells. ACS Omega 2018, 3 (1), 1117-1125.
12. https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html.
13. Li, Y.; Ding, B.; Chu, Q.-Q.; Yang, G.-J.; Wang, M.; Li, C.-X.; Li, C.-J., Ultra-high Open-circuit Voltage of Perovskite Solar Cells Induced by Nucleation Thermodynamics on Rough Substrates. Scientific Reports 2017, 7 (1), 46141.
14. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free Solid-state Organic–inorganic Halide Perovskite Solar Cells. Nature Photonics 2014, 8 (6), 489-494.
15. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N., Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials 2014, 26 (41), 7122-7127.
16. Zhu, Z.; Chueh, C. C.; Li, N.; Mao, C.; Jen, A. K., Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Adv Mater 2018, 30 (6).
17. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977.
18. Tseng, Z.-L.; Chen, L.-C.; Chiang, C.-H.; Chang, S.-H.; Chen, C.-C.; Wu, C.-G., Efficient Inverted-type Perovskite Solar Cells Using UV-ozone Treated MoOx and WOx as Hole Transporting Layers. Solar Energy 2016, 139, 484-488.
19. Wang, L.; Chen, M.; Yang, S.; Uezono, N.; Miao, Q.; Kapil, G.; Baranwal, A. K.; Sanehira, Y.; Wang, D.; Liu, D.; Ma, T.; Ozawa, K.; Sakurai, T.; Zhang, Z.; Shen, Q.; Hayase, S., SnOx as Bottom Hole Extraction Layer and Top In Situ Protection Layer Yields over 14% Efficiency in Sn-Based Perovskite Solar Cells. ACS Energy Letters 2022, 7 (10), 3703-3708.
20. Zhang, Q.; Wang, W.-T.; Chi, C.-Y.; Wächter, T.; Chen, J.-W.; Tsai, C.-Y.; Huang, Y.-C.; Zharnikov, M.; Tai, Y.; Liaw, D.-J., Toward a Universal Polymeric Material for Electrode Buffer Layers in Organic and Perovskite Solar Cells and Organic Light-emitting Diodes. Energy & Environmental Science 2018, 11 (3), 682-691.
21. Zhang, Y.; Zhang, S.; Wu, S.; Chen, C.; Zhu, H.; Xiong, Z.; Chen, W.; Chen, R.; Fang, S.; Chen, W., Bifunctional Molecular Modification Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Advanced Materials Interfaces 2018, 5 (19), 1800645.
22. Azcatl, A.; Kc, S.; Peng, X.; Lu, N.; McDonnell, S.; Qin, X.; de Dios, F.; Addou, R.; Kim, J.; Kim, M. J.; Cho, K.; Wallace, R. M., HfO2 on UV–O3 exposed transition metal dichalcogenides: interfacial reactions study. 2D Materials 2015, 2 (1), 014004.
23. Yu, B.-B.; Liao, M.; Zhu, Y.; Zhang, X.; Du, Z.; Jin, Z.; Liu, D.; Wang, Y.; Gatti, T.; Ageev, O.; He, Z., Oriented Crystallization of Mixed-Cation Tin Halides for Highly Efficient and Stable Lead-Free Perovskite Solar Cells. Advanced Functional Materials 2020, 30 (24), 2002230.
24. Liu, P.; Wang, W.; Liu, S.; Yang, H.; Shao, Z., Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials 2019, 9 (13), 1803017.
25. Liu, C.; Tu, J.; Hu, X.; Huang, Z.; Meng, X.; Yang, J.; Duan, X.; Tan, L.; Li, Z.; Chen, Y., Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability. Advanced Functional Materials 2019, 29 (18), 1808059.
26. Syed, A. M.; Iqbal, A. K.; Waheed, A. Y.; Khasan, S. K., Space Charge–Limited Current Model for Polymers. In Conducting Polymers, Faris, Y., Ed. IntechOpen: Rijeka, 2016; p Ch. 5.
27. Rutledge, S. A.; Helmy, A. S., Carrier Mobility Enhancement in Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Having Undergone Rapid Thermal Annealing. Journal of Applied Physics 2013, 114 (13).
28. Solola, G. T.; Klopov, M.; Akinami, J. O.; Afolabi, T. A.; Karazhanov, S. Z.; Adebayo, G., First Principle Calculations of Structural, Electronic, Optical and Thermoelectric Properties of Tin (II) Oxide. Materials Research Express 2019, 6 (12), 125915.
29. Meng, X.; Wu, T.; Liu, X.; He, X.; Noda, T.; Wang, Y.; Segawa, H.; Han, L., Highly Reproducible and Efficient FASnI3 Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent. The Journal of Physical Chemistry Letters 2020, 11 (8), 2965-2971.
指導教授 吳春桂 江建宏(Chun-Guey Wu Chien‐Hung Chiang) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明