博碩士論文 110324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.137.186.26
姓名 林平洲(Ping-Chou Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 可撓曲銀/彎曲轉折型矽晶奈米線異質結構之製備及其室溫氣體感測特性研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們透過多步驟貴金屬輔助化學蝕刻法,藉由調控蝕刻溶液的組成比例,以及改變在不同溶液中的浸泡時間,成功的在P-type(001)以及N-type(001)晶面之矽單晶基材上製備出高深寬比以及大面積準直排列之彎曲轉折型矽晶奈米線結構。氣體偵測性能則是透過丙酮、氧氣來驗證不同類型之矽晶氣體感測元件對於氧化性以及還原性氣體之電性趨勢變化以及其作用機制。此外,本研究為提升氣體感測元件之偵測能力,進一步導入酸性橫向蝕刻製程技術,製備出多孔隙彎曲轉折型矽晶奈米線結構,以提高偵測元件之比表面積;並在最佳條件之多孔隙彎曲轉折型矽晶奈米線結構上利用無電鍍銀法披覆銀奈米粒子,藉此來改善氣體偵測性能。銀/多孔隙彎曲轉折型矽單晶奈米線氣體感測元件,和一般常見之一維矽晶奈米結構之氣體感測元件相比,在定電壓下之偵測靈敏度有顯著的提升。
本研究使用一步驟金屬輔助化學蝕刻法,製備出厚度均勻之超薄可撓曲矽單晶基材,再將此基材和前述所開發出之銀/多孔隙彎曲轉折型矽晶奈米線結構進行結合,成功製備出可撓曲銀/多孔隙彎曲轉折型矽晶奈米線氣體感測元件。此元件展現出十分良好之彎曲能力,可分別於曲率半徑為2.5 cm、1.5 cm操作情況下進行氣體偵測。
最後,本研究針對大多數氣體感測元件中常見之恢復時間過長問題提出改善方式,利用金屬輔助化學蝕刻法結合鹼性蝕刻法,在可撓曲基材上,製備矽晶通道結構,並與上述製備之可撓曲銀/多孔隙彎曲轉折型矽晶奈米線結構結合,製備出可撓曲銀/多孔隙彎曲轉折型矽晶奈米線/矽晶通道異質結構氣體感測元件,藉由矽晶通道所提供之額外氣體脫附路徑,來縮短元件之恢復時間,以達到優化元件性能之目的。
摘要(英) In this study, the large-area, vertically-aligned single crystalline kinked silicon nanowires array(KSiNWs) was successfully fabricated on P-type(001) and N-type(001) substrate by a multiple steps noble metal assisted chemical etching(MACE)。The gas-sensing performance was evaluated by acetone and oxygen to investigate the detecting trend and mechanism. In order to increase the surface area to volume ratio, we used lateral etching technique to fabricate porous kinked silicon nanowire. In addition, so as to improve the gas-sensing performance, this study developed a electroless Ag deposition process which could uniformly decorate Ag nanoparticles on the porous KSiNWs. The Ag/Porous KSiNWs exhibited better gas–sensing performance than normally Si-based 1D nanostructure gas sensor.
The one step noble metal assisted chemical etching method was used to prepare uniform ultra-thin Si substrate. Then, using the process we just mentioned above to fabricate Ag/Porous KSiNWs on ultra-thin Si substrate. The gas-sensing detection could be performed when the radius of curvature was 2.5 cm and 1.5 cm respectively.
Finally, this study proposed a way to improve the long recovery time issues which was usually encounter in most of gas sensing devices. We used noble metal-assisted chemical etching to fabricate micro-nanoscale hole structures on flexible Si substrates. Then, using the process we mentioned above to fabricate Ag/Porous KSiNWs on the front side of ultra-thin Si substrate. This structure provided additional path for gas desorption. Therefore, we look forward to shorten recovery time and optimizing the performance of the gas-sensing device.
關鍵字(中) ★ 彎曲轉折型矽晶奈米線
★ 氣體感測器
關鍵字(英) ★ Kinked Silicon Nanowires
★ Gas Sensor
論文目次 第一章 前言及文獻回顧 1
1-1前言 1
1-2氣體感測元件 2
1-2-1金屬氧化物半導體氣體感測元件反應機制 4
1-2-2矽晶材料之氣體感測元件反應機制 5
1-2-3金屬奈米粒子披覆技術及其增強氣體感測性能之機制 7
1-3一維半導體奈米材料 9
1-3-1矽晶奈米線之製備方式 10
1-4彎曲轉折型矽晶奈米線 13
1-4-1彎曲轉折型矽晶奈米線之製備方式 14
1-4-2彎曲轉折型矽晶奈米線之應用 15
1-5超薄可撓曲矽晶元件 15
1-5-1超薄可撓曲矽晶元件之製程技術 16
1-5-2超薄可撓曲矽晶元件之應用領域 17
1-6研究動機及目標 18
第二章 實驗步驟及儀器設備 21
2-1實驗步驟 21
2-1-1矽單晶基材使用前處理 21
2-1-2一步驟金屬輔助化學蝕刻法製備超薄可撓曲矽單晶基材 22
2-1-3多步驟金屬輔助化學蝕刻法製備彎曲轉折型矽晶奈米線 22
2-1-4酸性橫向蝕刻法製備多孔隙彎曲轉折型矽晶奈米線 22
2-1-5無電鍍銀粒子披覆多孔隙彎曲轉折型矽晶奈米線 23
2-1-6兩步驟金屬輔助化學蝕刻結合鹼性蝕刻法製備矽晶通道結構 23
2-1-7可撓曲銀/彎曲轉折型多孔隙矽晶奈米線/矽晶通道異質結構之製備 23
2-1-8氣體感測元件之製備 24
2-1-9各式氧化製程測試元件氣體偵測性能差異 24
2-1-9-1原生氧化層(native oxide) 24
2-1-9-2氧氣電漿氧化層(plasma oxide) 25
2-2試片分析 25
2-2-1掃描式電子顯微鏡 25
2-2-2穿透式電子顯微鏡 26
2-2-3氣體感測系統 26
第三章 結果與討論 27
3-1製備彎曲轉折型矽晶奈米線結構 27
3-1-1彎曲轉折型矽晶奈米線結構製備 27
3-1-2多孔隙彎曲轉折型矽晶奈米線結構製備 31
3-1-3無電鍍銀披覆多孔隙彎曲轉折型矽晶奈米線結構製備 32
3-2 P型及N型彎曲轉折型矽晶奈米線氣體感測元件之氣體偵測性質分析 32
3-2-1彎曲轉折型矽晶奈米線氣體感測元件之設計 33
3-2-2不同氧化製程技術製備P型彎曲轉折型矽晶奈米線氣體感測元件及其氣體偵測性質分析 33
3-2-3 N型彎曲轉折型矽晶奈米線氣體感測元件之偵測性質分析 35
3-2-4 P型及N型彎曲轉折型矽晶奈米線氣體感測元件之氣體偵測機制 36
3-3 彎曲轉折型矽晶奈米線氣體感測元件之氣體偵測性能分析 37
3-3-1彎曲轉折型矽晶奈米線與矽晶奈米線氣體感測元件之氣體偵測性能分析 37
3-3-2 P型多孔隙彎曲轉折型矽晶奈米線氣體感測元件之氣體偵測性能分析 37
3-3-3 P型銀/多孔隙彎曲轉折型矽晶奈米線氣體感測元件之氣體偵測性能分析及其增益機制 38
3-4 P型超薄可撓曲矽單晶基材上製備彎曲轉折型矽晶奈米線結構及其氣體偵測性能分析 39
3-4-1 P型超薄可撓曲矽晶基材之製備 40
3-4-2 不同曲率半徑下P型可撓曲彎曲轉折型矽晶奈米線氣體感測元件之氣體偵測性能分析 40
3-4-3 不同曲率半徑下P型可撓曲銀/彎曲轉折型矽晶奈米線氣體感測元件之氣體偵測性能分析 42
3-5 P型可撓曲銀/多孔隙彎曲轉折型矽晶奈米線/矽晶通道異質結構之製備及其氣體偵測性能分析 43
3-5-1金屬輔助化學蝕刻結合鹼性蝕刻法製備矽晶通道結構 44
3-5-2製備可撓曲銀/多孔隙彎曲轉折型矽晶奈米線/矽晶通道異質結構及其氣體偵測性能分析 45
第四章 結論與未來展望 49
4-1 結論 49
4-2 未來展望 50
參考文獻 51
表目錄 59
圖目錄 61
參考文獻 [1] N. Li, Q. Jiang, F. Wang, P. Cui, J. Xie, J. Li, S. Wu, and D. M. Barbieri, "Comparative Assessment of Asphalt Volatile Organic Compounds Emission from field to laboratory," J. Clean. Prod. 278(2021)123479.
[2] H. Rajabi, M. H. Mosleh, P. Mandal, A. L. Langton, and M. Sedighi, "Emissions of volatile organic compounds from crude oil processing–Global emission inventory and environmental release," Sci. Total Environ. 727(2020)138654.
[3] G. Korotcenkov, S. d. Han, and J. R. Stetter, "Review of Electrochemical Hydrogen Sensors," Chem Rev. 109(2009)1402.
[4] T. Aldhafeeri, M. K. Tran, R. Vrolyk, M. Pope, and M. Fowler, "A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives," Inventions. 5(2020)28.
[5] X. Yan, Y. Wu, R. Li, C. Shi, R. Moro, Y. Ma, and L. Ma, "High-Performance UV-Assisted NO2 Sensor Based on ChemicalVapor Deposition Graphene at Room Temperature," ACS Omega. 4(2019)14179.
[6] I. A. Ashari, A. P. Widodo, and S. Suryono, "The Monitoring System for Ammonia Gas (NH3) Hazard Detection in the Livestock Environment uses Inverse Distance Weight Method," 2019 Fourth International Conference on Informatics and Computing (ICIC).
[7] W. Zhang, Q. Li, C. Wang, J. Ma, C. Wang, H. Peng, and Y. Wen, "High sensitivity and selectivity chlorine gas sensors based on 3D open porous SnO2 synthesized by solid-state method," Ceram. Int. 45(2019)20566.
[8] D. Yao, Y. Wang, and H. Li, "Silver clusters based sensor for Low content formaldehyde detection in colorimetric and fluorometric dual Mode," Sens. Actuators B Chem. 305(2020)127451.
[9] S. J. Young, and Z. D. Lin, "Acetone gas sensors composed of carbon nanotubes with adsorbed Au nanoparticles on plastic substrate," Microsyst. Technol. 24(2018)3973.
[10] V. Davamani, M. Deepasri, E. Parameswari, S. Arulmani, S. P, Sebastian, and T. Llakia, "Chemistry of Indoor Pollutants and Their Impacts on Human Health,"Pure Appl. Chem. 21(2020)40.
[11] S. J. Young, Y. H. Liu, Z. D. Lin, K. Ahmed, M. N. I. Shiblee, S. Romanuik, P. K. Sekhar, T. Thundat, ., Nagahara, S. Arya, R. Ahmed, H. Furukawa, and A. Khosla, "Multi-Walled Carbon Nanotubes Decorated with Silver Nanoparticles for Acetone Gas Sensing at Room Temperature," J. Electrochem. Soc. 167(2020)167519.
[12] R. Alice, B. John, and A. R. Kumar, "A review on resistive-based gas sensors for the detection of volatile organic compounds using metal-oxide nanostructures," Inorg. Chem. Commun. 133(2021)108893.
[13] M. Serafini, M. Tessarolo, F. Mariani, I. Gualandi, F. Decataldo, L. Possanzini, B, Fraboni, D,Tonelli, and E, Scavetta, "A Wearable Electrochemical Gas Sensor for Ammonia Detection," Sensors. 21(2021)7905.
[14] Y. Wu, B. Yao, C. Yu and Y. Rao "Optical Graphene Gas Sensors Based on Microfibers: A Review," Sensors. 18(2018)941.
[15] D. D. O. Henriquez, I. Cho, H. Yang, J. Choi, M. Kang, K. S. Chang, C. B. Jeong, S. W. Han, and I. Park, "Pt Nanostructures Fabricated by Local Hydrothermal Synthesis for Low-Power Catalytic-Combustion Hydrogen Sensors," Appl. Nano Mater. 4(2021)7.
[16] Z. Li, Z. Yao , A. A. Haidry, T. Plecenik, L. Xie, L. Sun, and Q. Fatima, "Resistive-type hydrogen gas sensor based on TiO2: A review," Int J Hydrogen Energ. 43(2018)21114.
[17] C. Han, X. Li, C. Shao, X. Li, J. Ma, X. Zhang, and Y. Liu, "Composition-controllable p-CuO/n-ZnO hollow nanofibers for high- T performance H2S detection," Sens. Actuators B Chem. 285(2019)495.
[18] Y. Qin, Y. Wang, and Y. Liu1, "Vertically aligned silicon nanowires with rough surface and its NO2 sensing properties," J. Mater. Sci. Mater. Electron. 27(2016)11319.
[19] A. Bielański, J. Dereń, and J. Haber, "Electric conductivity and catalytic activity of semiconducting oxide catalysts," Nature 179 (1957) 668.
[20] N. Taguchi , "Gas detecting element and method of making it," Google Patents 1972.
[21] A. Gurlo, "Interplay between O2 and SnO2 : Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen," ChemPhysChem. 7(2006)2041.
[22] P. G. Harrison, and M. J. Willett, "Tin oxide surfaces. Part 20.—Electrical properties of tin(IV) oxide gel: nature of the surface species controlling the electrical conductance in air as a function of temperature," J . Chem. Soc., Faraday Trans. 85(1989)1921.
[23] H. J. Kim, and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," Sens. Actuators B Chem. 192(2014)607.
[24] J. A. Barnard and T. W. Honeyman, "The Gaseous Oxidation of Acetone. I. The High-Temperature Reaction," Proc. Math. Phys. Eng. Sci. 279(1964)236.
[25] C. Samanta, A. Ghatak, A. K. Raychaudhurim and B. Ghosh, "ZnO/Si nanowires heterojunction array based nitric Oxide (NO) gas sensor with noise limited detectivity approaching 10 ppb," Nanotechnology. 30(2019)305501.
[26] L. Lin, D. Liu, Q. Chen, H. Zhoua, and J. Wu, "A vertical tip–tip contact silicon nanowire array for gas sensing," Nanoscale. 8(2016)17757.
[27] D. Liu, L. Lin, Q. Chen, H. Zhou, and J. Wu, "Low power consumption gas sensor created from silicon nanowires/TiO2 core-shell heterojunctions," ACS Sens. 10(2017)1491.
[28] A. M. Alwan, H. R. Abed, and A. A, Yousif, "Effect of the Deposition Temperature on Ammonia Gas Sensing Based on SnO2/Porous Silicon," Plasmonics, 16(2021)501.
[29] W. Wang, S. Ma, X. Liu, Y. Zhao, H. Li, Y. Li, X. Ningc, L. Zhaob, and J. Zhuanga, "NO2 gas sensor with excellent performance based on thermally modified nitrogen-hyperdoped silicon," Sens. Actuators B Chem. 354(2022)131193.
[30] F. R. González, G. G. Salgado, E. Rosendo, T. Díaz, F. N. Caballero, A. Coyopol, R. Romano, A. Luna1, K. Monfil, and E. Gastellou, "Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity,"Sensors. 20(2020)4942.
[31] L. Song, L. Luo, Y. Xi, J. Song, Y. Wang, L. Yang, A. Wang, Y. Chen, N. Han, and F. Wang, "Reduced Graphene Oxide-Coated Si Nanowires for Highly Sensitive and Selective Detection of Indoor Formaldehyde,"Nanoscale Res. Lett. 14(2019)97.
[32] S. B. Wang, Y. F. Huang, S. Chattopadhyay, S. J. Chang, R. S. Chen, C. W. Chong, M. S. Hu, L.C. Chen, and K. H. Chen, "Surface plasmon-enhanced gas sensing in single gold-peapodded silica nanowires," NPG Asia Mater. 5(2013)e49.
[33] Y. Qina, Z. Cuia, T. Zhanga, and Diao Liua, "Polypyrrole shell (nanoparticles)-functionalized silicon nanowires array with enhanced NH3-sensing response," Sens. Actuators B. 258(2018)246.
[34] J. H. Bang, M. S. Choi, A. Mirzaei, W. Oum, S. Han, S. S. Kim, and H. W. Kim, "Porous Si/SnO2 nanowires heterostructures for H2S gas sensing," Ceram. Int. 46(2020)604.
[35] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim, and H. H. Cho, "Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion," Int. J. Heat Mass Transf. 82(2015)267.
[36] Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T.Y. Wei, and Z. L. Wang, "Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,"Adv. Mater. 22(2010)3327.
[37] L. B. Ahmed, S. Naama, A. Keffous, A. H. Bey, and T. Hadjersi, "H2 sensing properties of modified silicon nanowires," Prog. Nat. Sci. 25(2015)101.
[38] J. Baeka, B. Janga, M. H. Kima, W. Kima, J. Kima, H. J. Rima, S. Shinb, T. Leeb, S. Choa, and W. Lee, "High-performance hydrogen sensing properties and sensing mechanism in Pd-coated p-type Si nanowire arrays," Sens. Actuators B Chem. 256(2018)465.
[39] Y. Qin, D. Liu, T. Zhang, and Z. Cui, "Ultrasensitive Silicon Nanowire Sensor Developed by a Special Ag Modification Process for Rapid NH3 Detection,"Appl. Mater. Interfaces. 9(2017)28766.
[40] H. Zou, G. Dai, A. C. Wang, X. Li, S.L. Zhang, W. Ding, L.Zhang, Y. Zhang, and Z. L. Wang, "Alternating Current Photovoltaic Effect," Adv. Mater. 32(2020)1907249.
[41] W. Yang, J. Chen, Y. Zhang, Y. Zhang, J. H. He, and X. Fang, "Silicon-Compatible Photodetectors:Trends to Monolithically Integrate Photosensors with Chip Technology," Adv. Funct. Mater. 18(2019)1808182.
[42] N. Kumar, and S. Chand, "Analysis of rectifying metal-semiconductor interface using impedance spectroscopy at low temperatures," Physica B Condens. Matter. 599(2020)412547.
[43] K. Lotfy, "Effect of Variable Thermal Conductivity during the Photothermal Diffusion Process of Semiconductor Medium," Silicon. 11(2019)1863.
[44] M. Ahamed, M. S. AlSalhi, and M.K.J. Siddiqui, "Silver nanoparticle applications and human health," Clin. Chim. Acta, 411(2010)1841.
[45] F. P. G. D. Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, "Semiconductor quantum dots: Technological progress and future challenges,"Science. 373(2021)6555.
[46] C. Jia, Z. Lin, Y. Huang, and X. Duan, "Nanowire Electronics: From Nanoscale to Macroscale," Chem. Rev. 119(2019)9047.
[47] Q. Xue, Y. Peng, L. Cao, Y. Xia, J. Liang, C. C. Chen, M. Li, and T. Hang, "Ultralow Set Voltage and Enhanced Switching Reliability for Resistive Random-Access Memory Enabled by an Electrodeposited Nanocone Array," ACS Appl. Mater. Interfaces. 14(2022)25710.
[48] Xiuling Li, "Strain induced semiconductor nanotubes: from formation process to device applications," J. Phys. D: Appl. Phys. 41 (2008) 193001.
[49] D. Hu, X. Ren, H. Fu, Y. Wang, X. Feng, and H. Li, "Constructing highly rough skin layer of thin film (nano) composite polyamide membranes to enhance separation performance: A review," J Appl Polym Sci. 139(2022)e52692.
[50] K. Wang, J. Y. Park, Akriti, and L. Dou, "Two-dimensional halide perovskite quantum-well emitters: A critical review, " EcoMat. 3(2021)e12104.
[51] N. Fukata, T. Subramani, W. Jevasuwan, M. Dutta, and Y. Bando, "Functionalization of Silicon Nanostructures for Energy-Related Applications," Small, 13(2017)1701713.
[52] Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan, X. Zhang, Y. Ke, C. Wang, Z. Qiu and Y. Tang, "A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective," Sustain. Energy Fuels, 4(2020)1577.
[53] V. Sessi, M. Simon, H. Mulaosmanovic, D. Pohl, M. Loeffler, T. Mauersberger, F. P. G. Fengler, T. Mittmann, C. Richter, S. Slesazeck, T. Mikolajick, and W. M. Weber, "A Silicon Nanowire Ferroelectric Field-Effect Transistor," Adv. Electron. Mater. 6(2020)1901244.
[54] J. Xiao, J. Zhao, G. Liu, M. T. Cole, S. Zhou, K. Chen, X. Liu, Z. Li, C. Li, and Q. Dai, "Stable Field Emission from Vertically Oriented SiC Nanoarrays," Nanomaterials. 11(2021)3025.
[55] A. Chandra, S. Giri, B. Das, S. Ghosh, S. Sarkar, and K. K. Chattopadhyay, "NIR photodetector based on p-silicon nanowires/n-cadmium sulfide nanoscale junctions," Appl. Surf. Sci. 548 (2021)149256.
[56] T. Yang, Y. Liu, H. Wang, Y. Duo, B. Zhang, Y. Ge, H. Zhang, and W. Chen, "Recent advances in 0D nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors," J. Mater. Chem. C. 8(2020)7272.
[57] G. W. C. Kumarage, and E. Comini, "Low-Dimensional Nanostructures Based on Cobalt Oxide (Co3O4) in Chemical-Gas Sensing," Chemosensors. 9(2021)197.
[58] T. Zhou, X. Liu, R. Zhang, Y.Wang, and T. Zhang, "Shape control and selective decoration of Zn2SnO4 nanostructures on 1D nanowires: Boosting chemical–sensing performances, " Sens. Actuators B Chem. 290(2019)210.
[59] P. R. Godse, A. T. Mane, Y. H. Navale, S. T. Navale, R. N. Mulik, and V. B. Patil, "Hydrothermally grown 1D ZnO nanostructures for rapid detection of NO2 gas," SN Applied Sciences. 3(2021)360.
[60] G. Gupta, S. D. Thammaiah, and L. K. Nanver, "Investigation of Pd/MoOx/n-Si diodes for bipolar transistor and light-emitting device applications," J. Appl. Phys. 128(2020)055703.
[61] V. Sessi, M. Simon, H. Mulaosmanovic, D. Pohl, M. Loeffler, T. Mauersberger, F. P. G. Fengler, T.Mittmann, C. Richter, S. Slesazeck, T. Mikolajick, and W. M. Weber, "A Silicon Nanowire Ferroelectric Field-Effect Transistor," Adv. Electron. Mater. 6(2020)1901244.
[62] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications," Adv. Mater. 5(2003)15.
[63] H. Yu, Y. Tian, M. Dirican, Do. Fang, C. Yan, J. Xie, D. Jia, Y. Liu, C. Li, M.Cui, H. Liu, G. Chen, X. Zhang, and J. Taoa, "Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels," Carbohydr. Polym. 273(2021)118539.
[64] M. Zhang, H. Ling, W. Zhang, H. Bian, H. Lin, T. Wang, Z. Lia, and A. Meng, "Preparation, superior field emission properties and first principles calculation of electronic structure of SiC nanowire arrays on Si substrate," Mater Charact. 180 (2021) 111413.
[65] L. Balaghi, S. Shan, I. Fotev, F. Moebus, R. Rana, T. Venanzi, R. Hübner, T. Mikolajick, H. Schneider, M. Helm, A. Pashkin, and E. Dimakis, "High electron mobility in strained GaAs nanowires," Nat. Commun. 12(2021)6642.
[66] M.i Hasan, M. F. Huq, and Z. H. Mahmood, "A review on electronic and optical properties of silicon nanowire and its different growth techniques," SpringerPlus. 2(2013)151.
[67] J. H. Lee, and R. E. Geer, "Templated Si-based nanowires via solid-liquid- solid (SLS) and vapor-liquid-solid (VLS) growth: Novel growth mode, synthesis, morphology control, characteristics, and electrical transport,"Cutting Edge Nanotechnology. 2010.
[68] T.Nguyen, C. H. Hsu, D. H. Lien, and Y. S. Su, "Economical Silicon Nanowire Growth via Cooling Controlled Solid–Liquid–Solid Mechanism," Adv. Mater. Interfaces. (2022) 2202247.
[69] S. N. Mohammad, "Investigation of the oxide-assisted growth mechanism for nanowire growth and a model for this mechanism," J. Vac. Sci. Technol. B. 26(2008)1993.
[70] X. Li, and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Appl. Phys. Lett. 77(2000)2572.
[71] S. Chattopadhyay, X. Li, and P. W. Bohnb, "In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching," J. Appl. Phys. 91(2002)6134.
[72] K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. Lee, "Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution," Chem. Eur. J. 12(2006)7942.
[73] T. QIU, X.L. WU, G.G. SIU, and P. K. CHU, "Intergrowth Mechanism of Silicon Nanowires and Silver Dendrites," J. Electron. Mater. 35(2006)1879.
[74] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, and C. Y. Hsu, "The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching," Curr Appl Phys. 13(2013)717.
[75] A. Mirzaeia, S. Y. Kangb, S. W. Choic, Y. J. Kwonb, M. S. Choib, J. H. Bangb, S. S. Kimd, and H. W. Kima, "Fabrication and gas sensing properties of vertically aligned Si nanowires," Appl. Surf. Sci. 427(2018)215.
[76] Y. Qin, Y. Jiang, and L. Zhao, "Modulation of Agglomeration of Vertical Porous Silicon Nanowires and the Effect on Gas-Sensing Response," Adv. Eng. Mater. 20(2017)1700893.
[77] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gosele, "Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon," J. Phys. Chem. C. 114(2010)10683.
[78] J. Kim, H. Han, Y. H. Kim, S. H. Choi, J. C. Kim, and W. Lee, "Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires," ACS Nano. 5(2011)3222.
[79] B.Tian, P. Xie, T. J. Kempa, D. C. Bell, and C. M. Lieber, "Single-crystalline kinked semiconductor nanowiresuperstructures," Nat. Nanotechnol. 4(2009)824.
[80] G. Shen, B. Liang, X. Wang, P. C. Chen, and C. Zhou, "Indium Oxide Nanospirals Made of Kinked Nanowires," ACS Nano. 5(2011)2155.
[81] S. Li, X. Zhang, L. Zhang, and M. Gao, "Twinning-induced kinking of Sb-doped ZnO nanowires," Nanotechnology. 21(2010)435602.
[82] G. Sandu, J. A.Osses, M. Luciano, D. Caina, A. Stopin, D. Bonifazi, J. F. Gohy, A. Silhanek, I. Florea, M. Bahri, O. Ersen, P. Lecler̀e, S. Gabriele, A. Vlad, and S. Melinte, "Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etching," Nano Lett. 19(2019)7681.
[83] Y. Chen, L. Li, C. Zhang, C. C. Tuan, X. Chen, J. Gao, and C. P. Wong, "Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching," Nano Lett. 17(2017)1014.
[84] T. K. Adhila, H. Elangovan, S. John, K. Chattopadhyay, and H. C. Barshilia, "Engineering the Microstructure of Silicon Nanowires by Controlling the Shape of the Metal Catalyst and Composition of the Etchant in a Two-Step MACE Process: An In-Depth Analysis of the Growth Mechanism," Langmuir. 36(2020)9388.
[85] T. K. Adhilaa, H. Elangovanc, K. Chattopadhyay, and H. C. Barshilia, "Kinked silicon nanowires prepared by two-step MACE process: Synthesis strategies and luminescent properties," Mater. Res. Bull. 140(2021)111308.
[86] G. Sandu, M. Coulombier, V. Kumar, H. G. Kassa, I. Avram, R. Ye, A. Stopin, D. Bonifazi, J. F. Gohy, P. Leclère, X. Gonze, T. Pardoen, A. Vlad, and S. Melinte, "Kinked silicon nanowires-enabled interweaving electrodeconfiguration for lithium-ionbatteries," Sci. Rep. 8(2018)9794.
[87] Z. Jiang, Q. Qing, P.Xie, R. Gao, and C. M. Lieber, "Kinked p−n Junction Nanowire Probes for High Spatial Resolution Sensing and Intracellular Recording," Nano Lett. 12(2012)1711.
[88] P. Serre, M. Mongillo, P. Periwal, T. Baron, and C. Ternon, "Percolating silicon nanowire networks with highly reproducible electrical properties," Nanotechnology. 26(2015)015201.
[89] S. F. madlul, N. K. Mahan, E. M. Ali, and A. N. Abd, "Synthesis of CdS:Cu5% thin films by chemical method based on silicon for gas sensor applications," Materials Today: Proceedings. 25(2021)5800.
[90] D. H. Kim, W. Lee, and J. M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires," Nanoscale. 10(2018)17705.
[91] M. Triplett, H. Nishimura, M. Ombaba, V. J. Logeeswarren, M. Yee, K. G. Polat, J. Y. Oh, T. Fuyuki, F. Léonard, and M. S. Islam, "High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication," Nano Res. 7(2014)998.
[92] S. C. Shiu, H. J. Syu, S. C. Hung, and C. F. Lin, "Transfer of Silicon Nanowires onto Alien Substrates by Controlling Direction of Metal-Assisted Etching," proceeding of 10th IEEE International Conference. (2010)474.
[93] J. Son, and H. Lee, "Contact-Area-Changeable CMP Conditioning for Enhancing Pad Lifetime," Appl. Sci. 11(2021)3521.
[94] S.Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, "Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials," Nano Lett. 213(2013)4393.
[95] C. C. Lin, Y. J. Chuang, W. H. Sun, C. Cheng, Y. T. Chen, Z. L. Chen, C. H. Chien, and F. H. Ko, "Ultrathin single-crystalline silicon solar cells for mechanically flexible and optimal surface morphology designs," Microelectron Eng. 145(2015)128.
[96] F. Baia, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer," Appl. Surf. Sci. 273(2013)107.
[97] S. G. Kirtania, A. W. Elger, and M. R. Hasan, A. Wisniewska, K. Sekhar, T. Karacolak, and P. K. Sekhar, "Flexible Antennas: A Review," Micromachines. 11(2020)847.
[98] M. G. Stanford, K. Yang, Y. Chyan, C. Kittrell, and J. M. Tour, "Laser-Induced Graphene for Flexible and Embeddable Gas Sensors," ACS Nano. 13(2019)3474.
[99] M. A. Yildirim, and K. Teker, "Self-powered fine-pattern flexible SiC single nanowire ultraviolet photodetector," J. Alloys Compd. 868(2021)159255.
[100] L. R. Shobin, and S. Manivannan, "Carbon nanotubes on paper: Flexible and disposable chemiresistors," Sens. Actuators B Chem. 220(2015)1178.
[101] Y. Kim, A.Tsao, D. H. Lee, and R. Maboudian, "Solvent-induced formation of unidirectionally curved and tilted Si nanowires during metal-assisted chemical etching," J. Mater. Chem. C. 1(2013)220.
[102] Y. Chen, C. Zhang, L. Li, C. C. Tuan, X. Chen, J. Gao, Y. He, and C. P. Wong, "Effects of Defects on the Mechanical Properties of Kinked Silicon Nanowires," Nanoscale Res. Lett. 12(2017)185.
[103] 國家衛生研究院 National Health Research Institutes 2.0版.
[104] L. Sigg, and U. Lindauer, "Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide," Environ. Pollut. 206(2015)582.
[105] F. Yana, G. Shen, X. Yang, T. Qia, J. Suna, X. Lic, and M. Zhang, "Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor," Appl. Surf. Sci. 479(2019)1141.
[106] S. Kim, S. Park, S. Park, and Chongmu Lee, "Acetone sensing of Au and Pd-decorated WO3 nanorod sensors," Sens. Actuators B Chem. 209(2015)180.
[107] Y. Xiong, Z. Zhu, D. Ding, W. Lu, and Q. Xue, "Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor," Appl. Surf. Sci.15(2018)114.
[108] J. Hu, J. Yang, W. Wang, Y. Xue, Y. Sun, P. Li, K. Lian, W. Zhang, L. Chen, J. Shi, and Y. Chen, "Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection," Mater. Res. Bull. 102(2018)294.
[109] Y. Qin, Y. Wang, Y. Liu, and X. Zhang, "KOH post-etching-induced rough silicon nanowire array for H2 gas sensing application," Nanotechnology. 27(2016)465502.
[110] K. Lan, Z. Wang, X. Yang, J. Wei, Y. Qin, and G. Qin, "Flexible silicon nanowires sensor for acetone detection on plastic substrates," Nanotechnology. 33(2022)155502.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明