博碩士論文 110223073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.23.101.241
姓名 張詔傑(Zhao-Jie zHANG)  查詢紙本館藏   畢業系所 化學學系
論文名稱 透過機器學習加速探索有前景的紫質染料用於染料敏化太陽能電池
(Expedited Exploration of Prospective Porphyrin Dye for Dye-Sensitized Solar Cells by Machine Learning)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 染料敏化太陽能電池(DSSC)由於其成本效益、靈活性和理想的穩定性而作為
一種有前景的光伏技術引起了廣泛關注。然而,由於染料分子結構和元件性能之
間的複雜關係,設計高效、穩定的 DSSC 染料敏化劑仍然具有挑戰性。在這項
研究中,我們提出了一種專門為鋅基的紫質染料敏化劑量身定製的可靠且可解釋
的定量結構-性質關係(QSPR)模型。通過將機器學習技術(ML)與密度泛函理論
(DFT) 計算相結合,我們構建了一個包含 140 個分子的資料集。 ML 模型經過
訓練來預測功率轉換效率 (PCE),並使用 Shapley Additive Explanations Theory 進
一步解釋其預測。開發的模型表現出卓越的準確性,通過 10 折交叉驗證並利用
bagging 技術,均方根誤差 (RMSE) 達到 1.09%。利用這個模型,我們對來自眾
所周知且容易獲得的供體和受體的大量分子進行了計算機虛擬篩選。結果,我們
使用這種方法成功鑑定了九種有前景的高 PCE 鋅基的紫質染料。此外,使用
Shapley Additive Explanations Theory 對預測模型的解釋使我們能夠推導出有意義
的化學規則,這有助於製定 DSSC 實際應用的鋅基紫質染料分子設計原則。
摘要(英) Dye-sensitized solar cells (DSSCs) have attracted significant attention as a
promising photovoltaic technology due to their cost-effectiveness, flexibility, and
desirable stability. However, designing efficient and stable DSSC dye sensitizers
remains a challenge due to the sophisticated relationship between molecular structure
and device performance. In this study, we propose a reliable and interpretable
quantitative structure-property relationship (QSPR) model specifically tailored for
zinc-based porphyrin sensitizers. By combining machine learning technique with
density functional theory (DFT) calculations, we constructed a dataset comprising 140
data. The ML model was trained to predict the power conversion efficiency (PCE) and
its predictions were further interpreted using the Shapley Additive Explanations Theory.
The developed model demonstrated remarkable accuracy with a root mean square error
(RMSE) of 1.09% achieved through 10-fold cross-validation and utilizing bagging
technique. Leveraging this model, we performed in silico virtual screening of a large
number of molecules derived from well-known and readily available donors and
acceptors. As a result, we successfully identified nine promising zinc-based porphyrin
dyes with high PCE using this approach. Additionally, the interpretation of the
prediction model using the Shapley Additive Explanations Theory allowed us to deduce
III
meaningful chemical rules, which can contribute to the formulation of design principles
for practical applications of DSSCs utilizing zinc-based porphyrin dyes.
關鍵字(中) ★ 紫質
★ 機器學習
★ 染料敏化太陽能電池
★ 理論計算
★ 密度泛函理論
關鍵字(英) ★ Porphyrin
★ Machine Learning
★ Dye-Sensitized Solar Cells
★ theoretical calculation
★ DFT
論文目次 Contents
摘要 ........................................................................................................................... I
Abstract ..................................................................................................................... II
Acknowledgment .................................................................................................... IV
List of Figures ......................................................................................................... VI
List of Tables .......................................................................................................... VII
Chapter 1—Introduction ............................................................................................ 1
Chapter 2—Computational Methods.......................................................................... 9
2.1 The construction of the database ...................................................................... 9
2.2 Working Principles and Molecular Descriptors .............................................. 10
2.3 Quantum chemical calculations ...................................................................... 15
2.4 Algorithm Description ................................................................................... 25
2.5 Machine learning algorithms .......................................................................... 27
2.5-1 Light Gradient Boosting Machine (LGBM) ..................................... 27
2.5-2 Support Vector Regression (SVR) .................................................... 29
2.5-3 Artificial Neural Network (ANN) ..................................................... 30
2.5-4 Convolutional Neural Networks (CNN) ........................................... 32
Chapter 3—Results and Discussion ......................................................................... 34
3.1 Model Performance Evaluation ...................................................................... 34
3.1-1. Performance of Predictive Models in terms of MDS-A.................... 35
3.1-2. Performance of Predictive Models in terms of MDS-B.................... 38
3.1-3. Performance of Predictive Models in terms of MDS-C ................... 41
3.3. In Silico Virtual Screening of Candidate Zn-based Porphyrins.................... 51
Chapter 4—Conclusion ........................................................................................... 53
Supporting Information ........................................................................................... 56
References (Thesis) ................................................................................................102
參考文獻 References (Thesis)
1. O′Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dyesensitized
colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
2. Chen, C. Y.; Kuo, T. Y.; Huang, C. W.; Jian, Z. H.; Hsiao, P. T.; Wang, C.
L.; Lin, J. C.; Chen, C. Y.; Chen, C. H.; Tung, Y. L., Thermal and angular
dependence of next‐generation photovoltaics under indoor lighting. Progress in
Photovoltaics: Research and Applications 2020, 28 (2), 111-121.
3. Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.;
Hua, J.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M., Dye-sensitized solar cells
for efficient power generation under ambient lighting. Nature Photonics 2017, 11 (6),
372-378.
4. Zeng, K.; Chen, Y.; Zhu, W.-H.; Tian, H.; Xie, Y., Efficient solar cells based
on concerted companion dyes containing two complementary components: an
alternative approach for cosensitization. Journal of the American Chemical Society
2020, 142 (11), 5154-5161.
5. Zeng, K.; Tong, Z.; Ma, L.; Zhu, W.-H.; Wu, W.; Xie, Y., Molecular
engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar
cells. Energy & Environmental Science 2020, 13 (6), 1617-1657.
6. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.;
Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel,
M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular
engineering of porphyrin sensitizers. Nature Chemistry 2014, 6 (3), 242-247.
7. Kumar, A.; Kumar, P., Prediction of power conversion efficiency of phenothiazinebased
dye-sensitized solar cells using Monte Carlo method with index of ideality of
correlation. SAR and QSAR in Environmental Research 2021, 32 (10), 817-834.
8. Wen, Y.; Fu, L.; Li, G.; Ma, J.; Ma, H., Accelerated Discovery of Potential
Organic Dyes for Dye‐Sensitized Solar Cells by Interpretable Machine Learning
Models and Virtual Screening. Solar RRL 2020, 4 (6), 2000110.
9. Fan, C.; Springborg, M.; Feng, Y., Application of an inverse-design method to
optimizing porphyrins in dye-sensitized solar cells. Physical Chemistry Chemical
Physics 2019, 21 (10), 5834-5844.
10. Li, H.; Cui, Y.; Liu, Y.; Li, W.; Shi, Y.; Fang, C.; Li, H.; Gao, T.;
Hu, L.; Lu, Y., Ensemble learning for overall power conversion efficiency of the allorganic
dye-sensitized solar cells. IEEE Access 2018, 6, 34118-34126.
11. Li, H.; Zhong, Z.; Li, L.; Gao, R.; Cui, J.; Gao, T.; Hu, L. H.; Lu, Y.;
Su, Z.-M.; Li, H., A cascaded QSAR model for efficient prediction of overall power
conversion efficiency of all-organic dye-sensitized solar cells. Journal of
103
Computational Chemistry 2015, 36 (14), 1036-1046.
12. Bishop, C. M.; Nasrabadi, N. M., Pattern recognition and machine learning.
Springer: 2006; Vol. 4.
13. Galvao, T. L.; Novell-Leruth, G.; Kuznetsova, A.; Tedim, J.; Gomes, J. R.,
Elucidating structure–property relationships in aluminum alloy corrosion inhibitors by
machine learning. The Journal of Physical Chemistry C 2020, 124 (10), 5624-5635.
14. Li, P.; Wang, Z.; Li, W.; Yuan, J.; Chen, R., Design of Thermally Activated
Delayed Fluorescence Materials with High Intersystem Crossing Efficiencies by
Machine Learning-Assisted Virtual Screening. The Journal of Physical Chemistry
Letters 2022, 13 (42), 9910-9918.
15. Liu, Y.; Yan, W.; Han, S.; Zhu, H.; Tu, Y.; Guan, L.; Tan, X., How
machine learning predicts and explains the performance of perovskite solar cells. Solar
RRL 2022, 6 (6), 2101100.
16. Li, J.; Peng, Y.; Zhao, L.; Chen, G.; Zeng, L.; Wei, G.; Xu, Y., Machinelearning-
assisted discovery of perovskite materials with high dielectric breakdown
strength. Materials Advances 2022, 3 (23), 8639-8646.
17. Sun, W.; Zheng, Y.; Yang, K.; Zhang, Q.; Shah, A. A.; Wu, Z.; Sun, Y.;
Feng, L.; Chen, D.; Xiao, Z., Machine learning–assisted molecular design and
efficiency prediction for high-performance organic photovoltaic materials. Science
Advances 2019, 5 (11), eaay4275.
18. Gou, F.; Jiang, X.; Li, B.; Jing, H.; Zhu, Z. J. A. A. M.; Interfaces, Salicylic
acid as a tridentate anchoring group for azo-bridged zinc porphyrin in dye-sensitized
solar cells. ACS Appl. Mater. Interfaces 2013, 5 (23), 12631-12637.
19. Krishna, J. V. S.; Krishna, N. V.; Chowdhury, T. H.; Singh, S.; Bedja, I.;
Islam, A.; Giribabu, L., Kinetics of dye regeneration in liquid electrolyte unveils
efficiency of 10.5% in dye-sensitized solar cells. Journal of Materials Chemistry C
2018, 6 (42), 11444-11456.
20. Sharma, K.; Sharma, V.; Sharma, S. S., Dye-sensitized solar cells: fundamentals
and current status. Nanoscale Research Letters 2018, 13 (1), 1-46.
21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.;
Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts,
R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg,
J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.;
Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega,
N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.;
104
Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.;
Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.;
Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.;
Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
22. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange.
The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
23. Petersson, G.; Al‐Laham, M. A., A complete basis set model chemistry. II. Openshell
systems and the total energies of the first‐row atoms. 1991, 94 (9), 6081-6090.
24. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and
electronic properties of molecules in solution with the C‐PCM solvation model. Journal
of Computational Chemistry 2003, 24 (6), 669-681.
25. O′boyle, N. M.; Tenderholt, A. L.; Langner, K. M., Cclib: a library for packageindependent
computational chemistry algorithms. 2008, 29 (5), 839-845.
26. Delley, B., An all‐electron numerical method for solving the local density
functional for polyatomic molecules. J. Chem. Phys. 1990, 92 (1), 508-517.
27. Delley, B., From molecules to solids with the DMol 3 approach. J. Chem. Phys.
2000, 113 (18), 7756-7764.
28. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation
made simple. Phys. Rev. Lett. 1996, 77 (18), 3865.
29. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M.
R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of
the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,
46 (11), 6671.
30. Tsai, H.-H. G.; Hu, J.-C.; Tan, C.-J.; Sheng, Y.-C.; Chiu, C.-C., Firstprinciple
characterization of the adsorption configurations of cyanoacrylic dyes on
TiO2 film for dye-sensitized solar cells. J. Phys. Chem. A 2016, 120 (44), 8813-8822.
31. Chiu, C.-C.; Sheng, Y.-C.; Lin, W.-J.; Juwita, R.; Tan, C.-J.; Tsai, H.-H. G.,
Effects of internal electron-withdrawing moieties in D–A− π–A organic sensitizers on
photophysical properties for DSSCs: a computational study. ACS omega 2018, 3 (1),
433-445.
32. Fuke, N.; Hoch, L. B.; Koposov, A. Y.; Manner, V. W.; Werder, D. J.;
Fukui, A.; Koide, N.; Katayama, H.; Sykora, M., CdSe quantum-dot-sensitized
solar cell with∼ 100% internal quantum efficiency. ACS Nano 2010, 4 (11), 6377-6386.
33. Lu, T.-F.; Li, W.; Bai, F.-Q.; Jia, R.; Chen, J.; Zhang, H.-X., Anionic
ancillary ligands in cyclometalated Ru (II) complex sensitizers improve photovoltaic
efficiency of dye-sensitized solar cells: insights from theoretical investigations. J. Mater.
Chem. A 2017, 5 (30), 15567-15577.
105
34. Chaitanya, K.; Ju, X.-H.; Heron, B. M., Theoretical study on the light harvesting
efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv. 2014, 4 (51), 26621-
26634.
35. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.;
Murata, S.; Arakawa, H.; Tachiya, M., Efficiencies of electron injection from excited
N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3)
films. J. Phys. Chem. B 2004, 108 (15), 4818-4822.
36. Marcus, R. A., On the theory of oxidation‐reduction reactions involving electron
transfer. I. J. Chem. Phys. 1956, 24 (5), 966-978.
37. Marcus, R. A., On the Theory of Electron‐Transfer Reactions. VI. Unified
Treatment for Homogeneous and Electrode Reactions. J. Chem. Phys. 2004, 43 (2),
679-701.
38. Lopez-Estrada, O.; Laguna, H. G.; Barrueta-Flores, C.; Amador-Bedolla, C.,
Reassessment of the four-point approach to the electron-transfer Marcus–Hush theory.
ACS Omega 2018, 3 (2), 2130-2140.
39. Pearson, R. G., Absolute electronegativity and absolute hardness of Lewis acids
and bases. J. Am. Chem. Soc. 1985, 107 (24), 6801-6806.
40. Bredas, J.-L., Mind the gap! Mater. Horiz. 2014, 1 (1), 17-19.
41. Chattaraj, P. K.; Sarkar, U.; Roy, D. R., Electrophilicity Index. Chem. Rev. 2006,
106 (6), 2065-2091.
42. Kokalj, A., On the HSAB based estimate of charge transfer between adsorbates
and metal surfaces. Chemical Physics 2012, 393 (1), 1-12.
43. Hsu, C.-P., The Electronic Couplings in Electron Transfer and Excitation Energy
Transfer. Accounts of Chemical Research 2009, 42 (4), 509-518.
44. Koopmans, T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu
den Einzelnen Elektronen Eines Atoms. Physica 1934, 1 (1), 104-113.
45. Lundberg, S. M.; Lee, S.-I., A unified approach to interpreting model predictions.
Advances in neural information processing systems 2017, 30.
46. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu,
T.-Y., Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems 2017, 30.
47. Awad, M.; Khanna, R.; Awad, M.; Khanna, R., Support vector regression.
Efficient learning machines: Theories, concepts, and applications for engineers and
system designers 2015, 67-80.
48. Dongare, A.; Kharde, R.; Kachare, A. D., Introduction to artificial neural
network. International Journal of Engineering and Innovative Technology (IJEIT) 2012,
2 (1), 189-194.
49. Albawi, S.; Mohammed, T. A.; Al-Zawi, S. In Understanding of a convolutional
106
neural network, 2017 international conference on engineering and technology (ICET),
Ieee: 2017; pp 1-6.
50. Baumann, A.; Curiac, C.; Delcamp, J. H., The Hagfeldt Donor and Use of Next‐
Generation Bulky Donor Designs in Dye‐Sensitized Solar Cells. ChemSusChem 2020,
13 (10), 2503-2512.
51. Han, M.-L.; Zhu, Y.-Z.; Liu, S.; Liu, Q.-L.; Ye, D.; Wang, B.; Zheng, J.-
Y., The improved photovoltaic performance of phenothiazine-dithienopyrrole based
dyes with auxiliary acceptors. Journal of Power Sources 2018, 387, 117-125.
52. Lin, C.-Y.; Lo, C.-F.; Luo, L.; Lu, H.-P.; Hung, C.-S.; Diau, E. W.-G.,
Design and Characterization of Novel Porphyrins with Oligo(phenylethylnyl) Links of
Varied Length for Dye-Sensitized Solar Cells: Synthesis and Optical, Electrochemical,
and Photovoltaic Investigation. The Journal of Physical Chemistry C 2009, 113 (2),
755-764.
53. Duvva, N.; Prasanthkumar, S.; Giribabu, L., Influence of strong electron
donating nature of phenothiazine on A3B-type porphyrin based dye sensitized solar
cells. Solar Energy 2019, 184, 620-627.
54. Li, S.; Zhang, Y.; Mei, S.; Kong, X.; Yang, M.; Hu, Z.; Wu, W.; He,
J.; Tan, H., A molecular engineering strategy of phenylamine-based zinc-porphyrin
dyes for dye-sensitized solar cells: synthesis, characteristics, and structure–
performance relationships. ACS Applied Energy Materials 2021, 4 (9), 9267-9275.
55. Wu, C.-H.; Pan, T.-Y.; Hong, S.-H.; Wang, C.-L.; Kuo, H.-H.; Chu, Y.-
Y.; Diau, E. W.-G.; Lin, C.-Y., A fluorene-modified porphyrin for efficient dyesensitized
solar cells. Chemical Communications 2012, 48 (36), 4329-4331.
56. Lu, H.-P.; Mai, C.-L.; Tsia, C.-Y.; Hsu, S.-J.; Hsieh, C.-P.; Chiu, C.-L.;
Yeh, C.-Y.; Diau, E. W.-G., Design and characterization of highly efficient porphyrin
sensitizers for green see-through dye-sensitized solar cells. Physical Chemistry
Chemical Physics 2009, 11 (44), 10270-10274.
57. Cabau, L.; Kumar, C. V.; Moncho, A.; Clifford, J. N.; López, N.;
Palomares, E., A single atom change “switches-on” the solar-to-energy conversion
efficiency of Zn-porphyrin based dye sensitized solar cells to 10.5%. Energy &
Environmental Science 2015, 8 (4), 1368-1375.
58. Wu, C.-H.; Chen, M.-C.; Su, P.-C.; Kuo, H.-H.; Wang, C.-L.; Lu, C.-Y.;
Tsai, C.-H.; Wu, C.-C.; Lin, C.-Y., Porphyrins for efficient dye-sensitized solar cells
covering the near-IR region. Journal of Materials Chemistry A 2014, 2 (4), 991-999.
59. Lu, J.; Xu, X.; Cao, K.; Cui, J.; Zhang, Y.; Shen, Y.; Shi, X.; Liao, L.;
Cheng, Y.; Wang, M., D–π–A structured porphyrins for efficient dye-sensitized solar
cells. Journal of Materials Chemistry A 2013, 1 (34), 10008-10015.
60. Lu, J.; Li, H.; Liu, S.; Chang, Y.-C.; Wu, H.-P.; Cheng, Y.; Diau, E. W.-
107
G.; Wang, M., Novel porphyrin-preparation, characterization, and applications in solar
energy conversion. Physical Chemistry Chemical Physics 2016, 18 (9), 6885-6892.
61. Chang, Y.-C.; Wang, C.-L.; Pan, T.-Y.; Hong, S.-H.; Lan, C.-M.; Kuo,
H.-H.; Lo, C.-F.; Hsu, H.-Y.; Lin, C.-Y.; Diau, E. W.-G., A strategy to design
highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chemical
Communications 2011, 47 (31), 8910-8912.
62. Tanaka, M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.; Imahori, H.,
Novel unsymmetrically π-elongated porphyrin for dye-sensitized TiO2 cells. Chemical
communications 2007, 2069-2071.
63. Hayashi, S.; Matsubara, Y.; Eu, S.; Hayashi, H.; Umeyama, T.; Matano,
Y.; Imahori, H., Fused five-membered porphyrin for dye-sensitized solar cells.
Chemistry letters 2008, 37 (8), 846-847.
64. Hayashi, S.; Tanaka, M.; Hayashi, H.; Eu, S.; Umeyama, T.; Matano, Y.;
Araki, Y.; Imahori, H., Naphthyl-fused π-elongated porphyrins for dye-sensitized TiO2
cells. The Journal of Physical Chemistry C 2008, 112 (39), 15576-15585.
65. Cariello, M.; Abdalhadi, S. M.; Yadav, P.; Decoppet, J.-D.; Zakeeruddin, S.
M.; Grätzel, M.; Hagfeldt, A.; Cooke, G. J. D. T., An investigation of the roles furan
versus thiophene π-bridges play in donor–π-acceptor porphyrin based DSSCs. Dalton
Transactions 2018, 47 (18), 6549-6556.
66. Eu, S.; Hayashi, S.; Umeyama, T.; Oguro, A.; Kawasaki, M.; Kadota, N.;
Matano, Y.; Imahori, H., Effects of 5-Membered Heteroaromatic Spacers on Structures
of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells. The
Journal of Physical Chemistry C 2007, 111 (8), 3528-3537.
67. Hsieh, C.-P.; Lu, H.-P.; Chiu, C.-L.; Lee, C.-W.; Chuang, S.-H.; Mai, C.-
L.; Yen, W.-N.; Hsu, S.-J.; Diau, E. W.-G.; Yeh, C.-Y., Synthesis and
characterization of porphyrin sensitizers with various electron-donating substituents for
highly efficient dye-sensitized solar cells. Journal of Materials Chemistry 2010, 20 (6),
1127-1134.
68. Song, H.; Li, X.; Ågren, H.; Xie, Y., Branched and linear alkoxy chainswrapped
push-pull porphyrins for developing efficient dye-sensitized solar cells. Dyes
and Pigments 2017, 137, 421-429.
69. Lee, M. J.; Seo, K. D.; Song, H. M.; Kang, M. S.; Eom, Y. K.; Kang, H.
S.; Kim, H. K., Novel D-π-A system based on zinc-porphyrin derivatives for highly
efficient dye-sensitised solar cells. Tetrahedron Letters 2011, 52 (30), 3879-3882.
70. Tang, Y.; Wang, Y.; Li, X.; Ågren, H.; Zhu, W.-H.; Xie, Y., Porphyrins
containing a triphenylamine donor and up to eight alkoxy chains for dye-sensitized
solar cells: a high efficiency of 10.9%. ACS Applied Materials & Interfaces 2015, 7
(50), 27976-27985.
108
71. Jia, H.-L.; Zhang, M.-D.; Ju, Z.-M.; Zheng, H.-G.; Ju, X.-H., Picolinic acid
as an efficient tridentate anchoring group adsorbing at Lewis acid sites and Brønsted
acid sites of the TiO2 surface in dye-sensitized solar cells. Journal of Materials
Chemistry A 2015, 3 (28), 14809-14816.
72. Jia, H.-L.; Zhang, M.-D.; Yan, W.; Ju, X.-H.; Zheng, H.-G., Effects of
structural optimization on the performance of dye-sensitized solar cells: spirobifluorene
as a promising building block to enhance Voc. Journal of Materials Chemistry A 2016,
4 (30), 11782-11788.
73. Xie, Y.; Tang, Y.; Wu, W.; Wang, Y.; Liu, J.; Li, X.; Tian, H.; Zhu, W.-
H., Porphyrin Cosensitization for a Photovoltaic Efficiency of 11.5%: A Record for
Non-Ruthenium Solar Cells Based on Iodine Electrolyte. Journal of the American
Chemical Society 2015, 137 (44), 14055-14058.
74. Lu, Y.; Song, H.; Li, X.; Ågren, H.; Liu, Q.; Zhang, J.; Zhang, X.; Xie,
Y., Multiply wrapped porphyrin dyes with a phenothiazine donor: a high efficiency of
11.7% achieved through a synergetic coadsorption and cosensitization approach. ACS
Appl. Mater. Interfaces 2019, 11 (5), 5046-5054.
75. Liu, Y.; Xiang, N.; Feng, X.; Shen, P.; Zhou, W.; Weng, C.; Zhao, B.;
Tan, S., Thiophene-linked porphyrin derivatives for dye-sensitized solar cells.
Chemical communications 2009, (18), 2499-2501.
76. Wang, Y.; Xu, L.; Wei, X.; Li, X.; Ågren, H.; Wu, W.; Xie, Y., 2-
Diphenylaminothiophene as the donor of porphyrin sensitizers for dye-sensitized solar
cells. New Journal of Chemistry 2014, 38 (7), 3227-3235.
77. Duvva, N.; Gangada, S.; Chitta, R.; Giribabu, L., Bis(4′-tert-butylbiphenyl-4-
yl)aniline (BBA)-substituted A3B zinc porphyrin as light harvesting material for
conversion of light energy to electricity. 2020, 24 (10), 1189-1197.
78. Gangadhar, P. S.; Gonuguntla, S.; Madanaboina, S.; Islavath, N.; Pal, U.;
Giribabu, L., Unravelling the impact of thiophene auxiliary in new porphyrin sensitizers
for high solar energy conversion. Journal of Photochemistry & Photobiology A:
Chemistry 2020, 392, 112408.
79. Yang, G.; Tang, Y.; Li, X.; Ågren, H.; Xie, Y., Efficient solar cells based on
porphyrin dyes with flexible chains attached to the auxiliary benzothiadiazole acceptor:
suppression of dye aggregation and the effect of distortion. ACS Appl. Mater. Interfaces
2017, 9 (42), 36875-36885.
80. Song, H.; Tang, W.; Zhao, S.; Liu, Q.; Xie, Y., Porphyrin sensitizers
containing an auxiliary benzotriazole acceptor for dye-sensitized solar cells: Effects of
steric hindrance and cosensitization. Dyes and Pigments 2018, 155, 323-331.
81. Hart, A. S.; Kc, C. B.; Gobeze, H. B.; Sequeira, L. R.; D’Souza, F.,
Porphyrin-sensitized solar cells: effect of carboxyl anchor group orientation on the cell
109
performance. ACS Appl. Mater. Interfaces 2013, 5 (11), 5314-5323.
82. Wei, T.; Sun, X.; Li, X.; Ågren, H.; Xie, Y., Systematic investigations on the
roles of the electron acceptor and neighboring ethynylene moiety in porphyrins for dyesensitized
solar cells. ACS Applied Materials & Interfaces 2015, 7 (39), 21956-21965.
83. Higashino, T.; Fujimori, Y.; Sugiura, K.; Tsuji, Y.; Ito, S.; Imahori, H.,
Tropolone as a high‐performance robust anchoring group for dye‐sensitized solar cells.
Angewandte Chemie 2015, 127 (31), 9180-9184.
84. Wang, Y.; Chen, B.; Wu, W.; Li, X.; Zhu, W.; Tian, H.; Xie, Y., Efficient
solar cells sensitized by porphyrins with an extended conjugation framework and a
carbazole donor: from molecular design to cosensitization. Angewandte Chemie 2014,
126 (40), 10955-10959.
85. Chang, S.; Wang, H.; Hua, Y.; Li, Q.; Xiao, X.; Wong, W.-K.; Wong,
W. Y.; Zhu, X.; Chen, T., Conformational engineering of co-sensitizers to retard back
charge transfer for high-efficiency dye-sensitized solar cells. Journal of Materials
Chemistry A 2013, 1 (38), 11553-11558.
86. Griffith, M. J.; Sunahara, K.; Wagner, P.; Wagner, K.; Wallace, G. G.;
Officer, D. L.; Furube, A.; Katoh, R.; Mori, S.; Mozer, A. J., Porphyrins for dyesensitised
solar cells: new insights into efficiency-determining electron transfer steps.
Chemical Communications 2012, 48 (35), 4145-4162.
87. He, H.; Gurung, A.; Si, L.; Sykes, A. G., A simple acrylic acid functionalized
zinc porphyrin for cost-effective dye-sensitized solar cells. Chemical Communications
2012, 48 (61), 7619-7621.
88. Gou, F.; Jiang, X.; Fang, R.; Jing, H.; Zhu, Z., Strategy to Improve
Photovoltaic Performance of DSSC Sensitized by Zinc Prophyrin Using Salicylic Acid
as a Tridentate Anchoring Group. ACS Applied Materials & Interfaces 2014, 6 (9),
6697-6703.
89. Koteshwar, D.; Prasanthkumar, S.; Singh, S. P.; Chowdhury, T. H.; Bedja,
I.; Islam, A.; Giribabu, L. J. M. C. F., Effects of methoxy group (s) on D-π-A
porphyrin based DSSCs: efficiency enhanced by co-sensitization. Mater. Chem. Front.
2022, 6 (5), 580-592.
90. Zhou, W.; Zhao, B.; Shen, P.; Jiang, S.; Huang, H.; Deng, L.; Tan, S.,
Multi-alkylthienyl appended porphyrins for efficient dye-sensitized solar cells. Dyes
and Pigments 2011, 91 (3), 404-412.
91. Lee, C. Y.; She, C.; Jeong, N. C.; Hupp, J. T., Porphyrin sensitized solar cells:
TiO2 sensitization with a π-extended porphyrin possessing two anchoring groups.
Chemical communications 2010, 46 (33), 6090-6092.
92. Kang, M. S.; Kang, S. H.; Kim, S. G.; Choi, I. T.; Ryu, J. H.; Ju, M. J.;
Cho, D.; Lee, J. Y.; Kim, H. K., Novel D–π–A structured Zn (ii)-porphyrin dyes
110
containing a bis(3,3-dimethylfluorenyl) amine moiety for dye-sensitised solar cells.
Chemical Communications 2012, 48 (75), 9349-9351.
93. Kang, S. H.; Choi, I. T.; Kang, M. S.; Eom, Y. K.; Ju, M. J.; Hong, J. Y.;
Kang, H. S.; Kim, H. K., Novel D–π–A structured porphyrin dyes with diphenylamine
derived electron-donating substituents for highly efficient dye-sensitized solar cells.
Journal of Materials Chemistry A 2013, 1 (12), 3977-3982.
94. Kang, M. S.; Choi, I. T.; Kim, Y. W.; You, B. S.; Kang, S. H.; Hong, J.
Y.; Ju, M. J.; Kim, H. K., Novel D–π–A structured Zn (ii)–porphyrin dyes with bulky
fluorenyl substituted electron donor moieties for dye-sensitized solar cells. Journal of
Materials Chemistry A 2013, 1 (34), 9848-9852.
95. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;
Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M.,
Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12
percent efficiency. Science 2011, 334 (6056), 629-634.
96. Ripolles-Sanchis, T.; Guo, B.-C.; Wu, H.-P.; Pan, T.-Y.; Lee, H.-W.;
Raga, S. R.; Fabregat-Santiago, F.; Bisquert, J.; Yeh, C.-Y.; Diau, E. W.-G.,
Design and characterization of alkoxy-wrapped push–pull porphyrins for dyesensitized
solar cells. Chemical Communications 2012, 48 (36), 4368-4370.
97. Masi Reddy, N.; Pan, T.-Y.; Christu Rajan, Y.; Guo, B.-C.; Lan, C.-M.;
Wei-Guang Diau, E.; Yeh, C.-Y., Porphyrin sensitizers with π-extended pull units for
dye-sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (21), 8409-
8415.
98. Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.;
Yeh, C. Y.; Grätzel, M., Molecular engineering of push–pull porphyrin dyes for highly
efficient dye‐sensitized solar cells: The role of benzene spacers. Angewandte Chemie
2014, 126 (11), 3017-3021.
99. Wu, S.-L.; Lu, H.-P.; Yu, H.-T.; Chuang, S.-H.; Chiu, C.-L.; Lee, C.-W.;
Diau, E. W.-G.; Yeh, C.-Y., Design and characterization of porphyrin sensitizers with a
push-pull framework for highly efficient dye-sensitized solar cells. Energy &
Environmental Science 2010, 3 (7), 949-955.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明