參考文獻 |
References (Thesis)
1. O′Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dyesensitized
colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
2. Chen, C. Y.; Kuo, T. Y.; Huang, C. W.; Jian, Z. H.; Hsiao, P. T.; Wang, C.
L.; Lin, J. C.; Chen, C. Y.; Chen, C. H.; Tung, Y. L., Thermal and angular
dependence of next‐generation photovoltaics under indoor lighting. Progress in
Photovoltaics: Research and Applications 2020, 28 (2), 111-121.
3. Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.;
Hua, J.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M., Dye-sensitized solar cells
for efficient power generation under ambient lighting. Nature Photonics 2017, 11 (6),
372-378.
4. Zeng, K.; Chen, Y.; Zhu, W.-H.; Tian, H.; Xie, Y., Efficient solar cells based
on concerted companion dyes containing two complementary components: an
alternative approach for cosensitization. Journal of the American Chemical Society
2020, 142 (11), 5154-5161.
5. Zeng, K.; Tong, Z.; Ma, L.; Zhu, W.-H.; Wu, W.; Xie, Y., Molecular
engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar
cells. Energy & Environmental Science 2020, 13 (6), 1617-1657.
6. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.;
Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel,
M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular
engineering of porphyrin sensitizers. Nature Chemistry 2014, 6 (3), 242-247.
7. Kumar, A.; Kumar, P., Prediction of power conversion efficiency of phenothiazinebased
dye-sensitized solar cells using Monte Carlo method with index of ideality of
correlation. SAR and QSAR in Environmental Research 2021, 32 (10), 817-834.
8. Wen, Y.; Fu, L.; Li, G.; Ma, J.; Ma, H., Accelerated Discovery of Potential
Organic Dyes for Dye‐Sensitized Solar Cells by Interpretable Machine Learning
Models and Virtual Screening. Solar RRL 2020, 4 (6), 2000110.
9. Fan, C.; Springborg, M.; Feng, Y., Application of an inverse-design method to
optimizing porphyrins in dye-sensitized solar cells. Physical Chemistry Chemical
Physics 2019, 21 (10), 5834-5844.
10. Li, H.; Cui, Y.; Liu, Y.; Li, W.; Shi, Y.; Fang, C.; Li, H.; Gao, T.;
Hu, L.; Lu, Y., Ensemble learning for overall power conversion efficiency of the allorganic
dye-sensitized solar cells. IEEE Access 2018, 6, 34118-34126.
11. Li, H.; Zhong, Z.; Li, L.; Gao, R.; Cui, J.; Gao, T.; Hu, L. H.; Lu, Y.;
Su, Z.-M.; Li, H., A cascaded QSAR model for efficient prediction of overall power
conversion efficiency of all-organic dye-sensitized solar cells. Journal of
103
Computational Chemistry 2015, 36 (14), 1036-1046.
12. Bishop, C. M.; Nasrabadi, N. M., Pattern recognition and machine learning.
Springer: 2006; Vol. 4.
13. Galvao, T. L.; Novell-Leruth, G.; Kuznetsova, A.; Tedim, J.; Gomes, J. R.,
Elucidating structure–property relationships in aluminum alloy corrosion inhibitors by
machine learning. The Journal of Physical Chemistry C 2020, 124 (10), 5624-5635.
14. Li, P.; Wang, Z.; Li, W.; Yuan, J.; Chen, R., Design of Thermally Activated
Delayed Fluorescence Materials with High Intersystem Crossing Efficiencies by
Machine Learning-Assisted Virtual Screening. The Journal of Physical Chemistry
Letters 2022, 13 (42), 9910-9918.
15. Liu, Y.; Yan, W.; Han, S.; Zhu, H.; Tu, Y.; Guan, L.; Tan, X., How
machine learning predicts and explains the performance of perovskite solar cells. Solar
RRL 2022, 6 (6), 2101100.
16. Li, J.; Peng, Y.; Zhao, L.; Chen, G.; Zeng, L.; Wei, G.; Xu, Y., Machinelearning-
assisted discovery of perovskite materials with high dielectric breakdown
strength. Materials Advances 2022, 3 (23), 8639-8646.
17. Sun, W.; Zheng, Y.; Yang, K.; Zhang, Q.; Shah, A. A.; Wu, Z.; Sun, Y.;
Feng, L.; Chen, D.; Xiao, Z., Machine learning–assisted molecular design and
efficiency prediction for high-performance organic photovoltaic materials. Science
Advances 2019, 5 (11), eaay4275.
18. Gou, F.; Jiang, X.; Li, B.; Jing, H.; Zhu, Z. J. A. A. M.; Interfaces, Salicylic
acid as a tridentate anchoring group for azo-bridged zinc porphyrin in dye-sensitized
solar cells. ACS Appl. Mater. Interfaces 2013, 5 (23), 12631-12637.
19. Krishna, J. V. S.; Krishna, N. V.; Chowdhury, T. H.; Singh, S.; Bedja, I.;
Islam, A.; Giribabu, L., Kinetics of dye regeneration in liquid electrolyte unveils
efficiency of 10.5% in dye-sensitized solar cells. Journal of Materials Chemistry C
2018, 6 (42), 11444-11456.
20. Sharma, K.; Sharma, V.; Sharma, S. S., Dye-sensitized solar cells: fundamentals
and current status. Nanoscale Research Letters 2018, 13 (1), 1-46.
21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.;
Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts,
R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg,
J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.;
Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega,
N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.;
104
Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.;
Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.;
Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.;
Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
22. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange.
The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
23. Petersson, G.; Al‐Laham, M. A., A complete basis set model chemistry. II. Openshell
systems and the total energies of the first‐row atoms. 1991, 94 (9), 6081-6090.
24. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and
electronic properties of molecules in solution with the C‐PCM solvation model. Journal
of Computational Chemistry 2003, 24 (6), 669-681.
25. O′boyle, N. M.; Tenderholt, A. L.; Langner, K. M., Cclib: a library for packageindependent
computational chemistry algorithms. 2008, 29 (5), 839-845.
26. Delley, B., An all‐electron numerical method for solving the local density
functional for polyatomic molecules. J. Chem. Phys. 1990, 92 (1), 508-517.
27. Delley, B., From molecules to solids with the DMol 3 approach. J. Chem. Phys.
2000, 113 (18), 7756-7764.
28. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation
made simple. Phys. Rev. Lett. 1996, 77 (18), 3865.
29. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M.
R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of
the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,
46 (11), 6671.
30. Tsai, H.-H. G.; Hu, J.-C.; Tan, C.-J.; Sheng, Y.-C.; Chiu, C.-C., Firstprinciple
characterization of the adsorption configurations of cyanoacrylic dyes on
TiO2 film for dye-sensitized solar cells. J. Phys. Chem. A 2016, 120 (44), 8813-8822.
31. Chiu, C.-C.; Sheng, Y.-C.; Lin, W.-J.; Juwita, R.; Tan, C.-J.; Tsai, H.-H. G.,
Effects of internal electron-withdrawing moieties in D–A− π–A organic sensitizers on
photophysical properties for DSSCs: a computational study. ACS omega 2018, 3 (1),
433-445.
32. Fuke, N.; Hoch, L. B.; Koposov, A. Y.; Manner, V. W.; Werder, D. J.;
Fukui, A.; Koide, N.; Katayama, H.; Sykora, M., CdSe quantum-dot-sensitized
solar cell with∼ 100% internal quantum efficiency. ACS Nano 2010, 4 (11), 6377-6386.
33. Lu, T.-F.; Li, W.; Bai, F.-Q.; Jia, R.; Chen, J.; Zhang, H.-X., Anionic
ancillary ligands in cyclometalated Ru (II) complex sensitizers improve photovoltaic
efficiency of dye-sensitized solar cells: insights from theoretical investigations. J. Mater.
Chem. A 2017, 5 (30), 15567-15577.
105
34. Chaitanya, K.; Ju, X.-H.; Heron, B. M., Theoretical study on the light harvesting
efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv. 2014, 4 (51), 26621-
26634.
35. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.;
Murata, S.; Arakawa, H.; Tachiya, M., Efficiencies of electron injection from excited
N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3)
films. J. Phys. Chem. B 2004, 108 (15), 4818-4822.
36. Marcus, R. A., On the theory of oxidation‐reduction reactions involving electron
transfer. I. J. Chem. Phys. 1956, 24 (5), 966-978.
37. Marcus, R. A., On the Theory of Electron‐Transfer Reactions. VI. Unified
Treatment for Homogeneous and Electrode Reactions. J. Chem. Phys. 2004, 43 (2),
679-701.
38. Lopez-Estrada, O.; Laguna, H. G.; Barrueta-Flores, C.; Amador-Bedolla, C.,
Reassessment of the four-point approach to the electron-transfer Marcus–Hush theory.
ACS Omega 2018, 3 (2), 2130-2140.
39. Pearson, R. G., Absolute electronegativity and absolute hardness of Lewis acids
and bases. J. Am. Chem. Soc. 1985, 107 (24), 6801-6806.
40. Bredas, J.-L., Mind the gap! Mater. Horiz. 2014, 1 (1), 17-19.
41. Chattaraj, P. K.; Sarkar, U.; Roy, D. R., Electrophilicity Index. Chem. Rev. 2006,
106 (6), 2065-2091.
42. Kokalj, A., On the HSAB based estimate of charge transfer between adsorbates
and metal surfaces. Chemical Physics 2012, 393 (1), 1-12.
43. Hsu, C.-P., The Electronic Couplings in Electron Transfer and Excitation Energy
Transfer. Accounts of Chemical Research 2009, 42 (4), 509-518.
44. Koopmans, T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu
den Einzelnen Elektronen Eines Atoms. Physica 1934, 1 (1), 104-113.
45. Lundberg, S. M.; Lee, S.-I., A unified approach to interpreting model predictions.
Advances in neural information processing systems 2017, 30.
46. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu,
T.-Y., Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems 2017, 30.
47. Awad, M.; Khanna, R.; Awad, M.; Khanna, R., Support vector regression.
Efficient learning machines: Theories, concepts, and applications for engineers and
system designers 2015, 67-80.
48. Dongare, A.; Kharde, R.; Kachare, A. D., Introduction to artificial neural
network. International Journal of Engineering and Innovative Technology (IJEIT) 2012,
2 (1), 189-194.
49. Albawi, S.; Mohammed, T. A.; Al-Zawi, S. In Understanding of a convolutional
106
neural network, 2017 international conference on engineering and technology (ICET),
Ieee: 2017; pp 1-6.
50. Baumann, A.; Curiac, C.; Delcamp, J. H., The Hagfeldt Donor and Use of Next‐
Generation Bulky Donor Designs in Dye‐Sensitized Solar Cells. ChemSusChem 2020,
13 (10), 2503-2512.
51. Han, M.-L.; Zhu, Y.-Z.; Liu, S.; Liu, Q.-L.; Ye, D.; Wang, B.; Zheng, J.-
Y., The improved photovoltaic performance of phenothiazine-dithienopyrrole based
dyes with auxiliary acceptors. Journal of Power Sources 2018, 387, 117-125.
52. Lin, C.-Y.; Lo, C.-F.; Luo, L.; Lu, H.-P.; Hung, C.-S.; Diau, E. W.-G.,
Design and Characterization of Novel Porphyrins with Oligo(phenylethylnyl) Links of
Varied Length for Dye-Sensitized Solar Cells: Synthesis and Optical, Electrochemical,
and Photovoltaic Investigation. The Journal of Physical Chemistry C 2009, 113 (2),
755-764.
53. Duvva, N.; Prasanthkumar, S.; Giribabu, L., Influence of strong electron
donating nature of phenothiazine on A3B-type porphyrin based dye sensitized solar
cells. Solar Energy 2019, 184, 620-627.
54. Li, S.; Zhang, Y.; Mei, S.; Kong, X.; Yang, M.; Hu, Z.; Wu, W.; He,
J.; Tan, H., A molecular engineering strategy of phenylamine-based zinc-porphyrin
dyes for dye-sensitized solar cells: synthesis, characteristics, and structure–
performance relationships. ACS Applied Energy Materials 2021, 4 (9), 9267-9275.
55. Wu, C.-H.; Pan, T.-Y.; Hong, S.-H.; Wang, C.-L.; Kuo, H.-H.; Chu, Y.-
Y.; Diau, E. W.-G.; Lin, C.-Y., A fluorene-modified porphyrin for efficient dyesensitized
solar cells. Chemical Communications 2012, 48 (36), 4329-4331.
56. Lu, H.-P.; Mai, C.-L.; Tsia, C.-Y.; Hsu, S.-J.; Hsieh, C.-P.; Chiu, C.-L.;
Yeh, C.-Y.; Diau, E. W.-G., Design and characterization of highly efficient porphyrin
sensitizers for green see-through dye-sensitized solar cells. Physical Chemistry
Chemical Physics 2009, 11 (44), 10270-10274.
57. Cabau, L.; Kumar, C. V.; Moncho, A.; Clifford, J. N.; López, N.;
Palomares, E., A single atom change “switches-on” the solar-to-energy conversion
efficiency of Zn-porphyrin based dye sensitized solar cells to 10.5%. Energy &
Environmental Science 2015, 8 (4), 1368-1375.
58. Wu, C.-H.; Chen, M.-C.; Su, P.-C.; Kuo, H.-H.; Wang, C.-L.; Lu, C.-Y.;
Tsai, C.-H.; Wu, C.-C.; Lin, C.-Y., Porphyrins for efficient dye-sensitized solar cells
covering the near-IR region. Journal of Materials Chemistry A 2014, 2 (4), 991-999.
59. Lu, J.; Xu, X.; Cao, K.; Cui, J.; Zhang, Y.; Shen, Y.; Shi, X.; Liao, L.;
Cheng, Y.; Wang, M., D–π–A structured porphyrins for efficient dye-sensitized solar
cells. Journal of Materials Chemistry A 2013, 1 (34), 10008-10015.
60. Lu, J.; Li, H.; Liu, S.; Chang, Y.-C.; Wu, H.-P.; Cheng, Y.; Diau, E. W.-
107
G.; Wang, M., Novel porphyrin-preparation, characterization, and applications in solar
energy conversion. Physical Chemistry Chemical Physics 2016, 18 (9), 6885-6892.
61. Chang, Y.-C.; Wang, C.-L.; Pan, T.-Y.; Hong, S.-H.; Lan, C.-M.; Kuo,
H.-H.; Lo, C.-F.; Hsu, H.-Y.; Lin, C.-Y.; Diau, E. W.-G., A strategy to design
highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chemical
Communications 2011, 47 (31), 8910-8912.
62. Tanaka, M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.; Imahori, H.,
Novel unsymmetrically π-elongated porphyrin for dye-sensitized TiO2 cells. Chemical
communications 2007, 2069-2071.
63. Hayashi, S.; Matsubara, Y.; Eu, S.; Hayashi, H.; Umeyama, T.; Matano,
Y.; Imahori, H., Fused five-membered porphyrin for dye-sensitized solar cells.
Chemistry letters 2008, 37 (8), 846-847.
64. Hayashi, S.; Tanaka, M.; Hayashi, H.; Eu, S.; Umeyama, T.; Matano, Y.;
Araki, Y.; Imahori, H., Naphthyl-fused π-elongated porphyrins for dye-sensitized TiO2
cells. The Journal of Physical Chemistry C 2008, 112 (39), 15576-15585.
65. Cariello, M.; Abdalhadi, S. M.; Yadav, P.; Decoppet, J.-D.; Zakeeruddin, S.
M.; Grätzel, M.; Hagfeldt, A.; Cooke, G. J. D. T., An investigation of the roles furan
versus thiophene π-bridges play in donor–π-acceptor porphyrin based DSSCs. Dalton
Transactions 2018, 47 (18), 6549-6556.
66. Eu, S.; Hayashi, S.; Umeyama, T.; Oguro, A.; Kawasaki, M.; Kadota, N.;
Matano, Y.; Imahori, H., Effects of 5-Membered Heteroaromatic Spacers on Structures
of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells. The
Journal of Physical Chemistry C 2007, 111 (8), 3528-3537.
67. Hsieh, C.-P.; Lu, H.-P.; Chiu, C.-L.; Lee, C.-W.; Chuang, S.-H.; Mai, C.-
L.; Yen, W.-N.; Hsu, S.-J.; Diau, E. W.-G.; Yeh, C.-Y., Synthesis and
characterization of porphyrin sensitizers with various electron-donating substituents for
highly efficient dye-sensitized solar cells. Journal of Materials Chemistry 2010, 20 (6),
1127-1134.
68. Song, H.; Li, X.; Ågren, H.; Xie, Y., Branched and linear alkoxy chainswrapped
push-pull porphyrins for developing efficient dye-sensitized solar cells. Dyes
and Pigments 2017, 137, 421-429.
69. Lee, M. J.; Seo, K. D.; Song, H. M.; Kang, M. S.; Eom, Y. K.; Kang, H.
S.; Kim, H. K., Novel D-π-A system based on zinc-porphyrin derivatives for highly
efficient dye-sensitised solar cells. Tetrahedron Letters 2011, 52 (30), 3879-3882.
70. Tang, Y.; Wang, Y.; Li, X.; Ågren, H.; Zhu, W.-H.; Xie, Y., Porphyrins
containing a triphenylamine donor and up to eight alkoxy chains for dye-sensitized
solar cells: a high efficiency of 10.9%. ACS Applied Materials & Interfaces 2015, 7
(50), 27976-27985.
108
71. Jia, H.-L.; Zhang, M.-D.; Ju, Z.-M.; Zheng, H.-G.; Ju, X.-H., Picolinic acid
as an efficient tridentate anchoring group adsorbing at Lewis acid sites and Brønsted
acid sites of the TiO2 surface in dye-sensitized solar cells. Journal of Materials
Chemistry A 2015, 3 (28), 14809-14816.
72. Jia, H.-L.; Zhang, M.-D.; Yan, W.; Ju, X.-H.; Zheng, H.-G., Effects of
structural optimization on the performance of dye-sensitized solar cells: spirobifluorene
as a promising building block to enhance Voc. Journal of Materials Chemistry A 2016,
4 (30), 11782-11788.
73. Xie, Y.; Tang, Y.; Wu, W.; Wang, Y.; Liu, J.; Li, X.; Tian, H.; Zhu, W.-
H., Porphyrin Cosensitization for a Photovoltaic Efficiency of 11.5%: A Record for
Non-Ruthenium Solar Cells Based on Iodine Electrolyte. Journal of the American
Chemical Society 2015, 137 (44), 14055-14058.
74. Lu, Y.; Song, H.; Li, X.; Ågren, H.; Liu, Q.; Zhang, J.; Zhang, X.; Xie,
Y., Multiply wrapped porphyrin dyes with a phenothiazine donor: a high efficiency of
11.7% achieved through a synergetic coadsorption and cosensitization approach. ACS
Appl. Mater. Interfaces 2019, 11 (5), 5046-5054.
75. Liu, Y.; Xiang, N.; Feng, X.; Shen, P.; Zhou, W.; Weng, C.; Zhao, B.;
Tan, S., Thiophene-linked porphyrin derivatives for dye-sensitized solar cells.
Chemical communications 2009, (18), 2499-2501.
76. Wang, Y.; Xu, L.; Wei, X.; Li, X.; Ågren, H.; Wu, W.; Xie, Y., 2-
Diphenylaminothiophene as the donor of porphyrin sensitizers for dye-sensitized solar
cells. New Journal of Chemistry 2014, 38 (7), 3227-3235.
77. Duvva, N.; Gangada, S.; Chitta, R.; Giribabu, L., Bis(4′-tert-butylbiphenyl-4-
yl)aniline (BBA)-substituted A3B zinc porphyrin as light harvesting material for
conversion of light energy to electricity. 2020, 24 (10), 1189-1197.
78. Gangadhar, P. S.; Gonuguntla, S.; Madanaboina, S.; Islavath, N.; Pal, U.;
Giribabu, L., Unravelling the impact of thiophene auxiliary in new porphyrin sensitizers
for high solar energy conversion. Journal of Photochemistry & Photobiology A:
Chemistry 2020, 392, 112408.
79. Yang, G.; Tang, Y.; Li, X.; Ågren, H.; Xie, Y., Efficient solar cells based on
porphyrin dyes with flexible chains attached to the auxiliary benzothiadiazole acceptor:
suppression of dye aggregation and the effect of distortion. ACS Appl. Mater. Interfaces
2017, 9 (42), 36875-36885.
80. Song, H.; Tang, W.; Zhao, S.; Liu, Q.; Xie, Y., Porphyrin sensitizers
containing an auxiliary benzotriazole acceptor for dye-sensitized solar cells: Effects of
steric hindrance and cosensitization. Dyes and Pigments 2018, 155, 323-331.
81. Hart, A. S.; Kc, C. B.; Gobeze, H. B.; Sequeira, L. R.; D’Souza, F.,
Porphyrin-sensitized solar cells: effect of carboxyl anchor group orientation on the cell
109
performance. ACS Appl. Mater. Interfaces 2013, 5 (11), 5314-5323.
82. Wei, T.; Sun, X.; Li, X.; Ågren, H.; Xie, Y., Systematic investigations on the
roles of the electron acceptor and neighboring ethynylene moiety in porphyrins for dyesensitized
solar cells. ACS Applied Materials & Interfaces 2015, 7 (39), 21956-21965.
83. Higashino, T.; Fujimori, Y.; Sugiura, K.; Tsuji, Y.; Ito, S.; Imahori, H.,
Tropolone as a high‐performance robust anchoring group for dye‐sensitized solar cells.
Angewandte Chemie 2015, 127 (31), 9180-9184.
84. Wang, Y.; Chen, B.; Wu, W.; Li, X.; Zhu, W.; Tian, H.; Xie, Y., Efficient
solar cells sensitized by porphyrins with an extended conjugation framework and a
carbazole donor: from molecular design to cosensitization. Angewandte Chemie 2014,
126 (40), 10955-10959.
85. Chang, S.; Wang, H.; Hua, Y.; Li, Q.; Xiao, X.; Wong, W.-K.; Wong,
W. Y.; Zhu, X.; Chen, T., Conformational engineering of co-sensitizers to retard back
charge transfer for high-efficiency dye-sensitized solar cells. Journal of Materials
Chemistry A 2013, 1 (38), 11553-11558.
86. Griffith, M. J.; Sunahara, K.; Wagner, P.; Wagner, K.; Wallace, G. G.;
Officer, D. L.; Furube, A.; Katoh, R.; Mori, S.; Mozer, A. J., Porphyrins for dyesensitised
solar cells: new insights into efficiency-determining electron transfer steps.
Chemical Communications 2012, 48 (35), 4145-4162.
87. He, H.; Gurung, A.; Si, L.; Sykes, A. G., A simple acrylic acid functionalized
zinc porphyrin for cost-effective dye-sensitized solar cells. Chemical Communications
2012, 48 (61), 7619-7621.
88. Gou, F.; Jiang, X.; Fang, R.; Jing, H.; Zhu, Z., Strategy to Improve
Photovoltaic Performance of DSSC Sensitized by Zinc Prophyrin Using Salicylic Acid
as a Tridentate Anchoring Group. ACS Applied Materials & Interfaces 2014, 6 (9),
6697-6703.
89. Koteshwar, D.; Prasanthkumar, S.; Singh, S. P.; Chowdhury, T. H.; Bedja,
I.; Islam, A.; Giribabu, L. J. M. C. F., Effects of methoxy group (s) on D-π-A
porphyrin based DSSCs: efficiency enhanced by co-sensitization. Mater. Chem. Front.
2022, 6 (5), 580-592.
90. Zhou, W.; Zhao, B.; Shen, P.; Jiang, S.; Huang, H.; Deng, L.; Tan, S.,
Multi-alkylthienyl appended porphyrins for efficient dye-sensitized solar cells. Dyes
and Pigments 2011, 91 (3), 404-412.
91. Lee, C. Y.; She, C.; Jeong, N. C.; Hupp, J. T., Porphyrin sensitized solar cells:
TiO2 sensitization with a π-extended porphyrin possessing two anchoring groups.
Chemical communications 2010, 46 (33), 6090-6092.
92. Kang, M. S.; Kang, S. H.; Kim, S. G.; Choi, I. T.; Ryu, J. H.; Ju, M. J.;
Cho, D.; Lee, J. Y.; Kim, H. K., Novel D–π–A structured Zn (ii)-porphyrin dyes
110
containing a bis(3,3-dimethylfluorenyl) amine moiety for dye-sensitised solar cells.
Chemical Communications 2012, 48 (75), 9349-9351.
93. Kang, S. H.; Choi, I. T.; Kang, M. S.; Eom, Y. K.; Ju, M. J.; Hong, J. Y.;
Kang, H. S.; Kim, H. K., Novel D–π–A structured porphyrin dyes with diphenylamine
derived electron-donating substituents for highly efficient dye-sensitized solar cells.
Journal of Materials Chemistry A 2013, 1 (12), 3977-3982.
94. Kang, M. S.; Choi, I. T.; Kim, Y. W.; You, B. S.; Kang, S. H.; Hong, J.
Y.; Ju, M. J.; Kim, H. K., Novel D–π–A structured Zn (ii)–porphyrin dyes with bulky
fluorenyl substituted electron donor moieties for dye-sensitized solar cells. Journal of
Materials Chemistry A 2013, 1 (34), 9848-9852.
95. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;
Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M.,
Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12
percent efficiency. Science 2011, 334 (6056), 629-634.
96. Ripolles-Sanchis, T.; Guo, B.-C.; Wu, H.-P.; Pan, T.-Y.; Lee, H.-W.;
Raga, S. R.; Fabregat-Santiago, F.; Bisquert, J.; Yeh, C.-Y.; Diau, E. W.-G.,
Design and characterization of alkoxy-wrapped push–pull porphyrins for dyesensitized
solar cells. Chemical Communications 2012, 48 (36), 4368-4370.
97. Masi Reddy, N.; Pan, T.-Y.; Christu Rajan, Y.; Guo, B.-C.; Lan, C.-M.;
Wei-Guang Diau, E.; Yeh, C.-Y., Porphyrin sensitizers with π-extended pull units for
dye-sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (21), 8409-
8415.
98. Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.;
Yeh, C. Y.; Grätzel, M., Molecular engineering of push–pull porphyrin dyes for highly
efficient dye‐sensitized solar cells: The role of benzene spacers. Angewandte Chemie
2014, 126 (11), 3017-3021.
99. Wu, S.-L.; Lu, H.-P.; Yu, H.-T.; Chuang, S.-H.; Chiu, C.-L.; Lee, C.-W.;
Diau, E. W.-G.; Yeh, C.-Y., Design and characterization of porphyrin sensitizers with a
push-pull framework for highly efficient dye-sensitized solar cells. Energy &
Environmental Science 2010, 3 (7), 949-955. |