博碩士論文 110324051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.222.91.173
姓名 郭思妤(Ssu-Yu Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 運用芳香化合物與鋰金屬之化學預鋰化方法對鋰離子電池負極影響
(The impact of chemical pre-lithiation on the anode of lithium-ion batteries using aromatic compounds and lithium metal)
相關論文
★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池★ 無機填料於聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯複合型固 態電解質於鋰電池之應用
★ 以雙深共熔溶劑系統對廢棄鋰離子電池進行選擇性回收及優化之研究★ Li7La3Zr2O12與聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯 複合型電解質應用於類固態鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-14以後開放)
摘要(中) SiOx具有高容量來儲存鋰,擁有豐富的天然資源並且具有安全性,可作為高能量密度鋰離子電池之負極。然而,鋰離子電池在初次充放電過程中,會消耗活性鋰離子在負極形成一層固態電解質介面(Solid Electrolyte Interface,SEI),導致初始庫倫效率(ICE)降低。因此,此研究的目標是在第一次充放電循環中補償不可逆的鋰離子損失,提高初始庫倫效率(ICE)和充放電容量。我們設計了一種化學浸泡方法來進行預鋰化負極。我們使用不同的芳香族化合物,例如萘(NP)、1-甲基萘(MeNP)、2-苯基酚(BPOH)、2-萘酚(NPOH),與鋰金屬在2-甲基四氫呋喃(Me-THF)或四氫呋喃(THF)溶劑中形成預鋰化溶液。
為了實現更高的初始庫倫效率,我們選擇了1-甲基萘(MeNP)化合物,通過使用推電子官能基,即萘上的甲基,增加電子密度來降低氧化還原電位以增強預鋰化效果。使用MeNP/Me-THF預鋰化溶液,我們發現浸泡20分鐘後,ICE增加至147.2%,開路電壓(OCV)降低至0.29 V。儘管它表現出快速預鋰化的效果,但可逆容量有所減少。因此,我們添加了具有相對較低氧化還原電位和高電子親和力含有O官能基的芳香族化合物,以增加對Li+的吸引力,並在自由基電子和Li+進入SiOx電極時減緩Si-O鍵的破壞。我們比較了添加2-苯基酚(BPOH)或2-萘酚(NPOH)化合物的效果,發現較高的LUMO(最低未占據分子軌道)的化合物效果最好。使用1-甲基萘加10%的2-苯基酚反應20分鐘後,ICE增加至136.5%,可逆容量在不同的充放電速率下都增加。浸泡在含有1-甲基萘加10%的2-苯基酚溶液中的負極,在高速充放電速率為5000 mA/g時,表現出86 mAh/g的可逆容量。
摘要(英) In this study, we targeted silicon oxide(SiOx)materials as anodes for lithium-ion batteries. SiOx has a high specific capacity to store lithium, abundant natural resources and safety. However, the low initial coulombic efficiency and large volume expansion during cycling lead to the loss of active lithium and a decrease in the coulombic efficiency(CE)of silicon-based materials. Therefore, our goal is to compensate for the irreversible loss of lithium ions during the first charge-discharge cycle. To increase the initial coulombic efficiency(ICE)and charge-discharge capacities, we designed a chemical immersion method for pre-lithiation anodes. We used different aromatic compounds, such as naphthalene(NP), 1-methylnaphthalene(MeNP), 2-Phenylphenol(BPOH), 2-Naphthol(NPOH), with lithium metal in 2-Methyltetrahydrofuran(Me-THF)or tetrahydrofuran(THF)solvent to form pre-lithiation solutions.
In order to achieve higher initial coulombic efficiency, we chose the 1-methyl naphthalene(MeNP)compound to enhance the pre-lithiation effect by using the electron-donating functional group, the methyl on naphthalene, to decrease the redox potential. With the MeNP/Me-THF pre-lithiation solution, we found that after immersing for 20 minutes, the ICE increased to 147.2%, and the open circuit voltage(OCV)decreased to 0.29 V. Although it exhibited fast pre-lithiation, the reversible capacity was reduced. Therefore, we added aromatic compounds containing functional groups with relatively low redox potential and high electron affinity containing O groups, to increase the attraction to Li+ and slow down the breaking of Si-O bonds when anions and Li+ entered the SiOx electrode. We compared the effects of adding 2-phenylphenol(BPOH)or 2-naphthol(NPOH)compounds and found that the higher LUMO molecule had the best effect. Using 1-methyl naphthalene with 10% of 2-phenylphenol reacted for 20 minutes, the ICE increased to 136.5%, and the reversible capacity increased at various charge-discharge rates. The anode, immersed in a solution containing 1-methyl naphthalene and 10% 2-phenylphenol, exhibits a reversible capacity of 86 mAh/g at a high-speed charge-discharge rate of 5000 mA/g.
關鍵字(中) ★ 預鋰化
★ 氧化矽
★ 芳香族化合物
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xv
第1章 緒論 1
1-1 前言 1
1-2 研究動機 3
第2章 文獻回顧 6
2-1 鋰離子電池 6
2-2 矽相關材料負極 8
2-3 活性鋰損失(ALL)和初始庫倫效率(ICE) 10
2-4 合金和轉化型負極 12
2-5 預鋰化概論 14
2-5-1 負極直接接觸預鋰化 15
2-5-2 負極電化學預鋰化 16
2-5-3 負極添加劑預鋰化 17
2-5-4 正極添加劑預鋰化 20
2-6 負極化學浸泡預鋰化方法 21
第3章 實驗方法 25
3-1 實驗藥品 25
3-2 實驗設備 26
3-3 實驗步驟 27
3-3-1 負極 SiOx電極製備 27
3-3-2 預鋰化溶液製備 27
3-3-3 預鋰化電極製備 28
3-3-4 電解液製備 29
3-3-5 鈕扣電池組裝 29
3-4 材料與電化學性質分析與鑑定 30
3-4-1 循環伏安法 (CV) 30
3-4-2 交流阻抗(Electrochemical impedance spectroscopy) 30
3-4-3 充放電特性 30
3-4-4 X射線光電子能譜學(X-ray photoelectron spectroscopy,簡稱XPS) 31
第4章 結果與討論 32
預鋰化氧化矽負極 33
4-1 不同芳香族化合物預鋰化氧化矽負極的影響 33
4-1-1 不同芳香族化合物的預鋰化溶液 33
4-1-2 預鋰化時間對氧化矽負極的影響 41
4-2 添加劑與溶劑對預鋰化溶液的影響 44
4-2-1 添加劑的影響 44
4-2-2 溶劑對添加劑預鋰化溶液的影響 53
4-3 不同添加劑的預鋰化溶液來穩定矽氧鍵的影響 62
第5章 結論 73
第6章 附錄 76
Reference 81
參考文獻 1. Tarascon, J. M.; Armand, M., Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414 (6861), 359-67.
2. Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Lett. 2009, 9 (11), 3844-3847.
3. Doh, C.-H.; Park, C.-W.; Shin, H.-M.; Kim, D.-H.; Chung, Y.-D.; Moon, S.-I.; Jin, B.-S.; Kim, H.-S.; Veluchamy, A., A New SiO/C Anode Composition for Lithium-Ion Battery. J. Power Sources 2008, 179 (1), 367-370.
4. Sun, Q.; Zhang, B.; Fu, Z.-W., Lithium Electrochemistry of SiO2 Thin Film Electrode for Lithium-Ion Batteries. Appl. Surf. Sci. 2008, 254 (13), 3774-3779.
5. Howe, J. Y.; Burton, D. J.; Qi, Y.; Meyer III, H. M.; Nazri, M.; Nazri, G. A.; Palmer, A. C.; Lake, P. D., Improving Microstructure of Silicon/Carbon Nanofiber Composites as a Li Battery Anode. J. Power Sources 2013, 221, 455-461.
6. Lee, B.-S.; Son, S.-B.; Park, K.-M.; Seo, J.-H.; Lee, S.-H.; Choi, I.-S.; Oh, K.-H.; Yu, W.-R., Fabrication of Si core/C Shell Nanofibers and Their Electrochemical Performances as a Lithium-ion Battery Anode. J. Power Sources 2012, 206, 267-273.
7. Jia, T.; Zhong, G.; Lv, Y.; Li, N.; Liu, Y.; Yu, X.; Zou, J.; Chen, Z.; Peng, L.; Kang, F.; Cao, Y., Prelithiation Strategies for Silicon-based Anode in High Energy Density Lithium-Ion Battery. Green Energy Environ. 2022.
8. Lu, P.; Li, C.; Schneider, E. W.; Harris, S. J., Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films During Formation in Lithium Ion Batteries. J. Phys. Chem. 2014, 118 (2), 896-903.
9. Spotnitz, R., Simulation of Capacity Fade in Lithium-ion Batteries. J. Power Sources 2003, 113 (1), 72-80.
10. Holtstiege, F.; Wilken, A.; Winter, M.; Placke, T., Running Out of Lithium? A Route to Differentiate Between Capacity Losses and Active Lithium Losses in Lithium-ion Batteries. Phys. Chem. Chem. Phys. 2017, 19 (38), 25905-25918.
11. Huang, Z.; Deng, Z.; Zhong, Y.; Xu, M.; Li, S.; Liu, X.; Zhou, Y.; Huang, K.; Shen, Y.; Huang, Y., Progress and Challenges of Prelithiation Technology for Lithium‐ion Battery. Carbon Energy 2022, 4 (6), 1107-1132.
12. Goodenough, J. B., Cathode Materials: A Personal Perspective. J. Power Sources 2007, 174 (2), 996-1000.
13. Manthiram, A.; Goodenough, J. B., Layered Lithium Cobalt Oxide Cathodes. Nat. Energy 2021, 6 (3), 323-323.
14. Dou, F.; Shi, L.; Chen, G.; Zhang, D., Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Electrochem. Energy Rev. 2019, 2, 149-198.
15. Goodenough, J. B.; Park, K.-S., The Li-ion Rechargeable Battery: a Perspective. JACS 2013, 135 (4), 1167-1176.
16. Geng, H.; Peng, Y.; Qu, L.; Zhang, H.; Wu, M., Structure Design and Composition Engineering of Carbon‐based Nanomaterials for Lithium Energy Storage. Adv. Energy Mater. 2020, 10 (10), 1903030.
17. Zhang, Y. F.; Zhang, N.; Hingorani, H.; Ding, N.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G.; Ge, Q., Fast‐response, Stiffness‐tunable Soft Actuator by Hybrid Multimaterial 3D Printing. Adv. Funct. Mater. 2019, 29 (15), 1806698.
18. Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J., Integration of Graphite and Silicon Anodes for the Commercialization of High‐Energy Lithium‐ion batteries. Angew. Chem. Int. Ed. 2020, 59 (1), 110-135.
19. Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V., In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon. Nat. Nanotechnol. 2012, 7 (11), 749-756.
20. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-dependent Fracture of Silicon Nanoparticles During Lithiation. ACS nano 2012, 6 (2), 1522-1531.
21. Zhu, G.; Zhang, F.; Li, X.; Luo, W.; Li, L.; Zhang, H.; Wang, L.; Wang, Y.; Jiang, W.; Liu, H. K., Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angew. Chem. Int. Ed. 2019, 58 (20), 6669-6673.
22. Cao, C.; Abate, I. I.; Sivonxay, E.; Shyam, B.; Jia, C.; Moritz, B.; Devereaux, T. P.; Persson, K. A.; Steinrück, H.-G.; Toney, M. F., Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-ion Batteries. Joule 2019, 3 (3), 762-781.
23. Sun, Y.; Liu, N.; Cui, Y., Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries. Nat. Energy 2016, 1 (7), 1-12.
24. Jiao, M.; Wang, Y.; Ye, C.; Wang, C.; Zhang, W.; Liang, C., High-Capacity SiOx (0≤ x≤ 2) as Promising Anode Materials for Next-generation Lithium-ion Batteries. J. Alloys Compd. 2020, 842, 155774.
25. Cao, Y.; Dunlap, R.; Obrovac, M., Electrochemistry and Thermal Behavior of SiOx Made by Reactive Gas Milling. J. Electrochem. Soc. 2020, 167 (11), 110501.
26. Chen, T.; Wu, J.; Zhang, Q.; Su, X., Recent Advancement of SiOx Based Anodes for Lithium-ion Batteries. J. Power Sources 2017, 363, 126-144.
27. Zhang, L.; Deng, J.; Liu, L.; Si, W.; Oswald, S.; Xi, L.; Kundu, M.; Ma, G.; Gemming, T.; Baunack, S., Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries. Adv. Mater. 2014, 26 (26), 4527-4532.
28. Li, Y.; Qian, Y.; Zhou, J.; Lin, N.; Qian, Y., Molten-LiCl Induced Thermochemical Prelithiation of SiO x: Regulating The Active Si/O Ratio for High Initial Coulombic Efficiency. Nano Res. 2022, 15 (1), 230-237.
29. Zhang, X.; Qu, H.; Ji, W.; Zheng, D.; Ding, T.; Abegglen, C.; Qiu, D.; Qu, D., Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12 (10), 11589-11599.
30. Holtstiege, F.; Bärmann, P.; Nölle, R.; Winter, M.; Placke, T., Pre-lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries 2018, 4 (1), 4.
31. Weber, R.; Genovese, M.; Louli, A.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J., Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-free Lithium Pouch Cells Enabled by a Dual-salt Liquid Electrolyte. Nat. Energy 2019, 4 (8), 683-689.
32. Obrovac, M.; Chevrier, V., Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114 (23), 11444-11502.
33. An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood III, D. L., The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (SEI) and its Relationship to Formation Cycling. Carbon 2016, 105, 52-76.
34. Kitada, K.; Pecher, O.; Magusin, P. C.; Groh, M. F.; Weatherup, R. S.; Grey, C. P., Unraveling the Reaction Mechanisms of SiO Anodes for Li-ion Batteries by Combining in Situ 7Li and ex Situ 7Li/29Si Solid-state NMR Spectroscopy. JACS 2019, 141 (17), 7014-7027.
35. Liu, Y.; Hanai, K.; Horikawa, K.; Imanishi, N.; Hirano, A.; Takeda, Y., Electrochemical Characterization of a Novel Si–graphite–Li2. 6Co0. 4N Composite as Anode Material for Lithium Secondary Batteries. Mater. Chem. Phys. 2005, 89 (1), 80-84.
36. Li, C.; Tu, S.; Ai, X.; Gui, S.; Chen, Z.; Wang, W.; Liu, X.; Tan, Y.; Yang, H.; Sun, Y., Stress‐Regulation Design of Lithium Alloy Electrode Toward Stable Battery Cycling. Energy Environ. Mater. 2023, 6 (1), e12267.
37. Ogata, K.; Salager, E.; Kerr, C.; Fraser, A.; Ducati, C.; Morris, A. J.; Hofmann, S.; Grey, C. P., Revealing Lithium–Silicide Phase Transformations in Nano-structured Silicon-Based Lithium Ion Batteries via in Situ NMR Spectroscopy. Nat. Commun. 2014, 5 (1), 3217.
38. Tan, T.; Lee, P.-K.; Denis, Y., Probing the Reversibility of Silicon Monoxide Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2018, 166 (3), A5210.
39. Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y.; Fujita, T.; Chen, M., Atomic-Scale Disproportionation in Amorphous Silicon Monoxide. Nat. Commun. 2016, 7 (1), 11591.
40. Prado, A. Y.; Rodrigues, M.-T. F.; Trask, S. E.; Shaw, L.; Abraham, D. P., Electrochemical Dilatometry of Si-Bearing Electrodes: Dimensional Changes and Experiment Design. J. Electrochem. Soc. 2020, 167 (16), 160551.
41. Nagao, Y.; Sakaguchi, H.; Honda, H.; Fukunaga, T.; Esaka, T., Structural Analysis of Pure and Electrochemically Lithiated SiO Using Neutron Elastic Scattering. J. Electrochem. Soc. 2004, 151 (10), A1572.
42. Miyachi, M.; Yamamoto, H.; Kawai, H.; Ohta, T.; Shirakata, M., Analysis of SiO Anodes for Lithium-ion Batteries. J. Electrochem. Soc. 2005, 152 (10), A2089.
43. Kim, J.-H.; Park, C.-M.; Kim, H.; Kim, Y.-J.; Sohn, H.-J., Electrochemical Behavior of SiO Anode for Li Secondary Batteries. J. Electroanal. Chem. 2011, 661 (1), 245-249.
44. Reynier, Y.; Vincens, C.; Leys, C.; Amestoy, B.; Mayousse, E.; Chavillon, B.; Blanc, L.; Gutel, E.; Porcher, W.; Hirose, T., Practical Implementation of Li Doped SiO in High Energy Density 21700 Cell. J. Power Sources 2020, 450, 227699.
45. Zhang, Y.; Wu, B.; Mu, G.; Ma, C.; Mu, D.; Wu, F., Recent Progress and Perspectives on Silicon Anode: Synthesis and Prelithiation for LIBs Energy Storage. J. Energy Chem. 2022, 64, 615-650.
46. Chung, D. J.; Youn, D.; Kim, S.; Ma, D.; Lee, J.; Jeong, W. J.; Park, E.; Kim, J.-S.; Moon, C.; Lee, J. Y., Dehydrogenation-driven Li Metal-Free Prelithiation for High Initial Efficiency SiO-based Lithium Storage Materials. Nano Energy 2021, 89, 106378.
47. He, W.; Xu, H.; Chen, Z.; Long, J.; Zhang, J.; Jiang, J.; Dou, H.; Zhang, X., Regulating the Solvation Structure of Li+ Enables Chemical Prelithiation of Silicon-Based Anodes Toward High-Energy Lithium-Ion Batteries. Nano Micro Lett. 2023, 15 (1), 107.
48. Jin, L.; Shen, C.; Wu, Q.; Shellikeri, A.; Zheng, J.; Zhang, C.; Zheng, J. P., Pre‐lithiation Strategies for Next‐Generation Practical Lithium‐Ion Batteries. Adv. Sci. 2021, 8 (12), 2005031.
49. Guo, Y.; Li, X.; Wang, Z.; Guo, H.; Wang, J., Bifunctional Li6CoO4 Serving as Prelithiation Reagent and Pseudocapacitive Electrode for Lithium Ion Capacitors. J. Energy Chem. 2020, 47, 38-45.
50. Aravindan, V.; Lee, Y. S.; Madhavi, S., Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li‐Ion Batteries. Adv. Energy Mater. 2017, 7 (17), 1602607.
51. Jia, T.; Zhong, G.; Lv, Y.; Li, N.; Liu, Y.; Yu, X.; Zou, J.; Chen, Z.; Peng, L.; Kang, F., Prelithiation Strategies for Silicon-Based Anode in High Energy Density Lithium-Ion Battery. Green Energy Environ. 2022.
52. Meng, Q.; Li, G.; Yue, J.; Xu, Q.; Yin, Y.-X.; Guo, Y.-G., High-Performance Lithiated SiO x Anode Obtained by a Controllable and Efficient Prelithiation Strategy. ACS Appl. Mater. Interfaces 2019, 11 (35), 32062-32068.
53. Zhou, H.; Wang, X.; Chen, D., Li‐Metal‐Free Prelithiation of Si‐Based Negative Electrodes for Full Li‐Ion Batteries. ChemSusChem 2015, 8 (16), 2737-2744.
54. Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W., Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. Nano Lett. 2016, 16 (1), 282-288.
55. Zhao, J.; Lu, Z.; Wang, H.; Liu, W.; Lee, H.-W.; Yan, K.; Zhuo, D.; Lin, D.; Liu, N.; Cui, Y., Artificial Solid Electrolyte Interphase-Protected Li x Si Nanoparticles: an Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries. JACS 2015, 137 (26), 8372-8375.
56. Zhao, J.; Lee, H.-W.; Sun, J.; Yan, K.; Liu, Y.; Liu, W.; Lu, Z.; Lin, D.; Zhou, G.; Cui, Y., Metallurgically Lithiated SiOx Anode with High Capacity and Ambient Air Compatibility. PNAS 2016, 113 (27), 7408-7413.
57. Zhao, J.; Sun, J.; Pei, A.; Zhou, G.; Yan, K.; Liu, Y.; Lin, D.; Cui, Y., A General Prelithiation Approach for Group IV Elements and Corresponding Oxides. Energy Storage Mater. 2018, 10, 275-281.
58. Park, K.; Yu, B. C.; Goodenough, J. B., Li3N as a Cathode Additive for High‐Energy‐Density Lithium‐Ion Batteries. Adv. Energy Mater. 2016, 6 (10), 1502534.
59. Sun, Y.; Li, Y.; Sun, J.; Li, Y.; Pei, A.; Cui, Y., Stabilized Li3N for Efficient Battery Cathode Prelithiation. Energy Storage Mater. 2017, 6, 119-124.
60. Park, H.; Yoon, T.; Kim, Y.-U.; Ryu, J. H.; Oh, S. M., Li2NiO2 as a Sacrificing Positive Additive for Lithium-Ion Batteries. Electrochim. Acta 2013, 108, 591-595.
61. Zhang, L.; Dose, W. M.; Vu, A. D.; Johnson, C. S.; Lu, W., Mitigating the Initial Capacity Loss and Improving the Cycling Stability of Silicon Monoxide Using Li5FeO4. J. Power Sources 2018, 400, 549-555.
62. Scott, M.; Whitehead, A.; Owen, J., Chemical Formation of a Solid Electrolyte Interface on the Carbon Electrode of a Li‐Ion Cell. J. Electrochem. Soc. 1998, 145 (5), 1506.
63. Shen, Y.; Zhang, J.; Pu, Y.; Wang, H.; Wang, B.; Qian, J.; Cao, Y.; Zhong, F.; Ai, X.; Yang, H., Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Lett. 2019, 4 (7), 1717-1724.
64. Shen, Y.; Qian, J.; Yang, H.; Zhong, F.; Ai, X., Chemically Prelithiated Hard‐Carbon Anode for High Power and High Capacity Li‐Ion Batteries. Small 2020, 16 (7), 1907602.
65. Wang, G.; Li, F.; Liu, D.; Zheng, D.; Luo, Y.; Qu, D.; Ding, T.; Qu, D., Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11 (9), 8699-8703.
66. Jang, J.; Kang, I.; Choi, J.; Jeong, H.; Yi, K. W.; Hong, J.; Lee, M., Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of High‐Capacity Lithium‐Ion Battery Anodes. Angew. Chem. Int. Ed. 2020, 59 (34), 14473-14480.
67. Chen, S.; Wang, Z.; Wang, L.; Song, Z.; Yang, K.; Zhao, W.; Liu, L.; Fang, J.; Qian, G.; Pan, F., Constructing a Robust Solid–Electrolyte Interphase Layer via Chemical Prelithiation for High‐Performance SiOx Anode. Adv. Energy Sustainability Res. 2022, 3 (10), 2200083.
68. Li, Y.; Qian, Y.; Zhao, Y.; Lin, N.; Qian, Y., Revealing the Interface-Rectifying Functions of a Li-Cyanonaphthalene Prelithiation System for SiO Electrode. Sci. Bull. 2022, 67 (6), 636-645.
69. Zhang, S. S.; Xu, K.; Jow, T., EIS Study on the Formation of Solid Electrolyte Interface in Li-Ion Battery. Electrochim. Acta 2006, 51 (8-9), 1636-1640.
70. Shen, C.; Fu, R.; Xia, Y.; Liu, Z., New Perspective to Understand the Effect of Electrochemical Prelithiation Behaviors on Silicon Monoxide. RSC Adv. 2018, 8 (26), 14473-14478.
指導教授 李岱洲 張仍奎(Tai-Chou Lee Jeng-Kuei Chang) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明