博碩士論文 110324093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.116.19.29
姓名 潘俊良(Jun-Liang Pan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 二維凡德瓦材料和異質結構中熱傳輸的計算研究
(Computational Study of Thermal Transports in 2D van der Waals Materials and Heterostructures)
相關論文
★ 使用機器學習決定不鏽鋼耐腐蝕性的關鍵因素★ 多孔材料的BET表面積測定:限制和改進
★ 利用密度泛函理論探討鐵合金中間隙元素的影響★ 利用密度泛函理論開發高效率矽鍺錫熱電合金
★ 使用分子動力學模擬探討甲烷/二氧化碳/氮氣混合水合物的成核與生長★ 研究多孔材料的孔徑分布:BJH方法的探討與機 器學習方法的應用潛力
★ 利用密度泛函理論計算探討元素摻雜對g-C3N4光催化效率的提升
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-30以後開放)
摘要(中) 隨著對乾淨能源需求的不斷增加,找到有前途的能源替代方案成為現今社會需要解決的一大議題。熱電材料近年來成為生產綠色能源有前途的方法之一,因其能夠在熱能和電能之間直接進行能量轉換,無需額外的成本且不會產生任何有毒元素,其中,二維凡德瓦材料因其優異的電子性能和在熱電應用中的潛力而受到廣泛關注。然而在眾多類型的二維材料中,14族石墨烯類似物由於其層中原子的sp2混成而成為非常特殊的二維材料,因為它們的材料性質可以通過官能化進行顯著改變。此外,通過將兩種不同的二維凡德瓦材料堆疊在一起形成二維或三維的凡德瓦異質結構,將可以獲得非常不同的材料性質,這是無法通過單一二維或三維凡德瓦材料所實現。結合官能化,預期可以生成無窮多種可能的二維凡德瓦異質結構,為各種應用提供了很多的機會。通過控制二維材料傳遞熱的能力,可以進一步擴展它們在許多領域中的應用,尤其是在熱電應用中。在這項研究中,將使用平衡分子動力學模擬和Green-Kubo方法來研究官能化的14族二維材料及其凡德瓦異質結構的熱傳導係數,並藉由材料的聲子狀態密度來解釋熱傳導係數變化的潛在機制。這項研究有望為設計高效的熱電二維材料提供深入的了解,從而實現它們在各個領域的廣泛應用。
摘要(英) Seeking green energy alternatives becomes an important issue to the society because of the increasing demand in energy sources. Thermoelectric (TE) materials emerge as one of promising means in the production of green energy because of the direct energy conversion between thermal and electrical energy without generating any toxic elements. Recently, 2D van der Waals (vdW) materials have drawn great attention because of their excellent electronic properties and their potential in thermoelectric (TE) applications. Among various types of 2D materials, group 14 graphene analogues serve as very powerful 2D materials because of sp2-hybridization of atoms in layers, thus their materials properties can be significantly altered through functionalization. Furthermore, by stacking two different 2D vdW materials together to form a 2D or 3D vdW heterostructure, one may achieve very different material properties that is not accessible by a single 2D or 3D vdW material. Combing with the functionalization, a very large number of 2D vdW heterostructures can be generated, offering a great opportunity of fabricating new materials for various applications. With the ability of control the thermal transport of 2D materials, one can broarden extend their applications in many fields especially in thermoelectric applications. In this work, equilibrium molecular dynamics simulations with the Green–Kubo method are employed to study the thermal transport of functionalized group 14 2D materials as well as their vdW heterostructures. The phonon density of states of materials is utilized to provide a detailed explanation of the underlying mechanisms behind the alteration in thermal conductivity. This study is expected to offer valuable insights for the design of efficient thermoelectric 2D materials, enabling their broader application in various fields.
關鍵字(中) ★ 熱電材料
★ 二維凡德瓦材料
★ 熱傳導係數
★ 官能化
關鍵字(英) ★ Thermoelectric materials
★ Two-dimensional van der Waals materials
★ Thermal conductivity
★ Functionalization
論文目次 Contents
page
摘要 v
Abstract vi
Contents vii
1 Introduction 1
1.1 Thermoelectric materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Two-dimensional van der Waals materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Graphene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Functionalized graphene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Purpose of this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Methods and Materials 10
2.1 Molecular dynamics (MD) simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 MD simulations for calculating thermal conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Non-equilibrium molecular dynamics (NEMD). . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Equilibrium molecular dynamics (EMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Comparison of the EMD and NEMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Empirical potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Molecular dynamics software package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Large-scale atomic/molecular massively parallel simulator (LAMMPS) . 17
2.5 Phonon density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Studied materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
vii
CONTENTS
3 Results and Discussions 23
3.1 Pristine graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Thermal transport of different functional groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Thermal transport of bilayer structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Thermal transport of heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Conclusions 43
5 Future work 45
Bibliography 46
viii
參考文獻 Bibliography
1. Dincer, I. Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews 4, 157–175 (2000).
2. Sootsman, J. R., Chung, D. Y. & Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angewandte Chemie International Edition 48, 8616–8639 (2009).
3. Mahan, G., Sales, B. & Sharp, J. Thermoelectric materials: new approaches to an old problem. Physics Today 50, 42–47 (1997).
4. Pollock, D. D. Thermoelectricity: theory, thermometry, tool 852 (ASTM International, 1985).
5. Nolas, G. S., Sharp, J. & Goldsmid, J. Thermoelectrics: basic principles and new materials developments (Springer Science & Business Media, 2001).
6. Mishra, S., Satpathy, S. & Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. Journal of Physics: Condensed Matter 9, 461 (1997).
7. Han, G., Chen, Z.-G., Drennan, J. & Zou, J. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 10, 2747–2765 (2014).
8. Bhandari, C. & Rowe, D. Silicon–germanium alloys as high-temperature thermoelectric materials. Contemporary Physics 21, 219–242 (1980).
9. Wang, X. et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Applied Physics Letters 93, 193121 (2008).
10. Joshi, G. et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters 8, 4670–4674 (2008).
11. He, Y. & Galli, G. Perovskites for solar thermoelectric applications: A first principle study of CH3NH3AI3 (A= Pb and Sn). Chemistry of Materials 26, 5394–5400 (2014).
12. Haras, M. & Skotnicki, T. Thermoelectricity for IoT–a review. Nano Energy 54, 461–476 (2018).
13. Jaziri, N. et al. A comprehensive review of thermoelectric generators: technologies and common applications. Energy Reports 6, 264–287 (2020).
14. Yang, L., Chen, Z.-G., Dargusch, M. S. & Zou, J. High performance thermoelectric materials: progress and their applications. Advanced Energy Materials 8, 1701797 (2018).
15. Chen, Z.-G., Han, G., Yang, L., Cheng, L. & Zou, J. Nanostructured thermoelectric materials: current research and future challenge. Progress in Natural Science: Materials International 22, 535–549 (2012).
16. Liu, W., Jie, Q., Kim, H. S. & Ren, Z. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Materialia 87, 357–376 (2015).
17. LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renewable and Sustainable Energy Reviews 32, 313–327 (2014).
18. Yazawa, K. & Shakouri, A. Cost-efficiency trade-off and the design of thermoelectric power generators. Environmental Science & Technology 45, 7548–7553 (2011).
19. Gayner, C. & Kar, K. K. Recent advances in thermoelectric materials. Progress in Materials Science 83, 330–382 (2016).
20. Kim, I.-H. Mg 2 B IV: narrow bandgap thermoelectric semiconductors. Journal of The Korean Physical Society 72, 1095–1109 (2018).
21. Iqbal, S. et al. Tuning the optoelectronic and thermoelectric characteristics of narrow bandgap Rb2AlInX6 (X= Cl, Br, I) double perovskites: A DFT study. Materials Science in Semiconductor Processing 143, 106551 (2022).
22. Kucukgok, B. et al. Investigation of wide bandgap semiconductors for thermoelectric applications. MRS Online Proceedings Library (OPL) 1490, 161–166 (2013).
23. Tang, S. et al. Honeycomb-like puckered PbSe with wide bandgap as promising thermoelectric material: a first-principles prediction. Materials Today Energy 23, 100914 (2022).
24. Goldsmid, H. J. Improving the thermoelectric figure of merit. Science and Technology of Advanced Materials 22, 280–284 (2021).
25. Sun, Y., Liu, Y., Li, R., Li, Y. & Bai, S. Strategies to improve the thermoelectric figure of merit in thermoelectric functional materials. Frontiers in Chemistry 10 (2022).
26. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Materials 7, 105–114 (2008).
27. Chang, C. & Zhao, L.-D. Anharmoncity and low thermal conductivity in thermoelectrics. Materials Today Physics 4, 50–57 (2018).
28. Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Physical Review Letters 96, 045901 (2006).
29. Wan, C. et al. Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Science and Technology of Advanced Materials (2010).
30. Zhao, M. et al. Defect engineering in development of low thermal conductivity materials: a review. Journal of The European Ceramic Society 37, 1–13 (2017).
31. Zou, J., Kotchetkov, D., Balandin, A., Florescu, D. & Pollak, F. H. Thermal conductivity of GaN films: effects of impurities and dislocations. Journal of Applied Physics 92, 2534–2539 (2002).
32. Holland, M. Phonon scattering in semiconductors from thermal conductivity studies. Physical Review 134, A471 (1964).
33. Kim, J. Y. & Grossman, J. C. High-efficiency thermoelectrics with functionalized graphene. Nano Letters 15, 2830–2835 (2015).
34. Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).
35. Ramakrishna Matte, H. et al. MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition 49, 4059–4062 (2010).
36. Tongay, S. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Letters 14, 3185–3190 (2014).
37. Dollfus, P., Nguyen, V. H. & Saint-Martin, J. Thermoelectric effects in graphene nanostructures. Journal of Physics: Condensed Matter 27, 133204 (2015).
38. Sadeghi, H., Sangtarash, S. & Lambert, C. J. Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructures. 2D Materials 4, 015012 (2016).
39. Kim, S., Lee, C., Lim, Y. S. & Shim, J.-H. Investigation for thermoelectric properties of the MoS2 monolayer–graphene heterostructure: density functional theory calculations and electrical transport measurements. ACS Omega 6, 278–283 (2020).
40. Yuan, W. et al. Control of thermal conductance across vertically stacked two-dimensional van der Waals materials via interfacial engineering. ACS Nano 15, 15902–15909 (2021).
41. Solı́s-Fernández, P., Bissett, M. & Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society Reviews 46, 4572–4613 (2017).
42. Balendhran, S., Walia, S., Nili, H., Sriram, S. & Bhaskaran, M. Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640–652 (2015).
43. Sahoo, S. K. & Wei, K.-H. A perspective on recent advances in 2D stanene nanosheets. Advanced Materials Interfaces 6, 1900752 (2019).
44. Bechstedt, F., Gori, P. & Pulci, O. Beyond graphene: Clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene. Progress in Surface Science 96, 100615 (2021).
45. Mortazavi, B. et al. First-principles investigation of mechanical properties of silicene, germanene and stanene. Physica E: Low-dimensional Systems and Nanostructures 87, 228–232 (2017).
46. Hartman, T. & Sofer, Z. Beyond graphene: chemistry of group 14 graphene analogues: silicene, germanene, and stanene. ACS Nano 13, 8566–8576 (2019).
47. Ozcelik, V. O., Kecik, D., Durgun, E. & Ciraci, S. Adsorption of group IV elements on graphene, silicene, germanene, and stanene: dumbbell formation. The Journal of Physical Chemistry C 119, 845–853 (2015).
48. Kuang, Y., Lindsay, L., Shi, S.-Q. & Zheng, G. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale 8, 3760–3767 (2016).
49. John, R. & Merlin, B. Optical properties of graphene, silicene, germanene, and stanene from IR to far UV–A first principles study. Journal of Physics and Chemistry of Solids 110, 307–315 (2017).
50. Mortazavi, B., Dianat, A., Cuniberti, G. & Rabczuk, T. Application of silicene, germanene and stanene for Na or Li ion storage: a theoretical investigation. Electrochimica Acta 213, 865–870 (2016).
51. Zhu, B. et al. Thermoelectric effect and devices on IVA and VA Xenes. InfoMat 3, 271–292 (2021).
52. Kvashnin, A. G., Chernozatonskii, L. A., Yakobson, B. I. & Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Letters 14, 676–681 (2014).
53. Morozov, S. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters 100, 016602 (2008).
54. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).
55. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
56. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 351–355 (2008).
57. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Materials 6, 183–191 (2007).
58. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Physical Review Letters 102, 096807 (2009).
59. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).
60. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials 10, 569–581 (2011).
61. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Letters 8, 902–907 (2008).
62. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).
63. Balog, R. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Materials 9, 315–319 (2010).
64. Singh, A. K. & Yakobson, B. I. Electronics and magnetism of patterned graphene nanoroads. Nano Letters 9, 1540–1543 (2009).
65. Wang, Q. H. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nature Chemistry 4, 724–732 (2012).
66. Sun, Z. et al. Towards hybrid superlattices in graphene. Nature Communications 2, 559 (2011).
67. Liu, B. et al. Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation. ACS Applied Materials & Interfaces 6, 18180–18188 (2014).
68. Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology 8, 119–124 (2013).
69. Wang, J., Ma, F., Liang, W. & Sun, M. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Materials Today Physics 2, 6–34 (2017).
70. Sutter, P., Cortes, R., Lahiri, J. & Sutter, E. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Letters 12, 4869–4874 (2012).
71. Georgakilas, V. et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chemical Reviews 112, 6156–6214 (2012).
72. Yu, W., Sisi, L., Haiyan, Y. & Jie, L. Progress in the functional modification of graphene/graphene oxide: a review. RSC Advances 10, 15328–15345 (2020).
73. Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: a two-dimensional hydrocarbon. Physical Review B 75, 153401 (2007).
74. Ghaderi, N. & Peressi, M. First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide. The Journal of Physical Chemistry C 114, 21625–21630 (2010).
75. Tetsuka, H. et al. Optically tunable amino-functionalized graphene quantum dots. Advanced Materials 24, 5333–5338 (2012).
76. Radovic, L. R., Mora-Vilches, C. V., Salgado-Casanova, A. J. & Buljan, A. Graphene functionalization: Mechanism of carboxyl group formation. Carbon 130, 340–349 (2018).
77. Cao, Y., Feng, J. & Wu, P. Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 48, 1683–1685 (2010).
78. Pei, Q.-X., Sha, Z.-D. & Zhang, Y.-W. A theoretical analysis of the thermal conductivity of hydrogenated graphene. Carbon 49, 4752–4759 (2011).
79. Chien, S.-K., Yang, Y.-T. & Chen, C.-K. Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations. Applied Physics Letters 98 (2011).
80. Rajabpour, A., Vaez Allaei, S. & Kowsary, F. Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study. Applied Physics Letters 99, 051917 (2011).
81. Kim, J.-C., Wi, J.-H., Ri, N.-C. & Ri, S.-I. Thermal conductivity of graphene/graphane/graphene heterostructure nanoribbons: Non-equilibrium molecular dynamics simulations. Solid State Communications 328, 114249 (2021).
82. Kim, J. Y., Lee, J.-H. & Grossman, J. C. Thermal transport in functionalized graphene. ACS Nano 6, 9050–9057 (2012).
83. Zhang, Y., Pei, Q., He, X. & Mai, Y.-W. A molecular dynamics simulation study on thermal conductivity of functionalized bilayer graphene sheet. Chemical Physics Letters 622, 104–108 (2015).
84. Gao, W., Alemany, L. B., Ci, L. & Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nature Chemistry 1, 403–408 (2009).
85. Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry 2, 581–587 (2010).
86. Xiao, N. et al. Enhanced thermopower of graphene films with oxygen plasma treatment. Acs Nano 5, 2749–2755 (2011).
87. Lin, S. & Buehler, M. J. Thermal transport in monolayer graphene oxide: atomistic insights into phonon engineering through surface chemistry. Carbon 77, 351–359 (2014).
88. Mu, X., Wu, X., Zhang, T., Go, D. B. & Luo, T. Thermal transport in graphene oxide–from ballistic extreme to amorphous limit. Scientific Reports 4, 3909 (2014).
89. Zhang, H., Fonseca, A. F. & Cho, K. Tailoring thermal transport property of graphene through oxygen functionalization. The Journal of Physical Chemistry C 118, 1436–1442 (2014).
90. Compton, O. C. & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. small 6, 711–723 (2010).
91. Frenkel, D. & Smit, B. Understanding molecular simulation: from algorithms to applications (Elsevier, 2001).
92. Gonzalez, M. A. Force fields and molecular dynamics simulations. École thématique de la Société Française de la Neutronique 12, 169–200 (2011).
93. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry 31, 671–690 (2010).
94. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. Journal of Computational Chemistry 25, 1157–1174 (2004).
95. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS allatom force field on conformational energetics and properties of organic liquids. Journal of The American Chemical Society 118, 11225 11236 (1996).
96. Schelling, P. K., Phillpot, S. R. & Keblinski, P. Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B 65, 144306 (2002).
97. Khadem, M. H. & Wemhoff, A. P. Comparison of Green–Kubo and NEMD heat flux formulations for thermal conductivity prediction using the Tersoff potential. Computational Materials Science 69, 428–434 (2013).
98. Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of Chemical Physics 106, 6082–6085 (1997).
99. Green, M. S. Markoff random processes and the statistical mechanics of time-dependent phenomena. The Journal of Chemical Physics 20, 1281–1295 (1952).
100. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan 12, 570–586 (1957).
101. Yarifard, M., Davoodi, J. & Rafii-Tabar, H. In-plane thermal conductivity of graphene nanomesh: a molecular dynamics study. Computational Materials Science 111, 247–251 (2016).
102. Chen, J., Zhang, G. & Li, B. How to improve the accuracy of equilibrium molecular dynamics for computation of thermal conductivity? Physics Letters A 374, 2392–2396 (2010).
103. Tersoff, J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letters 61, 2879 (1988).
104. Tersoff, J. Empirical interatomic potential for silicon with improved elastic properties. Physical Review B 38, 9902 (1988).
105. Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B 42, 9458 (1990).
106. Lindsay, L. & Broido, D. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Physical Review B 81, 205441 (2010).
107. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics 112, 6472–6486 (2000).
108. Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter 14, 783 (2002).
109. Allen, M. P. & Tildesley, D. J. Computer simulation of liquids (Oxford university press, 2017).
110. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters 314, 141–151 (1999).
111. Barducci, A., Bonomi, M. & Parrinello, M. Metadynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 1, 826–843 (2011).
112. FrantzDale, B., Plimpton, S. J. & Shephard, M. S. Software components for parallel multiscale simulation: an example with LAMMPS. Engineering with Computers 26, 205–211 (2010).
113. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics 117, 1–19 (1995).
114. Sturhahn, W. et al. Phonon density of states measured by inelastic nuclear resonant scattering. Physical Review Letters 74, 3832 (1995).
115. Nemanich, R. J. & Solin, S. First-and second-order Raman scattering from finite-size crystals of graphite. Physical Review B 20, 392 (1979).
116. Li, Y., Wei, A. & Datta, D. Thermal characteristics of graphene nanoribbons endorsed by surface functionalization. Carbon 113, 274–282 (2017).
117. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics 81, 511–519 (1984).
118. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Physical Review A 31, 1695 (1985).
119. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. & Eklund, P. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Letters 6, 2667–2673 (2006).
120. Torrent-Sucarrat, M., Liu, S. & De Proft, F. Steric effect: partitioning in atomic and functional group contributions. The Journal of Physical Chemistry A 113, 3698–3702 (2009).
121. Cai, W. et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Letters 10, 1645–1651 (2010).
122. Ghosh, D. et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters 92, 151911 (2008).
123. Jiang, J.-W., Wang, J.-S. & Li, B. Topological effect on thermal conductivity in graphene. Journal of Applied Physics 108, 064307 (2010).
124. Maruyama, S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica B: Condensed Matter 323, 193–195 (2002).
125. Wang, Z., Tang, D., Zheng, X., Zhang, W. & Zhu, Y. Length-dependent thermal conductivity of single-wall carbon nanotubes: prediction and measurements. Nanotechnology 18, 475714 (2007).
126. Zhang, G. & Li, B. Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature. The Journal of Chemical Physics 123, 114714 (2005).
127. Varshney, V., Patnaik, S. S., Roy, A. K., Froudakis, G. & Farmer, B. L. Modeling of thermal transport in pillared-graphene architectures. ACS Nano 4, 1153–1161 (2010).
128. Wei, Z., Ni, Z., Bi, K., Chen, M. & Chen, Y. In-plane lattice thermal conductivities of multilayer graphene films. Carbon 49, 2653–2658 (2011).
129. Cao, H.-Y., Guo, Z.-X., Xiang, H. & Gong, X.-G. Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons. Physics Letters A 376, 525–528 (2012).
130. Guo, Z., Zhang, D. & Gong, X.-G. Thermal conductivity of graphene nanoribbons. Applied Physics Letters 95, 163103 (2009).
131. Bagri, A., Kim, S.-P., Ruoff, R. S. & Shenoy, V. B. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Letters 11, 3917–3921 (2011).
132. Ratsifaritana, C. & Klemens, P. Scattering of phonons by vacancies. International Journal of Thermophysics 8, 737–750 (1987).
133. Lindsay, L., Broido, D. & Mingo, N. Flexural phonons and thermal transport in graphene. Physical Review B 82, 115427 (2010).
134. Chen, G. Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons (Oxford university press, 2005).
135. Khan, A. I., Paul, R. & Subrina, S. Thermal transport in graphene/stanene hetero-bilayer nanostructures with vacancies: an equilibrium molecular dynamics study. RSC Advances 7, 44780– 44787 (2017).
136. Kuila, T. et al. Chemical functionalization of graphene and its applications. Progress in Materials Science 57, 1061–1105 (2012).
指導教授 簡思佳 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明