博碩士論文 110328007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:13.58.121.131
姓名 詹凱愉(Kai-Yu Zhan)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 質子交換膜燃料電池電解質與電極配方與製程之研究
(Research on formulation and manufacturing process of electrolyte and electrode of proton exchange membrane fuel cell)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-1以後開放)
摘要(中) 本研究使用脈衝雷射沉積法(Pulsed Laser Deposition, PLD)製備Pt奈米顆粒並應用於燃料電池陰陽極端之觸媒層,結合直通流道板及自製微孔層並滴塗含有二氧化鈰顆粒的Nafion薄膜(Dropcasted Nafion film)將質子交換膜直接滴塗於觸媒層上,在膜內增加質子通道,提升質子與水的傳導能力,並增加膜內保水性、降低自由基所造成的降解,提升膜的耐久性。
本研究先進行燃料電池流道結構的優化,3x3單區及三區的性能比較,並將實驗室學姊在5x5流道減薄的優化結果應用在適合脈衝雷射沉積製程的3x3流道中。減薄發泡材流場具有較寬的進出氣口可改善流體分布均勻性並降低壓降,顯示經過改良之流道,亦可有效提高電池之性能。
過去實驗室皆是使用39BC碳紙進行研究,可以適用於滴塗膜燃料電池製程,但因為目前此型號已停產,須尋找替代產品。而39BB碳紙因為裂縫較大、裂縫表面積占比較高其裂縫寬度較39BC大、裂縫表面積占比也較39BC高,經測試不適用於滴塗膜燃料電池,需自製微孔層。在成功製作出微孔層後,將造孔劑加入MPL漿料中,再利用高溫的方式,在烤乾微孔層的同時,將分布在其中的造孔劑去除,藉此留下多孔隙的結構,增進氣體傳輸效率,使得性能可以提升。
並透過比較二氧化鈰的摻雜量,在相同的操作溫度及溫度下,因二氧化鈰有好的吸水特性,使得膜能更有效的吸收水分。由於水分在膜中的分布改變,水傾向膜的方向集中,不會積聚於觸媒層,減緩觸媒層的水淹現象,可以提高電池的開路電壓及功率密度。
摘要(英) This study employed the Pulsed Laser Deposition (PLD) method to prepare Pt nanoparticles for application in the catalyst layer of fuel cell anode and cathode. By combining a straight-through flow plate with a self-made microporous layer, a Nafion thin film containing cerium dioxide particles was drop-casted on the catalyst layer. This approach increased proton conduction and water transport within the membrane, improved water retention, and reduced degradation caused by free radicals, thereby enhancing the durability of the membrane.
In this study, the optimization of the fuel cell flow channel structure was conducted. The performance of 3x3 single-area and three-area configurations was compared. The optimization results obtained from thinning the 5x5 flow channel in a previous experiment by a senior researcher in the laboratory were applied to the 3x3 flow channel suitable for the pulsed laser deposition process. Thinning the foamed material in the flow field resulted in wider inlet and outlet openings, improving the uniformity of fluid distribution and reducing pressure drop. These modifications demonstrated the effective enhancement of the fuel cell performance.Previous studies in the lab utilized 39BC carbon paper, which was suitable for drop-casting membrane fuel cell fabrication. However, as this model is no longer in production, an alternative product needed to be identified. 39BB carbon paper had larger cracks and higher crack surface area compared to 39BC, rendering it unsuitable for drop-casting membrane fuel cells. Therefore, a self-made microporous layer was developed. After successfully fabricating the microporous layer, a pore-forming agent was added to the MPL slurry. Through a high-temperature process, the pore-forming agent was removed, leaving a porous structure that improved gas transport efficiency and enhanced performance.
Furthermore, the doping level of cerium dioxide was compared. At the same operating temperature and humidity, the good water-absorbing properties of cerium dioxide enabled the membrane to effectively absorb moisture. The change in water distribution within the membrane concentrated water towards the center, preventing flooding of the catalyst layer and improving reaction efficiency, thereby increasing the fuel cell′s current density.
關鍵字(中) ★ 脈衝雷射沉積
★ 滴塗質子交換膜
★ 二氧化鈰
★ 自製微孔層
關鍵字(英)
論文目次 目錄
中文摘要
v
Abstract vi
致謝
viii
目錄
ix
表目錄
xiii
圖目錄
xiv
1-1前言 1
1-2燃料電池介紹 3
1-2-1燃料電池種類 3
1-2-2質子交換膜燃料電池運作原理 6
1-2-3質子交換膜燃料電池組成結構 10
1-3觸媒層製程發展 21
1-3-1製備觸媒層之方式 21
1-3-2燃料電池觸媒層各製程之現況 30
1-3-3PEMFC主要發展之瓶頸 33
1-4本團隊已完成之工作 35
1-5研究動機與方向 36
第二章
文獻回顧 38
2-1質子交換膜燃料電池 38
2-2質子交換膜之研究 39
2-3金屬多孔材之研究與應用 39
2-4組裝受力對電池之影響組裝受力對電池之影響 40
2-5電化學交流阻抗分析電化學交流阻抗分析 41
2-6PEMFC觸媒研究發展觸媒研究發展 43
2-6-1Pt觸媒表面形貌及顆粒大小研究探討觸媒表面形貌及顆粒大小研究探討 43
2-7應用脈衝雷射沉積於燃料電池應用脈衝雷射沉積於燃料電池 44
2-7-1脈衝雷射沉積鉑於氣體擴散層脈衝雷射沉積鉑於氣體擴散層 44
2-8直接滴塗質子交換膜之燃料電池直接滴塗質子交換膜之燃料電池[45] 46
第三章 實驗方法與設備實驗方法與設備 48
3-1實驗流程實驗流程 48
3-2實驗所需之材料實驗所需之材料 50
3-3刮刀塗佈法製備微孔層刮刀塗佈法製備微孔層 51
3-3-1微孔層漿料製備微孔層漿料製備 51
3-3-2微孔層製作微孔層製作 51
3-4脈衝雷射沉積系統脈衝雷射沉積系統(Pulsed Laser Deposition, PLD) 53
3-4-1脈衝雷射系統脈衝雷射系統架設架設 53
3-4-2奈米合金觸媒樣品製備參數奈米合金觸媒樣品製備參數 55
3-5滴塗滴塗CeO2:Nafion薄膜製備方式薄膜製備方式(Drop-cast Nafion film) 56
3-5-1Drop-cast Nafion film之溶液製備之溶液製備 56
3-5-2 2-D CNC printer for drop-casting Nafion film 57
3-6燃料電池之各元件介紹燃料電池之各元件介紹 58
3-6-1端板端板 59
3-6-2金屬流道與雙極板金屬流道與雙極板 60
3-6-3鎳金屬多孔材鎳金屬多孔材 60
3-6-4矽膠氣密墊片矽膠氣密墊片 61
3-6-5商用膜之商用膜之膜電極組製備及組裝膜電極組製備及組裝 62
3-6-6 Drop-casted Nafion film之膜電極組製備及組裝之膜電極組製備及組裝 63
3-7觸媒與觸媒與Drop-casted Nafion film檢測方式檢測方式 64
3-7-1掃描式電子顯微鏡掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 64
3-7-2能量色散能量色散 X射線譜射線譜(Energy-dispersive X-ray spectroscopy, EDS) 66
3-7-3穿透式電子顯微鏡穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 67
3-8離子切割研磨機含冷凍控溫及空氣阻斷系統離子切割研磨機含冷凍控溫及空氣阻斷系統(Ion Milling with Cooling control unit and Air Protection System) 69
3-9燃料電池測試燃料電池測試 70
3-9-1測試系統介紹測試系統介紹 70
3-9-2單電池測試系統之操作程序單電池測試系統之操作程序 72
3-9-3電子阻抗頻譜測試電子阻抗頻譜測試 76
第四章 實驗結果與討論實驗結果與討論 80
4-1不同流道種類對商用膜燃料電池之影響不同流道種類對商用膜燃料電池之影響 80
4-1-1單電池極化曲線測試性能比較單電池極化曲線測試性能比較 80
4-1-2不同流道種類之商用膜燃料電池之不同流道種類之商用膜燃料電池之EIS分析分析 81
4-2不同極板材料種類對商用膜燃料電池之影響不同極板材料種類對商用膜燃料電池之影響 83
4-2-1單電池極化曲線測試性能比較單電池極化曲線測試性能比較 83
4-2-2電化學交流阻抗頻譜分析電化學交流阻抗頻譜分析 85
4-3不同微孔層製程應用在滴塗膜燃料電池之影響不同微孔層製程應用在滴塗膜燃料電池之影響 86
4-3-1微孔層製程表面分布分析微孔層製程表面分布分析 86
4-3-2單電池極化曲線測試性能比較單電池極化曲線測試性能比較 89
4-3-3電化學交流阻抗頻譜分析電化學交流阻抗頻譜分析 90
4-4不同濃度二氧化鈰摻雜量對滴塗膜燃料電池之影響不同濃度二氧化鈰摻雜量對滴塗膜燃料電池之影響 92
4-4-1CeO2奈米顆粒大小奈米顆粒大小TEM影像分析影像分析 92
4-4-2Drop-cast Nafion-CeO2 film 表面分布元素分析表面分布元素分析 93
4-4-3單電池極化曲線測試性能比較單電池極化曲線測試性能比較 94
4-4-4電化學交流阻抗頻譜分析電化學交流阻抗頻譜分析 96
4-4-5 15小時開路電壓測試小時開路電壓測試 98
第五章 結論結論 100
第六章 未來展望未來展望 102
參考文獻 103
參考文獻 [1]https://ember-climate.org/data/data-explorer/
[2]https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1
[3]https://learnenergy.tw/index.php?inter=knowledge&caid=5&id=666
[4]https://www.viewpointtaiwan.com/columnist/%E6%B0%AB%E8%83%BD%EF%BC%8C%E8%A1%8C%E4%B8%8D%E8%A1%8C%EF%BC%9F/
[5]Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[6]https://en.wikipedia.org/wiki/Proton-exchange_membrane
[7]F. Gashoul, M.J. Parnian, S. Rowshanzamir, A new study on improving the physicochemical and electrochemical properties of SPEEK nanocomposite membranes for medium temperature proton exchange membrane fuel cells using different loading of zirconium oxide nanoparticles, Int. J. Hydrog. Energy, Vol. 42, pp. 590-602, 2017.
[8]S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrog. Energy, Vol. 35, pp. 9349-9384, 2010.
[9]https://www.materialsnet.com.tw/DocView.aspx?id=7084
[10]黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[11]H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst sprayed membrane technique”, Journal of Power Sources, vol. 195, pp. 756-761, 2010.
[12]http://www.toray eng.com/lcd/coater/lineup/esc.html
[13]H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process”, Journal of The Electrochemical Society, Vol. 151, pp. 1733-1737, 2004.
[14]“Toray Engineering Co.,Ltd.,”http://www.torayeng.com/lcd/coater/lineup/esc.html
[15]S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside Fuel Cell Electrodes Using High Power Impulse Magnetron Sputtering”, Journal of Physics D: Applied Physics, Vol. 47, pp. 272001, 2014.
[16]M. S. Cogenli, S. Mukerjee, A. B. Yurtcan, “Membrane Electrode Assembly with Ultralow Platinum Loading for Cathode Electrode of PEM Fuel Cell by Using Sputter Deposition”, Fuel Cells, Vol. 15, pp. 288-297, 2015.
[17]A. Khan, B. K. Nath, J. Chutia, “Nanopillar Structured Platinum with Enhanced Catalytic Utilization for Electrochemical Reactions in PEMFC”, Electrochim Acta, Vol. 146, pp. 171-177, 2014.
[18]M. S. Saha, A. F. Gull´, R. J. Allen, S. Mukerjee, “High Performance Polymer Electrolyte Fuel Cells with Ultra-Low Pt Loading Electrodesprepared by Dual Ion-Beam Assisted Deposition”, Electrochim Acta, Vol. 51, pp. 4680-4692, 2006.
[19]〈台灣儀器科技研究中心〉,取自https://www.itrc.narl.org.tw/Bulletin/News/ald.php
[20]T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diusion Layer Using an Atomic Layer Deposition Technique”, Electrochim Acta, Vol. 177, pp. 168-173, 2015.
[21]N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt Loadings Using Pulsed Laser Deposition”, Electrochemical and Solid-State Letters, Vol. 6, pp. 125-128, 2003.
[22]H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol. 6, pp. 180, 2016.
[23]T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, C. J. Tseng, “Production of High-Performance and Improved-Durability Pt-Catalyst/Support for Proton-Exchange-Membrane Fuel Cells with Pulsed Laser Deposition”, Journal of Physics D: Applied Physics, Vol. 49, pp. 255601, 2016.
[24]H. Xu, E. Brosha, F. Garzon, F. Uribe, M. Wilson, B. Pivovar, “The Effect of Electrode Ink Processing and Composition Catalyst Utilization” ECS Trans., Vol. 11, pp. 383–391, 2007.
[25]C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, “Proton Exchange Membrane Fuel Cells with Carbon Nanotube based Electrodes”, Nano Lett., Vol. 4,pp. 345–348, 2004.
[26]N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., Vol. 6, pp. 125-128, 2003.
[27]W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-Low-Loading Pulsed-Laser-Deposited Platinum Catalyst Films for Polymer Electrolyte Membrane Fuel Cells”, J. Power Sources, Vol. 273, pp. 885-893, 2015.
[28]A. Brouzgou, S. Q. Song,P. Tsiakaras, “Low and Non-Platinum Electrocatalysts for PEMFCs: Current Status, Challenges and Prospects”, Applied Catalysis B: Environmental, Vol. 127, pp. 371-388, 2012.
[29]S. M. Haile, “Fuel Cell Material and Components”, Acta Materialia, Vol. 51, pp. 5981-6000, 2003.
[30]A. Brouzgou, S. Q. Song,P. Tsiakaras, “Low and Non-Platinum Electrocatalysts for PEMFCs: Current Status, Challenges and Prospects”, Applied Catalysis B: Environmental, Vol. 127, pp. 371-388, 2012.
[31]http://www.goldgold168.com/palladium.php#.WyjZR1X-jRY
[32]U.S. Department of Energy, “Fuel Cell System Cost”, 2017
[33]Y. F. Zhai, H. Zhang, D.Xing, Z. G. Shao, “The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test”, J. Power Sources, Vol. 164, pp. 126-133, 2007.
[34]J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, “A Review of PEM Fuel Cell Durability:Degradation Mechanisms and Mitigation Strategies”, J. Power Sources, Vol. 184, pp. 104-119, 2008.
[35]林冠任,「利用脈衝雷射沉積技術成長PEMFC鉑奈米顆粒觸媒」,國立中央大學,碩士論文,2015年。
[36]黃亭維,「應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層」,國立中央大學,碩士論文,2016年。
[37]敖昱弘,「應用雷射材料製程技術於製備Pt3Co奈米結構陰極觸媒層以提升質子交換膜燃料電池性能」,國立中央大學,碩士論文,2018年。
[38]郎家君,「以全雷射製程技術製備高質量比功率密度和高耐久性之鉑殼合金觸媒層應用於低溫燃料電池陰極端」,國立中央大學,碩士論文,2020年。
[39]陳晧軒,「以滴塗製程控制Nafion自組織成膜並提升質子傳導與燃料電池功率密度」,國立中央大學,碩士論文,2021年。
[40]O.J. Murphy, A. Cisar, E. Clarke, “Low-cost light weight high power density PEM fuel cell stack”, Elsevier Science, Vol. 43, pp. 3829-3840, 1998.
[41]J.L. Jespersen, E. Schaltzb, S.K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, Journal Power Sources, Vol. 191, pp. 289-296, 2009.
[42]D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell” , Journal of Power Source, Vol. 80, pp. 226-234, 1999.
[43]P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions”, Journal of Power Sources, Vol. 128, pp. 208-217, 2004.
[44]W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells”, Journal of Power Sources, Vol. 180, pp. 1-14, 2008.
[45]Ching-Hsien Lin, Hao-Hsuan Chen, Kai-Yu Zhan, Szu-yuan Chen, Chung-Jen Tseng, “Control of self-organization of drop-casted Nafion film for improving proton conduction in a polymer-electrolyte-membrane fuel cell to raise its output power density”, Available online 25 November 2022
[46]J.J. Hwang, G.J. Hwang, R.H. Yeh, C.H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams”, Journal Heat Transfer, Vol. 124, pp. 120-129, 2002.
[47]M. Medraj, E. Baril, V. Loya, L.P. Lefebvre, “The effect of microstructure on the permeability of metallic foams”, Journal of Material Science, Vol. 42, pp. 4372-4383, 2007.
[48]C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang and S.K. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[49]B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang and S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor”, International Journal of Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[50]M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 295, pp. 275-291, 2015
[51]C. Lim, C.Y. Wang, “Development of high-power electrodes for a liquid-feed direct methanol fuel cell,” J. Power Sources, Vol. 113, pp. 145-150, 2003.
[52]C.Y. Wen, Y.S. Lin, C.H. Lu, “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack,” J. Power Sources, Vol. 192, pp. 475-485, 2009.
[53]S. Asghari, M.H. Shahsamandi, M.R.A. Khorasani, “Design and manufacturing of end plates of a 5 kW PEM fuel cell,” Int. J. Hydrogen Energy, Vol. 35, pp. 9291-9297, 2010.
[54]E. Alizadeh, M.M. Barzegari, M. Momenifar, M. Ghadimi, S.H.M. Saadat, “Investigation of contact pressure distribution over the active area of PEM
fuel cell stack,” Int. J. Hydrogen Energy, Vol. 41, pp. 3062-3071, 2016.
[55]R. Chen, Y. Qin, Q. Du, J Peng, “Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell” , SAE International by University of British Columbia, Monday, 24 September, 2018.
[56]V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, “Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1”, Electrochimica Acta, Vol. 43, pp. 3761-3766, 1998.
[57]M. Eikerling, A.A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 475, pp. 107-123, 1999.
[58]X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance”, Journal of Power Sources, Vol.161, pp. 908-928, 2006.
[59]X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance”, Journal of Power Sources, Vol.161, pp. 929-937, 2006.
[60]X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes”, International Journal of Hydrogen, Vol.32, pp. 4358-4364, 2007.
[61]A. Kuzume, E. Herrero, J. M. Feliu, “Oxygen Reduction on Stepped Platinum Surfaces in Acidic Media”, J. Electroanal. Chem., Vol. 599, pp. 333−343, 2007.
[62]A. M. Gómez-Marín, R. Rizo, J. M. Feliu, “Some Reflections on the Understanding of the Oxygen Reduction Reaction at Pt(111)”, Beilstein J. Nanotechnol., Vol. 4, pp. 956−967, 2013.
[63]A. M. Gómez-Marín, J. M. Feliu, “Oxygen Reduction on Nanostructured Platinum Surfaces in Acidic Media: Promoting Effect of Surface Steps and Ideal Response of Pt(111)”, Catal. Today, Vol. 244, pp. 172−176, 2015.
[64]M. Shao, A. Peles, K. Shoemaker, “Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett”, Vol. 11, pp. 3714−3719, 2011.
[65]N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC anode with very low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., 6, 125-128, (2003).
[66]J. Iglesia, C. C. Lang, Y. M. Chen, S. Y. Chen, C. J. Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer”, Journal of Power Sources, Vol. 436 pp. 226886, 2019
[67]M. Klingele, M. Breitwieser, R. Zengerleab,S. Thieleac, “Direct deposition of proton exchange membranesenabling high performance hydrogen fuel cells”, Journal of Materials Chemistry A ,Vol. 3,pp.11239-11245,2015
[68]Jiwoo Choi, Je Hyeon Yeon,Seung Ho Yook, Sungsoo Shin, Jin Young Kim, Mansoo Choi,and Segeun Jang. “Multifunctional Nafion/CeO2 Dendritic Structures for Enhanced Durability and Performance of Polymer Electrolyte Membrane Fuel Cells”, ACS Appl. Mater. Interfaces 2021, 13, 806−815.
[69]吳佩蓉,「腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究」,國立中央大學,碩士論文,2013年。
[70]林琦茵,「流道深度對金屬多孔材 質子交換膜燃料電池性能之影響」,國立中央大學,碩士論文,2018年。
[71]J. Kim, N. Cunningham, “Development of porous carbon foam polymer electrolyte membrane fuel cell”, J. Power Sources, Vol. 195, pp. 2291-2300, 2010.
[72]Zenyuk IV, Das PK, Weber AZ. Understanding impacts of catalyst-layer thickness on fuel-cell performance via mathematical modeling. J Electrochem Soc 2016;163(7):F691-703.
[73]Shaohua Xiao, Huamin Zhanga,, Cheng Bi, Yu Zhang, Yining Zhang,Hua Dai, Zhensheng Mai, Xianfeng Li, “Degradation location study of proton exchange membrane at open circuit operation”, Journal of Power Sources, Vol. 195, pp. 5305-5311, 2010.
指導教授 曾重仁 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明