參考文獻 |
[1] Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., & Pidcock, R. (2018). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of, 1, 43-50.
[2] Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., D′Ambrosio, D., & Spencer, T. (2021). Net zero by 2050: A roadmap for the global energy sector.
[3] Inoue, K., Miyamoto, K., Domen, S., Tamura, I., Kawakami, T., & Tanimura, S. (2018). Development of hydrogen and natural gas co-firing gas turbine. Mitsubishi Heavy Industries Technical Review, 55, 1.
[4] Öhman, A., Karakaya, E., & Urban, F. (2022). Enabling the transition to a fossil-free steel sector: The conditions for technology transfer for hydrogen-based steelmaking in Europe. Energy Research & Social Science, 84, 102384.
[5] Rolls-Royce and easyJet set new world first. (2022). https://www.rolls-royce.com/media/press-releases/2022/28-11-2022-rr-and-easyjet-set-new-aviation-world-first-with-successful-hydrogen-engine-run
[6] Company., H. C. a. M. (2022). Hydrogen Insights 2022 An updated perspective on hydrogen market development and actions required to unlock hydrogen at scale.
[7] Zuttel, A., Remhof, A., Borgschulte, A., & Friedrichs, O. (2010). Hydrogen: the future energy carrier. Philos Trans A Math Phys Eng Sci, 368, 3329-3342.
[8] Rosen, M. A., & Koohi-Fayegh, S. (2016). The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1, 10-29.
[9] Tapia, J. F. D., Lee, J.-Y., Ooi, R. E. H., Foo, D. C. Y., & Tan, R. R. (2018). A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 13, 1-15.
[10] Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen? Energy Science & Engineering, 9, 1676-1687.
[11] AlZohbi, G. (2022). Green Hydrogen Generation: Recent Advances and Challenges. IOP Conference Series: Earth and Environmental Science, 1050, 012003.
[12] Kadir, K., Sakai, T., & Uehara, I. (2000). Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure. Journal of Alloys and Compounds, 302, 112-117.
[13] Lim, K. L., Liu, Y., Zhang, Q.-A., & Chan, S. L. I. (2014). Effects of partial substitutions of cerium and aluminum on the hydrogenation properties of La(0.65−x)CexCa1.03Mg1.32Ni(9−y)Aly alloy. International Journal of Hydrogen Energy, 39, 10537-10545.
[14] Lee, S.-Y., Lee, J.-H., Kim, Y.-H., Kim, J.-W., Lee, K.-J., & Park, S.-J. (2022). Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review. Processes, 10.
[15] Hydrogen Storage. (2017). United States Department of Energy https://www.energy.gov/eere/fuelcells/hydrogen-storage
[16] Hirose, K. (2010). Handbook of hydrogen storage: new materials for future energy storage.
[17] Zheng, J., Zhou, H., Wang, C.-G., Ye, E., Xu, J. W., Loh, X. J., & Li, Z. (2021). Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage. Energy Storage Materials, 35, 695-722.
[18] Aziz, M. (2021). Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies, 14.
[19] Aceves, S. M., Petitpas, G., Espinosa-Loza, F., Matthews, M. J., & Ledesma-Orozco, E. (2013). Safe, long range, inexpensive and rapidly refuelable hydrogen vehicles with cryogenic pressure vessels. International Journal of Hydrogen Energy, 38, 2480-2489.
[20] Li, H., Eddaoudi, M., O′Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276-279.
[21] Cheng, H.-M., Yang, Q.-H., & Liu, C. (2001). Hydrogen storage in carbon nanotubes. Carbon, 39, 1447-1454.
[22] Luo, W., Campbell, P. G., Zakharov, L. N., & Liu, S.-Y. (2011). A Single-Component Liquid-Phase Hydrogen Storage Material. Journal of the American Chemical Society, 133, 19326-19329.
[23] Rusman, N. A. A., & Dahari, M. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41, 12108-12126.
[24] Eberle, U., Felderhoff, M., & Schüth, F. (2009). Chemical and Physical Solutions for Hydrogen Storage. Angewandte Chemie International Edition, 48, 6608-6630.
[25] Ovshinsky, S. R., Fetcenko, M. A., & Ross, J. (1993). A Nickel Metal Hydride Battery for Electric Vehicles. Science, 260, 176-181.
[26] Sasaki, K., Li, H.-W., Hayashi, A., Yamabe, J., Ogura, T., & Lyth, S. M. (2016). Hydrogen energy engineering : a Japanese perspective. Springer.
[27] Kadir, K., Sakai, T., & Uehara, I. (1997). Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R= La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. Journal of Alloys and Compounds, 257, 115-121.
[28] Kohno, T., Yoshida, H., Kawashima, F., Inaba, T., Sakai, I., Yamamoto, M., & Kanda, M. (2000). Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. Journal of Alloys and Compounds, 311, L5-L7.
[29] Zhang, F.-L., Luo, Y.-C., Chen, J.-P., Yan, R.-X., & Chen, J.-H. (2007). La–Mg–Ni ternary hydrogen storage alloys with Ce2Ni7-type and Gd2Co7-type structure as negative electrodes for Ni/Mh batteries. Journal of Alloys and Compounds, 430, 302-307.
[30] Liu, J., Han, S., Li, Y., Zhang, L., Zhao, Y., Yang, S., & Liu, B. (2016). Phase structures and electrochemical properties of La–Mg–Ni-based hydrogen storage alloys with superlattice structure. International Journal of Hydrogen Energy, 41, 20261-20275.
[31] Zhang, F., Luo, Y., Wang, D., Yan, R., Kang, L., & Chen, J. (2007). Structure and electrochemical properties of La2−xMgxNi7.0 (x=0.3–0.6) hydrogen storage alloys. Journal of Alloys and Compounds, 439, 181-188.
[32] Liao, B., Lei, Y. Q., Chen, L. X., Lu, G. L., Pan, H. G., & Wang, Q. D. (2004). Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3−xNi9 (x=1.6–2.2) hydrogen storage electrode alloys for nickel–metal hydride batteries. Journal of Power Sources, 129, 358-367.
[33] Jiang, W., Mo, X., Guo, J., & Wei, Y. (2013). Effect of annealing on the structure and electrochemical properties of La1.8Ti0.2MgNi8.9Al0.1 hydrogen storage alloy. Journal of Power Sources, 221, 84-89.
[34] Jiang, W., Qin, C., Zhu, R., & Guo, J. (2013). Annealing effect on hydrogen storage property of Co-free La1.8Ti0.2MgNi8.7Al0.3 alloy. Journal of Alloys and Compounds, 565, 37-43.
[35] Pan, H., Chen, N., Gao, M., Li, R., Lei, Y., & Wang, Q. (2005). Effects of annealing temperature on structure and the electrochemical properties of La0.7Mg0.3Ni2.45Co0.75Mn0.1Al0.2 hydrogen storage alloy. Journal of Alloys and Compounds, 397, 306-312.
[36] Dong, Z., Wu, Y., Ma, L., Wang, L., Shen, X., & Wang, L. (2011). Electrochemical hydrogen storage properties of non-stoichiometric La0.7Mg0.3−xCaxNi2.8Co0.5 (x=0–0.10) electrode alloys. Journal of Alloys and Compounds, 509, 5280-5284.
[37] Dong, Z., Wu, Y., Ma, L., Wang, L., Shen, X., & Wang, L. (2011). Microstructure and electrochemical hydrogen storage characteristics of La0.67Mg0.33−xCaxNi2.75Co0.25 (x = 0–0.15) electrode alloys. International Journal of Hydrogen Energy, 36, 3050-3055.
[38] Liu, Y., Pan, H., Gao, M., Li, R., & Lei, Y. (2004). Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4−xMn0.1Cox hydride alloys: I. The structure and hydrogen storage. Journal of Alloys and Compounds, 376, 296-303.
[39] Zhang, X., Sun, D., Yin, W., Chai, Y., & Zhao, M. (2006). Crystallographic and electrochemical characteristics of La0.7Mg0.3Ni3.5−x(Al0.5Mo0.5)x (x=0–0.8) hydrogen storage alloys. Journal of Power Sources, 154, 290-297.
[40] Liu, J., Han, S., Li, Y., Yang, S., Zhang, L., & Zhao, Y. (2015). Effect of Al incorporation on the degradation in discharge capacity and electrochemical kinetics of La–Mg–Ni-based alloys with A2B7-type super-stacking structure. Journal of Alloys and Compounds, 619, 778-787.
[41] Jiang, L., Zou, Z. W., Pei, Q. M., Zheng, D. S., Li, F. S., & Tian, Y. H. (2018). Structure and hydrogen storage properties of AB3-type Re2Mg(Ni0.7 − xCo0.2Mn0.1Alx)9 (x = 0‒0.04) alloys. Materials for Renewable and Sustainable Energy, 8, 2.
[42] Liao, B., Lei, Y. Q., Chen, L. X., Lu, G. L., Pan, H. G., & Wang, Q. D. (2005). The effect of Al substitution for Ni on the structure and electrochemical properties of AB3-type La2Mg(Ni1−xAlx)9 (x=0–0.05) alloys. Journal of Alloys and Compounds, 404-406, 665-668.
[43] Zhang, X. B., Sun, D. Z., Yin, W. Y., Chai, Y. J., & Zhao, M. S. (2005). Effect of La/Ce ratio on the structure and electrochemical characteristics of La0.7−xCexMg0.3Ni2.8Co0.5 (x=0.1–0.5) hydrogen storage alloys. Electrochimica Acta, 50, 1957-1964.
[44] Lv, W., Yuan, J., Zhang, B., & Wu, Y. (2018). Influence of the substitution Ce for La on structural and electrochemical characteristics of La0.75-xCexMg0.25Ni3Co0.5 (x=0, 0.05, 0.1, 0.15, 0.2 at. %) hydrogen storage alloys. Journal of Alloys and Compounds, 730, 360-368.
[45] Association, J. S. (2007). JIS H 7201:2007 Method For Measurement Of Pressure-Composition-Temperature(PCT) Relations Of Hydrogen Absorbing Alloys. In.
[46] Lemmon, E. W., Huber, M. L., & Leachman, J. W. (2008). Revised Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications. J Res Natl Inst Stand Technol, 113, 341-350.
[47] Edwards, P. P., Kuznetsov, V. L., David, W. I. F., & Brandon, N. P. (2008). Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy(12), 4356-4362.
[48] Gkanas, E. I. (2018). 5 - Metal hydrides: Modeling of metal hydrides to be operated in a fuel cell. In P. Ferreira-Aparicio & A. M. Chaparro (Eds.), Portable Hydrogen Energy Systems (pp. 67-90).
[49] Lim, K. L., Liu, Y., Zhang, Q.-A., Lin, K.-S., & Chan, S. (2016). Cycle stability improvement of La-Mg-Ni based alloys via Composite Method. Journal of Alloys and Compounds, 661, 274-281.
[50] Nayeb-Hashemi, A. A., & Clark, J. B. (1985). The Mg−Ni (Magnesium-Nickel) system. Bulletin of Alloy Phase Diagrams, 6, 238-244.
[51] Qian, S., & Northwood, D. O. (1988). Hysteresis in metal-hydrogen systems: a critical review of the experimental observations and theoretical models. International Journal of Hydrogen Energy, 13, 25-35.
[52] Okamoto, H. (2007). Ca-Ni (Calcium-Nickel). Journal of Phase Equilibria and Diffusion, 28, 299-299. |