博碩士論文 110324007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.117.254.177
姓名 陳泓宇(Hong-Yu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(A Study on the Hydrogen Storage of AB3-type La–Ca–Mg–Ni-based Hydrogen Storage Alloys and Composites)
相關論文
★ High Specific Area g-C3N4 Produced by Ball Milling for On Board Hydrogen Storage★ A Study on the Relationship Between the Manufacturing Methods of Graphitic-Carbon Nitride (g-C3N4) and their Hydrogen Storage Performance
★ Research on High Entropy Alloys for Hydrogen Storage and TiZr-based Alloys with Different Microstructures★ A study on the electrical and thermal dissipation properties of carbon nanotube/graphene composite papers
★ Study on the Cost-Effective High-Entropy Alloys for Efficient Hydrogen Storage★ Research on the hydrogen storage performance of g-C3N4 nanotubes after microwave irradiation
★ 應用於陰離子交換膜水電解器之三元非貴金屬觸媒開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氣候變遷促使人類尋求可再生的替代能源,以減少對化石燃料的依賴並減少環境影響。氫能作為其中一種乾淨、可再生的能源形式,已成為全球極大關注的重要研究議題。然而,氫的低體積密度和高度易燃性使得氫氣儲存和運輸變得更加困難。因此,開發高儲氫能力的材料已成為熱門的研究領域。
AB5合金是常用的固態儲氫合金。A主要為稀土金屬,例如:鑭系元素;B通常是過渡金屬,例如:鎳。然而,由於稀土金屬價格的日益上漲和稀缺,本研究採用AB3型La–Ca–Mg–Ni基儲氫合金來部分替代AB5合金。一系列不同重量比的AB3型La–Ca–Mg–Ni基儲氫複合材料採用真空感應熔煉製備。並在氬氣氣氛下,連續12小時進行1000℃退火熱處理。使用電感耦合等離子體(ICP)確定合金成分為La0.7Ca0.67Mg1.32Ni9。電子探針顯微分析儀 (EPMA) 顯示本鑄造材料在經過熱處理後元素分佈有明顯改善。X射線衍射分析表明合金中存在兩相,即(La,Mg)Ni3相和LaNi5相。使用基於Sieverts定律的PCI方法,發現25℃時、充氫壓力在5 MPa下,純AB3合金的儲氫容量為1.54wt%。獲得的PCI 曲線顯示出平坦的壓力平台,這表明本研究製備的合金具有高均勻性。相比之下,商業AB5型La0.6Ce0.4Ni5儲氫合金的PCI曲線具有較高的平台壓力,且滯後較大。然而,這兩種合金最終的儲氫能力相似,AB3為1.54 wt%,AB5為1.45 wt%。在復合材料方面,將以不同比例的AB5(20、40、50、60和80 wt%)複合成AB3型La-Ca-Mg-Ni基儲氫複合材料。在所有複合材料中,儲氫容量幾乎相同,約為1.4~1.43 wt%。其中,由50 wt% AB5 組成的複合材料的氫含量最高,為1.43 wt%。然而,差異並不顯著,並且獲得的所有這些氫含量都低於純AB3合金。最後,分別對純AB3和50 wt% AB3和50 wt% AB5的複合材料進行了不同條件的高溫活化。在7 MPa下獲得的儲氫容量分別為1.64 wt%和1.8 wt%,表明兩種合金皆通過高溫成功地提升儲氫容量。在儲氫性能方面,也進一步表明AB3和AB5的複合可能產生協同作用。
摘要(英) Climate change has impelled humanity to seek renewable alternative energy sources, aiming to reduce dependence on fossil fuels and mitigate environmental impacts. Hydrogen energy, as a clean and renewable form of energy, has emerged as a critically significant research topic of global prominence. However, low volume density and high flammability of hydrogen make its storage and transportation difficult. In this regard, the development of materials with high hydrogen storage capacity has become a popular research field.
AB5 alloy is a commonly used solid hydrogen storage alloy, where A is mainly rare earth metals such as lanthanides, and B is usually transition metals such as nickel. However, due to the increasing price and scarcity of rare earth metals, in this study, La–Ca–Mg–Ni-based AB3 hydrogen storage alloys have been proposed to partially replace AB5 alloys. A series of AB3-type La–Ca–Mg–Ni-based hydrogen storage composites with different ratios were prepared by vacuum induction melting, and heat treatment at 1000°C for 12 hours under an argon atmosphere. Inductively Coupled Plasma (ICP) was used to determine the alloy composition as La0.7Ca0.67Mg1.32Ni9. Electron Probe Micro-Analysis (EPMA) showed a significant improvement in chemical homogeneity after the heat treatment. The X-ray diffraction analysis revealed the presence of two phases in the alloy, namely the (La, Mg)Ni3 phase and the LaNi5 phase. Using the Pressure-Composition-Isotherm (PCI) method based on the Sieverts law, the hydrogen storage capacity of pure AB3 was found to be 1.54 wt% at 25°C, under a hydrogen charging pressure of 5 MPa. The PCI curve of the AB3 obtained shows a flat pressure plateau, thus suggesting a high homogeneity of the alloy prepared in this study. In contrast, the PCI curve of the commercial AB5-type La0.6Ce0.4Ni5 hydrogen storage alloy has a higher plateau pressure, with a bigger hysteresis. However, the final hydrogen storage capacity of these two alloys were similar at 1.54 wt% for AB3, and 1.45 wt% for AB5. In terms of composites, different ratios of AB5 (20, 40, 50, 60 and 80 wt%) were composited into AB3-type La–Ca–Mg–Ni-based hydrogen storage alloy. In all of AB3-type La–Ca–Mg–Ni-based composites, the hydrogen storage capacities were nearly the same, about 1.4~1.43 wt%. Among all of composites, the one consisting of 50 wt% of AB5 had the highest hydrogen content of 1.43 wt%. However, the difference was not significant, and all these hydrogen contents obtained were lower than that of the pure AB3 alloy. Finally, the different conditions of high-temperature activation have been performed on pure AB3 and composite with 50 wt% of AB3 and 50 wt% of AB5. The hydrogen storage capacities obtained at 7 MPa were 1.64 wt% and 1.8 wt% respectively, indicating that both alloys successfully increased their hydrogen storage capacities through high-temperature activation conditions. In terms of hydrogen storage capacity, the results also suggested the possible beneficial effect of blending AB3 and AB5.
關鍵字(中) ★ 儲氫合金
★ AB3
★ AB5
★ PCI
關鍵字(英) ★ Hydrogen Storage Alloys
★ AB3
★ AB5
★ PCI
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vii
List of Figures x
List of Tables xiii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Hydrogen Energy 3
1.2.1 Fuel Cell 3
1.2.2 Classification and Preparation of Hydrogen 4
1.3 Objectives of This Thesis 6
1.4 Thesis Structure 7
Chapter 2 Literature Review 8
2.1 Different Methods of Hydrogen Storage 8
2.2 Hydrogen Storage Alloys 11
2.2.1 Hydrogen Storage Mechanism of Metal Hydrides 11
2.2.2 Survey of AB3 Alloy 13
2.3 Characterization of Hydrogen Storage in Materials 18
2.3.1 Sieverts Apparatus 19
2.3.2 Calculation of Hydrogen Gas Density in Alloy Metal 20
2.3.3 Pressure-Composition-Isotherm (PCI) Curve 22
Chapter 3 Experimental Materials and Methods 24
3.1 Materials 24
3.2 Experimental Equipment 25
3.2.1 High Frequency Vacuum Induction Melting Furnace (VIM) 25
3.2.2 High-Temperature Tube Furnace 26
3.2.3 Metal Hydride PCI System 27
3.3 Analytical Instruments 29
3.3.1 Inductively Coupled Plasma (ICP-OES) 29
3.3.2 High Resolution Hyper Probe (FE-EPMA) 29
3.3.3 Scanning Electron Microscopy (SEM) 30
3.3.4 X-Ray Diffraction (XRD) 30
3.3.5 Gas Displacement Pycnometry System 30
3.4 Experimental Procedure 31
3.4.1 Composition Design of La–Ca–Mg–Ni-based Alloy 31
3.4.2 Fabrication of La–Ca–Mg–Ni-based Alloy 32
3.4.3 Heat Treatment 33
3.4.4 Synthesis of AB3-type La–Ca–Mg–Ni-based Composites 34
3.4.5 Activation 36
3.4.6 Leakage Test of PCI 37
3.4.7 Calibrations and Standard Test of PCI 38
3.4.8 PCI Test 42
Chapter 4 Results and Discussion 43
4.1 Basic Property Analysis 43
4.1.1 Composition Analysis 43
4.1.2 SEM Analysis of the Surface Topography 45
4.1.3 XRD Structure Analysis 48
4.1.4 Homogenization Analysis 49
4.2 Hydrogen Storage Behavior Analysis 52
4.2.1 SEM Analysis of the Surface Topography 52
4.2.2 XRD Structure Analysis 53
4.2.3 Hydrogen Storage Performance Analysis 56
Chapter 5 Conclusion and Future Works 65
References 69
參考文獻 [1] Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., & Pidcock, R. (2018). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of, 1, 43-50.
[2] Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., D′Ambrosio, D., & Spencer, T. (2021). Net zero by 2050: A roadmap for the global energy sector.
[3] Inoue, K., Miyamoto, K., Domen, S., Tamura, I., Kawakami, T., & Tanimura, S. (2018). Development of hydrogen and natural gas co-firing gas turbine. Mitsubishi Heavy Industries Technical Review, 55, 1.
[4] Öhman, A., Karakaya, E., & Urban, F. (2022). Enabling the transition to a fossil-free steel sector: The conditions for technology transfer for hydrogen-based steelmaking in Europe. Energy Research & Social Science, 84, 102384.
[5] Rolls-Royce and easyJet set new world first. (2022). https://www.rolls-royce.com/media/press-releases/2022/28-11-2022-rr-and-easyjet-set-new-aviation-world-first-with-successful-hydrogen-engine-run
[6] Company., H. C. a. M. (2022). Hydrogen Insights 2022 An updated perspective on hydrogen market development and actions required to unlock hydrogen at scale.
[7] Zuttel, A., Remhof, A., Borgschulte, A., & Friedrichs, O. (2010). Hydrogen: the future energy carrier. Philos Trans A Math Phys Eng Sci, 368, 3329-3342.
[8] Rosen, M. A., & Koohi-Fayegh, S. (2016). The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1, 10-29.
[9] Tapia, J. F. D., Lee, J.-Y., Ooi, R. E. H., Foo, D. C. Y., & Tan, R. R. (2018). A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 13, 1-15.
[10] Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen? Energy Science & Engineering, 9, 1676-1687.
[11] AlZohbi, G. (2022). Green Hydrogen Generation: Recent Advances and Challenges. IOP Conference Series: Earth and Environmental Science, 1050, 012003.
[12] Kadir, K., Sakai, T., & Uehara, I. (2000). Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure. Journal of Alloys and Compounds, 302, 112-117.
[13] Lim, K. L., Liu, Y., Zhang, Q.-A., & Chan, S. L. I. (2014). Effects of partial substitutions of cerium and aluminum on the hydrogenation properties of La(0.65−x)CexCa1.03Mg1.32Ni(9−y)Aly alloy. International Journal of Hydrogen Energy, 39, 10537-10545.
[14] Lee, S.-Y., Lee, J.-H., Kim, Y.-H., Kim, J.-W., Lee, K.-J., & Park, S.-J. (2022). Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review. Processes, 10.
[15] Hydrogen Storage. (2017). United States Department of Energy https://www.energy.gov/eere/fuelcells/hydrogen-storage
[16] Hirose, K. (2010). Handbook of hydrogen storage: new materials for future energy storage.
[17] Zheng, J., Zhou, H., Wang, C.-G., Ye, E., Xu, J. W., Loh, X. J., & Li, Z. (2021). Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage. Energy Storage Materials, 35, 695-722.
[18] Aziz, M. (2021). Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies, 14.
[19] Aceves, S. M., Petitpas, G., Espinosa-Loza, F., Matthews, M. J., & Ledesma-Orozco, E. (2013). Safe, long range, inexpensive and rapidly refuelable hydrogen vehicles with cryogenic pressure vessels. International Journal of Hydrogen Energy, 38, 2480-2489.
[20] Li, H., Eddaoudi, M., O′Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276-279.
[21] Cheng, H.-M., Yang, Q.-H., & Liu, C. (2001). Hydrogen storage in carbon nanotubes. Carbon, 39, 1447-1454.
[22] Luo, W., Campbell, P. G., Zakharov, L. N., & Liu, S.-Y. (2011). A Single-Component Liquid-Phase Hydrogen Storage Material. Journal of the American Chemical Society, 133, 19326-19329.
[23] Rusman, N. A. A., & Dahari, M. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41, 12108-12126.
[24] Eberle, U., Felderhoff, M., & Schüth, F. (2009). Chemical and Physical Solutions for Hydrogen Storage. Angewandte Chemie International Edition, 48, 6608-6630.
[25] Ovshinsky, S. R., Fetcenko, M. A., & Ross, J. (1993). A Nickel Metal Hydride Battery for Electric Vehicles. Science, 260, 176-181.
[26] Sasaki, K., Li, H.-W., Hayashi, A., Yamabe, J., Ogura, T., & Lyth, S. M. (2016). Hydrogen energy engineering : a Japanese perspective. Springer.
[27] Kadir, K., Sakai, T., & Uehara, I. (1997). Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R= La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. Journal of Alloys and Compounds, 257, 115-121.
[28] Kohno, T., Yoshida, H., Kawashima, F., Inaba, T., Sakai, I., Yamamoto, M., & Kanda, M. (2000). Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. Journal of Alloys and Compounds, 311, L5-L7.
[29] Zhang, F.-L., Luo, Y.-C., Chen, J.-P., Yan, R.-X., & Chen, J.-H. (2007). La–Mg–Ni ternary hydrogen storage alloys with Ce2Ni7-type and Gd2Co7-type structure as negative electrodes for Ni/Mh batteries. Journal of Alloys and Compounds, 430, 302-307.
[30] Liu, J., Han, S., Li, Y., Zhang, L., Zhao, Y., Yang, S., & Liu, B. (2016). Phase structures and electrochemical properties of La–Mg–Ni-based hydrogen storage alloys with superlattice structure. International Journal of Hydrogen Energy, 41, 20261-20275.
[31] Zhang, F., Luo, Y., Wang, D., Yan, R., Kang, L., & Chen, J. (2007). Structure and electrochemical properties of La2−xMgxNi7.0 (x=0.3–0.6) hydrogen storage alloys. Journal of Alloys and Compounds, 439, 181-188.
[32] Liao, B., Lei, Y. Q., Chen, L. X., Lu, G. L., Pan, H. G., & Wang, Q. D. (2004). Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3−xNi9 (x=1.6–2.2) hydrogen storage electrode alloys for nickel–metal hydride batteries. Journal of Power Sources, 129, 358-367.
[33] Jiang, W., Mo, X., Guo, J., & Wei, Y. (2013). Effect of annealing on the structure and electrochemical properties of La1.8Ti0.2MgNi8.9Al0.1 hydrogen storage alloy. Journal of Power Sources, 221, 84-89.
[34] Jiang, W., Qin, C., Zhu, R., & Guo, J. (2013). Annealing effect on hydrogen storage property of Co-free La1.8Ti0.2MgNi8.7Al0.3 alloy. Journal of Alloys and Compounds, 565, 37-43.
[35] Pan, H., Chen, N., Gao, M., Li, R., Lei, Y., & Wang, Q. (2005). Effects of annealing temperature on structure and the electrochemical properties of La0.7Mg0.3Ni2.45Co0.75Mn0.1Al0.2 hydrogen storage alloy. Journal of Alloys and Compounds, 397, 306-312.
[36] Dong, Z., Wu, Y., Ma, L., Wang, L., Shen, X., & Wang, L. (2011). Electrochemical hydrogen storage properties of non-stoichiometric La0.7Mg0.3−xCaxNi2.8Co0.5 (x=0–0.10) electrode alloys. Journal of Alloys and Compounds, 509, 5280-5284.
[37] Dong, Z., Wu, Y., Ma, L., Wang, L., Shen, X., & Wang, L. (2011). Microstructure and electrochemical hydrogen storage characteristics of La0.67Mg0.33−xCaxNi2.75Co0.25 (x = 0–0.15) electrode alloys. International Journal of Hydrogen Energy, 36, 3050-3055.
[38] Liu, Y., Pan, H., Gao, M., Li, R., & Lei, Y. (2004). Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4−xMn0.1Cox hydride alloys: I. The structure and hydrogen storage. Journal of Alloys and Compounds, 376, 296-303.
[39] Zhang, X., Sun, D., Yin, W., Chai, Y., & Zhao, M. (2006). Crystallographic and electrochemical characteristics of La0.7Mg0.3Ni3.5−x(Al0.5Mo0.5)x (x=0–0.8) hydrogen storage alloys. Journal of Power Sources, 154, 290-297.
[40] Liu, J., Han, S., Li, Y., Yang, S., Zhang, L., & Zhao, Y. (2015). Effect of Al incorporation on the degradation in discharge capacity and electrochemical kinetics of La–Mg–Ni-based alloys with A2B7-type super-stacking structure. Journal of Alloys and Compounds, 619, 778-787.
[41] Jiang, L., Zou, Z. W., Pei, Q. M., Zheng, D. S., Li, F. S., & Tian, Y. H. (2018). Structure and hydrogen storage properties of AB3-type Re2Mg(Ni0.7 − xCo0.2Mn0.1Alx)9 (x = 0‒0.04) alloys. Materials for Renewable and Sustainable Energy, 8, 2.
[42] Liao, B., Lei, Y. Q., Chen, L. X., Lu, G. L., Pan, H. G., & Wang, Q. D. (2005). The effect of Al substitution for Ni on the structure and electrochemical properties of AB3-type La2Mg(Ni1−xAlx)9 (x=0–0.05) alloys. Journal of Alloys and Compounds, 404-406, 665-668.
[43] Zhang, X. B., Sun, D. Z., Yin, W. Y., Chai, Y. J., & Zhao, M. S. (2005). Effect of La/Ce ratio on the structure and electrochemical characteristics of La0.7−xCexMg0.3Ni2.8Co0.5 (x=0.1–0.5) hydrogen storage alloys. Electrochimica Acta, 50, 1957-1964.
[44] Lv, W., Yuan, J., Zhang, B., & Wu, Y. (2018). Influence of the substitution Ce for La on structural and electrochemical characteristics of La0.75-xCexMg0.25Ni3Co0.5 (x=0, 0.05, 0.1, 0.15, 0.2 at. %) hydrogen storage alloys. Journal of Alloys and Compounds, 730, 360-368.
[45] Association, J. S. (2007). JIS H 7201:2007 Method For Measurement Of Pressure-Composition-Temperature(PCT) Relations Of Hydrogen Absorbing Alloys. In.
[46] Lemmon, E. W., Huber, M. L., & Leachman, J. W. (2008). Revised Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications. J Res Natl Inst Stand Technol, 113, 341-350.
[47] Edwards, P. P., Kuznetsov, V. L., David, W. I. F., & Brandon, N. P. (2008). Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy(12), 4356-4362.
[48] Gkanas, E. I. (2018). 5 - Metal hydrides: Modeling of metal hydrides to be operated in a fuel cell. In P. Ferreira-Aparicio & A. M. Chaparro (Eds.), Portable Hydrogen Energy Systems (pp. 67-90).
[49] Lim, K. L., Liu, Y., Zhang, Q.-A., Lin, K.-S., & Chan, S. (2016). Cycle stability improvement of La-Mg-Ni based alloys via Composite Method. Journal of Alloys and Compounds, 661, 274-281.
[50] Nayeb-Hashemi, A. A., & Clark, J. B. (1985). The Mg−Ni (Magnesium-Nickel) system. Bulletin of Alloy Phase Diagrams, 6, 238-244.
[51] Qian, S., & Northwood, D. O. (1988). Hysteresis in metal-hydrogen systems: a critical review of the experimental observations and theoretical models. International Journal of Hydrogen Energy, 13, 25-35.
[52] Okamoto, H. (2007). Ca-Ni (Calcium-Nickel). Journal of Phase Equilibria and Diffusion, 28, 299-299.
指導教授 陳立業(Sammy Lap Ip Chan) 審核日期 2023-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明