博碩士論文 110324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.191.171.121
姓名 鄭媖慈(Ying-Tzu Cheng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層
(Photo-crosslinkable Medical Coatings with Lubricating and Antifouling Properties for Surface Functionalization of Polyurethane Implants)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響★ 基於動態鍵的多功能丙烯酸交聯劑
★ 連續微流道反應器中進行防污聚合物篩選★ 高度纏結的雙離子水凝膠
★ Lubricant and Anti-fouling Coatings for Silicone Catheter★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能
★ 聚胜肽電解質材料合成及其性質研究分析★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 熱塑性聚氨酯 (TPU) 因其卓越的機械性能和生物相容性而在醫療領域中被廣泛應用於導管、傷口護理和長期植入等方面。然而,由於TPU基材具有疏水表面特性,在長期植入人體時容易出現非特異性生物黏附的問題,進而引發人體免疫反應、細菌感染和功能喪失,因此對TPU表面進行修飾賦予其高親水性、潤滑性和防污性能具有重要意義。本研究重點在於開發一種用於修飾TPU表面的雙層塗層系統,該系統由基底層和功能性塗層組成。基底層由四種單體組成,包含帶有季銨陽離子的2-甲基丙烯醯氧基乙基三甲基氯化銨 (TMAEMA)、甲基丙烯酸十二烷基酯 (DMA) 之長碳鏈有利於基底層吸附在TPU表面、3-甲基丙烯醯氧基-2-羥丙基-4-氧基二苯甲酮 (MHPBP) 通過光誘導的烴基插入交聯反應 (CHic) 形成交聯層、乙烯基吡咯烷酮 (NVP) 作為除氧劑促進光交聯反應,合成之基底層即為隨機共聚物TMAEMA-r-DMA-r-MHPBP-r-NVP (TDMN);功能性塗層為雙離子材料2-甲基丙烯醯氧基乙基磷醯膽鹼 (MPC) 和MHPBP合成之共聚物MPC-r-MHPBP (MPM) 以及商用之親水材料聚乙烯吡咯烷酮 (PVP),作為親水性的防污塗層。本研究通過自由基聚合合成共聚物,並利用1H NMR和ATR-FTIR光譜進行官能基鑑定,通過GPC分析確定共聚物的分子量,並利用UV-Vis識別光誘導聚合物的吸收波長範圍。修飾溶液的測量包含表面張力及黏度,塗層則使用AFM觀察其表面形貌,通過水接觸角和摩擦力測試比較表面潤滑度及穩定性,並利用蛋白質和抗菌黏附試驗研究其防污性能。研究結果表明,TDMN適用於TPU表面改質雙塗層系統中的基底層,MPM和PVP兩種聚合物作為功能性塗層都具有良好的抗污性和潤滑性,未來有望將雙塗層系統應用於改進TPU在醫療領域的長期植入效果。
摘要(英) Thermoplastic polyurethane (TPU) is extensively utilized in medical applications such as catheters, wound care, and long-term implants due to its excellent mechanical properties and biocompatibility. However, the hydrophobic nature of TPU surfaces could lead to issues related to nonspecific bioadhesion during prolonged human implantation. Consequently, surface modification of TPU to enhance its hydrophilicity, lubricity, and antifouling properties holds significant importance.
This study focuses on the development of a two-layer coating system for surface modification of TPU, comprising a primer layer and a functional layer. The primer layer consists of four monomers. It incorporates the positively charged quaternary ammonium group from 2-trimethylammonioethyl methacrylate (TMAEMA) monomer, while the long carbon chain of dodeyl methacrylate (DMA) facilitates physical adsorption of layer onto the TPU surface. The cross-linking absorption is achieved through the light-induced C,H insertion crosslinking (CHic) reaction using 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP) as a photo-crosslinkable monomer. In addition, n-vinyl-2-pyrrolidone (NVP) acts as an oxygen scavenger to promote the photo-crosslinking reaction. The synthetic primer layer is random copolymer, TMAEMA-r-DMA-r-MHPBP-r-NVP (TDMN). As for the functional layer, the deposition of polyvinylpyrrolidone (PVP) is served as a hydrophilic antifouling coating. Another hydrophilic coating is MPM random copolymer, which consists of MHPBP and a zwitterionic monomer, 2-methacryloxyethylphosphorylcholine (MPC).
The copolymers were synthesized using free radical polymerization. Chemical structure characterization of the copolymers was conducted by 1H NMR and ATR-FTIR spectroscopy. The molecular weight was determined through GPC analysis. UV-Vis spectroscopy was employed to identify the absorption wavelength range of the photoinduced polymers. Besides, water contact angle and friction tests were conducted to compare surface wetting and lubricity, while AFM was used to observe the morphology of coatings. Protein and antibacterial adhesion tests were employed to evaluate the antifouling performance of the coatings.
According to the research, both MPM and PVP polymers exhibit excellent antifouling properties and high lubricity, making them suitable for the functional coatings in the double-layer coating system for TPU surface modification. This system shows great potential for improving the long-term implantation effectiveness of TPU in the medical field. Overall, this study provides valuable insights for the development of high-performance, biocompatible materials to address the demands in medical applications.
關鍵字(中) ★ 烴基插入反應
★ 二苯甲酮
★ 2-甲基丙烯醯氧乙基磷酸膽鹼
★ 聚乙烯吡咯烷酮
★ 熱塑性聚氨酯
★ 醫用塗料
關鍵字(英) ★ C,H insertion crosslinking reaction (CHic)
★ benzophenone (BP)
★ 2- methacryloxyethylphosphorylcholine (MPC)
★ polyvinylpyrrolidone (PVP)
★ thermoplastic polyurethane (TPU)
★ medical coatings
論文目次 摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xii
專有名詞簡稱 xiii
聚合物簡稱 xiii
一、文獻回顧 1
1-1聚氨酯 (PU) 1
1-1-1 熱塑型聚氨酯 (TPU) 2
1-1-2 TPU於生物醫學之應用 3
1-2 醫療設備相關感染 (DAI) 4
1-2-1 導管相關性感染 (CAI) 4
1-2-2 生物膜之形成 (Biofilm formation) 5
1-2-3 凝血級聯反應 (Coagulation cascade) 6
1-3 表面修飾 8
1-3-1 物理修飾與化學修飾 9
1-3-3 烴基插入交聯反應 (CHic) 10
1-3-2 單一塗層與多層塗層 11
1-3-4 TPU表面修飾技術 12
1-4 輻射固化技術 15
1-4-1 光固化技術 15
1-4-2 自由基光起始劑 17
1-4-3 二苯甲酮衍生物 (MHPBP) 18
1-5 親水性抗污材料 20
1-5-1 聚乙烯吡咯烷酮 (PVP) 20
1-5-2 磷酸膽鹼 (PC) 21
二、研究目的 23
三、實驗方法 25
3-1 實驗設計 25
3-1-1 實驗藥品清單 25
3-1-2 各項儀器與設備 26
3-2 材料合成與製備 27
3-2-1 光敏感單體MHPBP之合成 27
3-2-2 光敏感共聚物TDMN之合成 28
3-2-3 光敏感共聚物MPM之合成 29
3-2-4 TPU基材製備 30
3-2-5 LB培養基製備 30
3-3 材料性質鑑定 31
3-3-1 化學結構分析 (Chemical structure analysis) 31
3-3-2 聚合物分子量測定 (Molecular weight determination) 31
3-3-3 官能基鑑定分析 (Functional group analysis) 31
3-4 可見光-紫外光分光光度法 (UV-Vis) 32
3-4-1 光敏感性單體及共聚物之吸光值測定 32
3-4-2 光敏感共聚物於紫外光照射之反應效率 32
3-4-3 第一塗層於第二修飾溶液之釋放量 33
3-5 修飾溶液之性質測定 33
3-5-1 修飾溶液之黏度 (Viscosity) 33
3-5-2 修飾溶液之表面張力 (Surface tension) 33
3-6 TPU基材浸塗修飾條件 34
3-6-1 單塗層修飾 (Single-layer coating) 35
3-6-2 雙塗層修飾 (Double-layer coating) 35
3-7 TPU塗層性質測定 36
3-7-1 表面形貌鑑定 (Surface topography) 36
3-7-2 潤滑度測試 (Lubricity test) 36
3-7-3 水下摩擦力測試 (Underwater Friction Test) 36
3-7-4 水接觸角測定 (Contact Angle Test) 37
3-7-5 抗菌貼附測試 (Anti-bacterial Attachment Test) 38
3-7-6 蛋白質貼附測試 (Protein Adsorption Test) 39
3-8 統計學分析 40
四、結果與討論 41
4-1 光起始劑與共聚物之性質測定 41
4-1-1 光敏感單體MHPBP之1H NMR光譜 41
4-1-2 光反應性共聚物TDMN之1H NMR光譜圖 42
4-1-3 光反應性共聚物MPM之1H NMR光譜 43
4-2 光敏感性單體及共聚物之吸光值測定 45
4-2-1 光反應性物質之消光係數 45
4-2-2 光敏感共聚物於紫外光照射之反應效率 46
4-3 修飾溶液之性質測定 47
4-4 第一塗層於第二修飾溶液之釋放量 48
4-5 TDMN/PVP塗層之表面潤滑度及水下摩擦力測試 49
4-5-1 不同成分與濃度測試 49
4-5-2 不同紫外光固化條件 53
4-5-3 不同乾燥條件 54
4-6 TDMN/MPM塗層之表面潤滑度及水下摩擦力測試 57
4-6-1 單一塗層之摩擦力 57
4-6-2 不同成分與濃度測試 57
4-6-3 不同環境修飾條件 59
4-7 修飾塗層之表面性能鑑定 64
4-7-1 塗層之表面形貌 64
4-7-2 表面官能基分析 66
4-7-3 水接觸角測定 67
4-8 親水性塗層之抗沾黏測試 68
4-8-1 抗菌貼附測試 68
4-8-2 蛋白質貼附測試 69
五、結論 71
六、未來展望 72
七、參考文獻 73
附錄 79
參考文獻 1. Janik, H.; Sienkiewicz, M.; Kucinska-Lipka, J., Polyurethanes. In Handbook of thermoset plastics, Elsevier: 2014; pp 253-295.
2. Akindoyo, J. O.; Beg, M.; Ghazali, S.; Islam, M.; Jeyaratnam, N.; Yuvaraj, A., Polyurethane types, synthesis and applications–a review. Rsc Advances 2016, 6 (115), 114453-114482.
3. Charlon, M.; Heinrich, B.; Matter, Y.; Couzigné, E.; Donnio, B.; Avérous, L., Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols. Eur Polym J 2014, 61, 197-205.
4. Wang, Y.; Hong, Q.; Chen, Y.; Lian, X.; Xiong, Y., Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids and Surfaces B: Biointerfaces 2012, 100, 77-83.
5. Zhou, X.; Zhang, T.; Guo, D.; Gu, N., A facile preparation of poly (ethylene oxide)-modified medical polyurethane to improve hemocompatibility. Colloids and Surfaces A: Physicochemical and engineering aspects 2014, 441, 34-42.
6. Zhou, B.; Hu, Y.; Li, J.; Li, B., Chitosan/phosvitin antibacterial films fabricated via layer-by-layer deposition. International journal of biological macromolecules 2014, 64, 402-408.
7. Abdul Samat, A.; Abdul Hamid, Z. A.; Jaafar, M.; Ong, C. C.; Yahaya, B. H., Investigation of the In Vitro and In Vivo Biocompatibility of a Three-Dimensional Printed Thermoplastic Polyurethane/Polylactic Acid Blend for the Development of Tracheal Scaffolds. Bioengineering 2023, 10 (4), 394.
8. Basu, A.; Farah, S.; Kunduru, K.; Doppalapudi, S.; Khan, W.; Domb, A., Polyurethanes for controlled drug delivery. Advances in Polyurethane Biomaterials 2016, 217-246.
9. Middleton, J. C.; Tipton, A. J., Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21 (23), 2335-2346.
10. Kara, F.; Aksoy, E. A.; Yuksekdag, Z.; Hasirci, N.; Aksoy, S., Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydrate Polymers 2014, 112, 39-47.
11. Loveday, H. P.; Wilson, J. A.; Pratt, R. J.; Golsorkhi, M.; Tingle, A.; Bak, A.; Browne, J.; Prieto, J.; Wilcox, M., epic3: national evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. Journal of Hospital Infection 2014, 86, S1-S70.
12. Saint, S.; Wiese, J.; Amory, J. K.; Bernstein, M. L.; Patel, U. D.; Zemencuk, J. K.; Bernstein, S. J.; Lipsky, B. A.; Hofer, T. P., Are physicians aware of which of their patients have indwelling urinary catheters? The American journal of medicine 2000, 109 (6), 476-480.
13. Parameswaran, R.; Sherchan, J. B.; Mukhopadhyay, C.; Vidyasagar, S., Intravascular catheter-related infections in an Indian tertiary care hospital. The Journal of Infection in Developing Countries 2011, 5 (06), 452-458.
14. Maki, D. G.; Kluger, D. M.; Crnich, C. J. In The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies, Mayo Clinic Proceedings, Elsevier: 2006; pp 1159-1171.
15. Maciejewska, B. M.; Wychowaniec, J. K.; Woźniak-Budych, M.; Popenda, Ł.; Warowicka, A.; Golba, K.; Litowczenko, J.; Fojud, Z.; Wereszczyńska, B.; Jurga, S., UV cross-linked polyvinylpyrrolidone electrospun fibres as antibacterial surfaces. Science and Technology of Advanced Materials 2019, 20 (1), 979-991.
16. Jacobsen, S.; Stickler, D.; Mobley, H.; Shirtliff, M., Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical microbiology reviews 2008, 21 (1), 26-59.
17. Donlan, R. M., Biofilm formation: a clinically relevant microbiological process. Clinical infectious diseases 2001, 33 (8), 1387-1392.
18. Simmons, H. Biofilm Analysis: Tools and Techniques. https://www.news-medical.net/life-sciences/Biofilm-Analysis-Tools-and-Techniques.aspx (accessed February 10).
19. Rabe, M.; Verdes, D.; Seeger, S., Understanding protein adsorption phenomena at solid surfaces. Advances in colloid and interface science 2011, 162 (1-2), 87-106.
20. Brisbois, E. J. Novel Nitric Oxide (NO)-Releasing Polymers and Their Biomedical Applications. University of Michigan, 2014.
21. Zhou, J.; Hou, S.; Li, L.; Yao, D.; Liu, Y.; Jenkins, A. T. A.; Fan, Y., Theranostic infection‐responsive coating to in situ detect and prevent urinary catheter blockage. Advanced Materials Interfaces 2018, 5 (24), 1801242.
22. Yassin, M. A.; Elkhooly, T. A.; Elsherbiny, S. M.; Reicha, F. M.; Shokeir, A. A., Facile coating of urinary catheter with bio–inspired antibacterial coating. Heliyon 2019, 5 (12), e02986.
23. Bentley, N.; Scherag, F. D.; Brandstetter, T.; Rühe, J., Protein Repellent, Surface‐Attached Hydrogels Through Spray Coating. Advanced Materials Interfaces 2022, 9 (14), 2102359.
24. Dias, A. J. A. A.; Hensen, G. J. E.; Belt, J. W.; Rooijmans, M.; De Bont, N. H. M.; Currie, E. P. K., Hydrophilic coating comprising a polyelectrolyte. Google Patents: 2013.
25. Bastarrachea, L. J.; Wong, D. E.; Roman, M. J.; Lin, Z.; Goddard, J. M., Active packaging coatings. Coatings 2015, 5 (4), 771-791.
26. Sadeghi, K.; Seo, J., Photografting Coating: An Innovative Approach to "Non-Migratory" Active Packaging. Adv Funct Mater 2021, 31 (28).
27. Al-Qahtani, M.; Safan, A.; Jassim, G.; Abadla, S., Efficacy of anti-microbial catheters in preventing catheter associated urinary tract infections in hospitalized patients: A review on recent updates. Journal of Infection and Public Health 2019, 12 (6), 760-766.
28. Ul Ahad, I.; Bartnik, A.; Fiedorowicz, H.; Kostecki, J.; Korczyc, B.; Ciach, T.; Brabazon, D., Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. Journal of Biomedical Materials Research Part A 2014, 102 (9), 3298-3310.
29. Liu, X.; Yu, H.; Wang, L.; Huang, Z.; Haq, F.; Teng, L.; Jin, M.; Ding, B., Recent advances on designs and applications of hydrogel adhesives. Advanced Materials Interfaces 2022, 9 (2), 2101038.
30. Gebbie, M. A.; Wei, W.; Schrader, A. M.; Cristiani, T. R.; Dobbs, H. A.; Idso, M.; Chmelka, B. F.; Waite, J. H.; Israelachvili, J. N., Tuning underwater adhesion with cation–π interactions. Nature Chemistry 2017, 9 (5), 473-479.
31. Xiang, L.; Zhang, J.; Wang, W.; Gong, L.; Zhang, L.; Yan, B.; Zeng, H., Nanomechanics of π-cation-π interaction with implications for bio-inspired wet adhesion. Acta Biomaterialia 2020, 117, 294-301.
32. Prucker, O.; Brandstetter, T.; Rühe, J., Surface-attached hydrogel coatings via C, H-insertion crosslinking for biomedical and bioanalytical applications. Biointerphases 2018, 13 (1).
33. Fabbri, P.; Messori, M., Surface modification of polymers: chemical, physical, and biological routes. In Modification of polymer properties, Elsevier: 2017; pp 109-130.
34. Rooijmans, M., Hydrophilic coating. Google Patents: 2013.
35. Diem Thuy Nguyen, C.-J. H., Yu-Hsiang Lee. Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane. 2021.
36. Yun-Han Chiang, C.-J. H. Medical Coating on Thermoplastic Polyurethane by Sequential Deposition of Photo-crosslinkable and Bio-inspired Zwitterionic Phosphocholine Copolymers. 2022.
37. Tran Thi Diem Trang, C.-J. H., Yu-Hsiang Lee. Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine). 2021.
38. Yu Huang, C.-J. H. Functional Diblock Copolymer Containing Zwitterionic Phosphocholine and CHicable Benzophenone for Medical Coating on Thermoplastic Polyurethane Catheter. 2022.
39. Carroll, G. T.; Devon Triplett, L.; Moscatelli, A.; Koberstein, J. T.; Turro, N. J., Photogeneration of gelatinous networks from pre‐existing polymers. Journal of Applied Polymer Science 2011, 122 (1), 168-174.
40. Pinson, J.; Thiry, D., Surface modification of polymers: methods and applications. John Wiley & Sons: 2020.
41. Higgins, M., Understanding Ultraviolet LED Wavelength. UV+ EB Technology 2016, 2 (2), 47.
42. Chiulan, I.; Heggset, E. B.; Voicu, S. I.; Chinga-Carrasco, G., Photopolymerization of bio-based polymers in a biomedical engineering perspective. Biomacromolecules 2021, 22 (5), 1795-1814.
43. Zhong, X.; Lin, J.; Wang, Z.; Xiao, C.; Yang, H.; Wang, J.; Wu, X., Preparation of a crosslinked coating containing fluorinated water-dispersible polyurethane particles. Progress in Organic Coatings 2016, 99, 216-222.
44. Zhang, J.; Zhu, W.; Xin, B.; Lin, S.; Jin, L.; Wang, H., Development of an antibacterial surface with a self-defensive and pH-responsive function. Biomaterials science 2019, 7 (9), 3795-3800.
45. Lin, X.; Fukazawa, K.; Ishihara, K., Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. ACS Applied Materials & Interfaces 2015, 7 (31), 17489-17498.
46. Sadeghi, K.; Seo, J., Photografting of biochelator onto polypropylene film as an antioxidant clean label. Food Chemistry 2021, 351, 129362.
47. Sadeghi, K.; Seo, J., Photografting of p-anisidine-glycidyl methacrylate onto polymeric substrate for developing free-radical scavenging films. Progress in Organic Coatings 2020, 149, 105925.
48. Robert, T.; Eschig, S.; Biemans, T.; Scheifler, F., Bio-based polyester itaconates as binder resins for UV-curing offset printing inks. Journal of Coatings Technology and Research 2019, 16, 689-697.
49. Khudyakov, I. V., Fast photopolymerization of acrylate coatings: Achievements and problems. Progress in Organic Coatings 2018, 121, 151-159.
50. Singha, N. K.; Schlaad, H., Thiol–ene based functionalization of polymers. Functional Polymers by Post‐Polymerization Modification: Concepts, Guidelines, and Applications 2012, 65-86.
51. Ding, G.; Jing, C.; Qin, X.; Gong, Y.; Zhang, X.; Zhang, S.; Luo, Z.; Li, H.; Gao, F., Conjugated dyes carrying N, N-dialkylamino and ketone groups: One-component visible light Norrish type II photoinitiators. Dyes and Pigments 2017, 137, 456-467.
52. Yagci, Y.; Jockusch, S.; Turro, N. J., Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 2010, 43 (15), 6245-6260.
53. Tomal, W.; Ortyl, J., Water-soluble photoinitiators in biomedical applications. Polymers 2020, 12 (5), 1073.
54. Lin, X.; Fukazawa, K.; Ishihara, K., Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. ACS Appl Mater Interfaces 2015, 7 (31), 17489-98.
55. Dorman, G.; Nakamura, H.; Pulsipher, A.; Prestwich, G. D., The life of pi star: exploring the exciting and forbidden worlds of the benzophenone photophore. Chemical Reviews 2016, 116 (24), 15284-15398.
56. Xiao, P.; Dumur, F. d. r.; Bui, T. T.; Goubard, F.; Graff, B.; Morlet-Savary, F.; Fouassier, J. P.; Gigmes, D.; Lalevée, J., Panchromatic photopolymerizable cationic films using indoline and squaraine dye based photoinitiating systems. ACS Macro Letters 2013, 2 (8), 736-740.
57. Nan, X.; Huang, Y.; Fan, Q.; Shao, J., Efficient visible photoinitiator containing linked dye-coinitiator and iodonium salt for free radical polymerization. Progress in Organic Coatings 2015, 81, 11-18.
58. Yu, Q.; Wu, Z.; Chen, H., Dual-function antibacterial surfaces for biomedical applications. Acta biomaterialia 2015, 16, 1-13.
59. Hassouna, F.; Therias, S.; Mailhot, G.; Gardette, J. L., Photooxidation of poly(N-vinylpyrrolidone) (PVP) in the solid state and in aqueous solution. Polymer Degradation and Stability 2009, 94 (12), 2257-2266.
60. Kojima, C.; Katayama, R.; Nguyen, T. L.; Oki, Y.; Tsujimoto, A.; Yusa, S.-i.; Shiraishi, K.; Matsumoto, A., Different antifouling effects of random and block copolymers comprising 2-methacryloyloxyethyl phosphorylcholine and dodecyl methacrylate. Eur Polym J 2020, 136, 109932.
61. Goda, T.; Ishihara, K.; Miyahara, Y., Critical update on 2‐methacryloyloxyethyl phosphorylcholine (MPC) polymer science. Journal of Applied Polymer Science 2015, 132 (16).
62. Wu, J.; Shi, C.; Sharma, V.; Cantu-Crouch, D., Introduction of a new silicone hydrogel contact lens with surface modification of MPC polymer. Investigative Ophthalmology & Visual Science 2021, 62 (8), 661-661.
63. Moro, T.; Takatori, Y.; Kyomoto, M.; Ishihara, K.; Saiga, K.-i.; Nakamura, K.; Kawaguchi, H., Surface grafting of biocompatible phospholipid polymer MPC provides wear resistance of tibial polyethylene insert in artificial knee joints. Osteoarthritis and cartilage 2010, 18 (9), 1174-1182.
64. Nakabayashi, N.; Williams, D., Preparation of non-thrombogenic materials using 2-methacryloyloxyethyl phosphorylcholine. Biomaterials 2003, 24 (13), 2431-2435.
65. Hirota, K.; Murakami, K.; Nemoto, K.; Miyake, Y., Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS microbiology letters 2005, 248 (1), 37-45.
66. Li, L.; Wang, J.-H.; Xin, Z., Synthesis and biocompatibility of a novel silicone hydrogel containing phosphorylcholine. Eur Polym J 2011, 47 (9), 1795-1803.
67. Dias, A. J. A. A.; Hensen, G. J. E.; Belt, J. W.; Rooijmans, M.; De Bont, N. H. M.; Currie, E. P. K., Coating composition for a urinary catheter. Google Patents: 2012.
68. Brostow, W.; Deborde, J.-L.; Jaclewicz, M.; Olszynski, P., Tribology with emphasis on polymers: friction, scratch resistance and wear. Journal of Materials Education 2003, 25 (4/6), 119-132.
69. Gorbet, M. B.; Sefton, M. V., Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25 (26), 5681-5703.
70. Williams, D. F., On the mechanisms of biocompatibility. Biomaterials 2008, 29 (20), 2941-2953.
71. Cheng, L.; Zhang, Y.; Shi, W., Photoinitiating behavior of benzophenone derivatives covalently bonded tertiary amine group for UV‐curing acrylate systems. Polymers for Advanced Technologies 2012, 23 (3), 669-676.
72. Moeck, A.; Ag, R. In Shrinkage of UV oligomers and monomers, Proceedings of the Radtech Conference, 2014; pp 5-9.
73. Bruinsma, G. M.; van der Mei, H. C.; Busscher, H. J., Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials 2001, 22 (24), 3217-24.
74. Pinho, A. C.; Piedade, A. P., Polymeric coatings with antimicrobial activity: A short review. Polymers 2020, 12 (11), 2469.
75. Uneputty, A.; Dávila-Lezama, A.; Garibo, D.; Oknianska, A.; Bogdanchikova, N.; Hernández-Sánchez, J.; Susarrey-Arce, A., Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation. Colloid and Interface Science Communications 2022, 46, 100560.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2023-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明