博碩士論文 93522026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.147.48.105
姓名 朱育德(Yu-De Chu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於字詞內容之適應性對話系統
(MAGEN: An Adaptive Conversational System Based On Terms)
相關論文
★ 行程邀約郵件的辨識與不規則時間擷取之研究★ NCUFree校園無線網路平台設計及應用服務開發
★ 網際網路半結構性資料擷取系統之設計與實作★ 非簡單瀏覽路徑之探勘與應用
★ 遞增資料關聯式規則探勘之改進★ 應用卡方獨立性檢定於關連式分類問題
★ 中文資料擷取系統之設計與研究★ 非數值型資料視覺化與兼具主客觀的分群
★ 關聯性字組在文件摘要上的探討★ 淨化網頁:網頁區塊化以及資料區域擷取
★ 問題答覆系統使用語句分類排序方式之設計與研究★ 時序資料庫中緊密頻繁連續事件型樣之有效探勘
★ 星狀座標之軸排列於群聚視覺化之應用★ 由瀏覽歷程自動產生網頁抓取程式之研究
★ 動態網頁之樣版與資料分析研究★ 同性質網頁資料整合之自動化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在資訊科技蓬勃發展的今日,資訊化與多元化時代儼然來臨;眾多線上資訊服務的崛起,整合服務與人機互動介面成為矚目焦點。對話系統是發展長久的一項研究,其分支眾多,其中一類即是以系統代理為主要目標,是一種目標導向性的對話系統,而本文即是在這樣目的下所做的研究。
  本文系統MAGEN是一強調適應性的目標導向對話系統,採用以字詞為基礎,詞類為輔助的方式,捨棄分類器與文法資訊,僅就字詞內容當作對話之依據,解決以往系統採用分類器、文法資訊所造成擴充性不足,成長性受限的窘境。在此情況下,MAGEN將適應性充分發揮在三個方面。首先,在對話領域上,由於採用詞庫與詞類的設計,可以在僅變動存放在資料庫中的知識庫即可達成領域移轉,低門檻、低成本,讓MAGEN易於適用各種對話領域。其次,對話過程中,不同的對象會有不同的詞彙用語,透過線上學習的機制,系統將可學習這些詞彙,下次使用者再度使用這些詞彙時,系統將可有效辨識,達到適應使用者的對話習慣。最後,系統本身核心相當輕量,對話皆以文字方式進行,無須圖形化介面之輔助,因此可輕易移轉成各種型態,例如:Web Service、手持式系統等。
  為驗證三項適應性,設計有實驗項目,以不同類別之主題、雙回合的方式驗證適應性的情況,並實作三種應用形態的系統,更突顯實際用途上確實存有其經濟價值。
摘要(英) In this thesis, we present MAGEN, a light-weight dialogue system, which can be adapted to act for variant applications. It uses shallow parsing as the Natural Language Understanding component, and use classified terms as the knowledge base. In the situation where grammar is not followed strictly and mixed with Chinese and English, shallow parser can be better than full parsing and semantic analyzer. Using classified terms on the Knowledge base makes the growth of knowledge much easier and simpler.
  MAGEN is a frame-based conversational system where the control of dialogue is shared by users and the system. To be more specific, the user has the initial control; once the goal of the user is identified, the control is transferred to the user. New purposes/conversation can be added to MAGEN by inserting new scripts which can describe the necessary information for such conversation.
The term-based knowledge and script-based goals make MAGEN very adaptive and easily transform to various application domains, such as hand-held devices, integration, systems etc.
關鍵字(中) ★ 智慧代理人
★ 自然語言人機互動
★ 對話系統
關鍵字(英) ★ Conversational System
★ Human-Machine interaction with Natural Language
★ Intelegent Agent
論文目次 目錄  I
圖目錄  III
表目錄  IV
1   緒論  01
1.1  研究背景  01
1.2  研究目的  02
1.3  論文架構  03
2   相關研究  04
2.1  有限狀態基礎  05
2.2  語意框架基礎  06
2.3  混合主控  06
2.4  系統比較  08
3   系統介紹  10
3.1  知識庫  12
3.1.1 詞庫  12
3.1.2 腳本  14
3.2  對話管理員  16
3.2.1 自然語言了解(N.L.U.)  16
3.2.2 對話狀態(Status)  18
3.2.3 腳本選擇(Script Selection)  22
3.2.4 腳本填充(Script Filling)23
3.2.5 對話確認與修正(C&M)26
3.3  系統實作  28
3.4  對話範例  30
4   實驗與分析  36
5   結論與未來展望  39
參考文獻  41
參考文獻 [1] J. Allen, “Natural Language Understanding,” The Benjamin/Cummings Publishing Company, 1995.
[2] J. F. Allen, D. K. Byron, M. Dzikovska, G. Ferguson, L. Galescu, and A. Stent, “Towards Conversational Human-Computer Interaction,” AI Magazine, 2001.
[3] H. Aust, M. Oerder, F. Seide, and V. Steinbiss, “The Philips automatic train timetable information system,” Speech Communication, vol. 17, pp. 249- 262, 1995.
[4] M. J. Chen, “Intention Extraction for Intelligent Medical Query System,” National Cheng Kung University, Master Thisis, ROC, Jun. 2003.
[5] K. J. Chen, S. H. Liu, “Word Identification for Mandarin Chinese Sentences,” COLING, pp. 101-107, 1992.
[6] A. E. Cheyer and D.E. Martin, “The Open Agent Architecture,” Autonomous Agents and Multi-Agent Systems, 2001.
[7] J. Chu-Carroll, “MIMIC: An Adaptive Mixed Initiative Spoken Dialogue System for Information Queries,” The Sixth Conference on Applied Natural Language, pp. 97-104, 2000.
[8] K. M. Colby, “Artificial Paranoia,” Artificial Intelligence, vol. 2, 1971.
[9] K. D. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Introduction to Web services architecture,” New Developments in Web Services and E- commerce, vol. 41, Nov. 2001.
[10] R. Higashinaka, N. Miyazaki, M. Nakano, K. Aikawa, “Evaluating discourse understanding in spoken dialogue systems,” ACM Transactions on Speech and Language Processing(TSLP), vol. 1, pp. 1-24, 2004.
[11] R. Kaplan, S. Riezler, T. King, J. Maxwell, A. Vasserman, and R. Crouch, “Speed and accuracy in shallow and deep stochastic parsing,” HLT-NAACL, 2004.
[12] C. J. Lee, E. F. Huang, and J. K. Chen, “A Multi-keyword Spotter for the Application of the TL Phone Directory Assistant Service, ”Workshop on Distributed System Technologies & Applications, pp. 197-202, 1997.
[13] X. Li and D. Roth, “Exploring evidence for shallow parsing,” The Annual Conference on Computational Natural Language Learning, 2001.
[14] Y. C. Lin, T. H. Chiang, H. M. Wang, C. Peng, and C. Chang, “The Design of Mandarin Chinese Spoken Dialogue System,” International Conference on Spoken Language, vol. 1, pp. 230–233, 1998.
[15] M. Lundeberg, J. Gustafson, and N. Lindberg, “The august spoken dialogue system,” Eurospeech, 1999.
[16] D. Martin, A. Cheyer, and D. Moran, “The Open Agent Architecture: a framework for building distributed software systems,” Applied Artificial Intelligence, vol. 13, pp. 91--128, 1999.
[17] M. F. McTear, “Spoken Dialog Technology: Enabling the Conversational User Interface,” ACM Computing Surveys vol. 34, pp. 90-169, Mar. 2002.
[18] H. Meng, P. C. Ching, S. F. Chan, Y. F. Wong, and C. C. Chan, “ISIS: An Adaptive, Trilingual Conversational System With Interleaving Interaction and Delegation Dialoogs,” ACM Transations on Computer-Human Interaction, vol. 11, pp. 268-299, Sep. 2004.
[19] A. Nguyen, and W. Wobcke, “An Agent- Based Approach to Dialogue Management in Personal Assistants,” International conference on intelligent user interfaces, pp. 137-144, Jan. 2005.
[20] A. Stolcke, E. Shriberg, R. Bates, N. Coccaro, D. Jurafsky, R. Martin, M. Meteer, K. Ries, P. Taylor, and C. V Ess-Dykema, “Dialog act modeling for conversational speech,” AAAI Spring Symposium on Applying Machine Learning, pp. 98-105, 1998.
[21] E. Voorhees, “The TREC-8 Question Answering Track Report,” Eighth Text Retrieval Conference, pp. 77-82, 1999.
[22] J. Weizenbaum, “ELIZA—A Computer Program for the Study of Natural Language Communication between Man and machine,” CACM, vol. 10, 1967.
[23] Y. Wilks, “Human-Computer Conversation,” International Workshop on Human-Computer Conversation, vol. 1, pp. 1-14, Jun. 1999.
[24] M. Z. Yang, “Semantic Dependency Based Natural Language Understanding in a Medical Dialogue System,” National Cheng Kung University, Master Thisis, Jun. 2004.
指導教授 張嘉惠(Chia-Hui Chang) 審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明