博碩士論文 109821007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.36.252
姓名 劉子瑄(Zih-Shuan Liou)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 異丁香酚抑制不同時期結腸癌細胞的生長、遷移和侵襲
(Isoeugenol inhibits the growth, migration and invasion in different stages of colorectal cancer cells)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-30以後開放)
摘要(中) 摘要
  結腸癌(colorectal cancer,CRC)是世界上第二大癌症死亡原因,根據侵犯腸壁、淋巴結和轉移的程度,可分為Dukes A至D四個階段,儘管 CRC 的發展可以通過食物營養素和草藥來調節,但是關於荖藤異丁香酚在 CRC 不同階段的控制的訊息傳導路徑的研究相對較少。因此,本論文的總體目標旨在研究異丁香酚調節 CRC 細胞不同階段的生長、遷移和侵襲的訊息路徑。
  使用 SW480(Dukes B 期)和 SW620(Dukes C 期)CRC 細胞,我們發現異丁香酚抑制細胞生長,細胞存活率、細胞數量和集落形成減少就是證明。在較小程度上,異丁香酚影響正常 FHC 結腸細胞的生長。進一步的以傷口癒合試驗表示異丁香酚抑制 SW480 和 SW620 細胞的遷移。此外,Boyden chamber assay證實異丁香酚抑制了這兩種 CRC 細胞的侵襲。當檢查訊息路徑時,觀察到異丁香酚會降低 pAkt、CDK2、CDK4、CDK6、細胞週期蛋白 D1、N-鈣粘蛋白和 Snail 蛋白的水平,並增加 pAMPK、pERK、pJNK、pp38 MAPK、ATF3、LC3β 和 E -鈣粘蛋白的表現,也觀察到異丁香酚對細胞週期蛋白 D3、p21 和 p27 蛋白水平的階段依賴性影響,酶譜分析表明異丁香酚抑制 MMP-2 和 MMP-9 蛋白的活性。
  使用 AMPK(Compound C)和 p38(SB203580)抑製劑治療可拮抗異丁香酚對 CRC 細胞生長、遷移和侵襲以及 SW480 和 SW620 細胞中大多數訊息蛋白的影響。有趣的是,用 ERK (U0126) 和 JNK (SP600125) 抑製劑治療會增強異丁香酚對 CRC 細胞生長、遷移和侵襲以及大多數訊息蛋白的影響。
  這些數據表明,異丁香酚可能通過活化 AMPK 和 p38 MAPK 來抑制 CRC 細胞的生長、遷移和侵襲,並使 CRC 細胞能夠抑制表皮特徵轉變為具有 MMP 依賴性的間質特徵。本論文關於異丁香酚調節 CRC 細胞各個階段活動的訊息機制的結果,將突出其在預防和治療 CRC 方面的可能用途。
摘要(英) ABSTRACT
Colorectal cancer (CRC) is the second common cause of cancer death in the world and can be divided into four stages from Dukes A to D according to the degrees of invasion of intestinal wall, lymphatic node involvement, and metastasis. Although development of CRC can be regulated by food nutrients and herbal medicines, relatively little information is known about the control of Piper betle isoeugenol in different stages of CRC. Thus, the overall objective of this thesis was designed to study the signal pathways involved in isoeugenol modulations of growth, migration, and invasion in different stages of CRC cells.
Using SW480 (Dukes B stage) and SW620 (Dukes C stage) CRC cells, we found that isoeugenol inhibited cell growth, as evidenced by decreased cell viability, cell number and colony formation. To a much lesser extent, isoeugenol affected the growth of normal FHC colon cells. Further wound healing assay indicated that isoeugenol inhibited the migration of SW480 and SW620 cells. In addition, the Boyden chamber assay confirmed that isoeugenol inhibited the invasion of these two CRC cells. When the signaling pathways were examined, isoeugenol was generally observed to decrease levels of pAkt, CDK2, CDK4, CDK6, cyclin D1, N-cadherin and Snail proteins and increase levels of pAMPK, pERK, pJNK, pp38 MAPK, ATF3, LC3β and E-cadherin proteins. The stage-dependent effects of isoeugenol on levels of cyclin D3, p21, and p27 proteins were also observed. Zymography assay indicated that isoeugenol inhibited the activities of MMP-2 and MMP-9 proteins.
Treatment with the inhibitors of AMPK (compound C) and p38 (SB203580) antagonized the effects of isoeugenol on CRC cell growth, migration, and invasion and most of those signaling proteins in SW480 and SW620 cells. Interestingly, treatment with the inhibitors of ERK (U0126) and JNK (SP600125) generally enhanced the effects of isoeugenol on CRC cell growth, migration, and invasion, and most of those signaling proteins.
These data suggest that isoeugenol may inhibit CRC cell growth, migration and invasion through activations of the AMPK and particular p38 MAPK member, as well as enabling CRC cells to suppress the epithelial features changing to mesenchymal ones with MMP dependency. Results of this thesis for signaling mechanisms of isoeugenol to coordinate the activity of various stages of CRC cells would highlight its possible uses for prevention and cure of CRC.
關鍵字(中) ★ 結腸癌 關鍵字(英) ★ Colorectal cancer
論文目次 目錄
摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XIII
英文縮寫對照表 XIV
壹、緒論 1
1-1結腸癌 1
1-1-1介紹 1
1-1-2結腸癌的癌化 1
1-1-3轉移階段 2
1-1-4結腸癌治療 3
1-2 藥物 3
1-2-1 Piper betle與Isoeugenol 3
1-2-2 Isoeugenol與抗氧化的活性 4
1-2-3 丹參酮IIA(Tanshinone IIA)在結腸癌中的作用 5
1-3結腸癌的調節與訊息傳導 6
1-3-1生長訊息傳導 6
1-3-2結腸癌與細胞週期 10
1-3-3 結腸癌EMT與轉移 12
1-3-4基質金屬蛋白酶 (Matrix metalloproteinases, MMPs) 13
1-4研究動機 14
貳、材料與方法 16
2-1實驗材料(Experimental materials) 16
2-2細胞培養(Cell culture) 16
2-3細胞存活率試驗(MTT assay) 17
2-4細胞計數試驗(Cell number assay) 17
2-5軟瓊脂集落形成測定(Soft agar colony formation assay) 18
2-6傷痕癒合爬行測試(Wound healing assay) 19
2-7細胞侵襲分析(Boyden chamber invasion assay) 20
2-8酶譜法(Zymography) 20
2-9西方墨點法(Western blot) 22
2-10 抑制劑(Inhibitors) 24
2-11 統計(Statistics) 24
參、結果 25
3-1 Isoeugenol對正常人類結腸上皮細胞和人類結腸癌上皮細胞的生長及存活率的影響 25
3-2 Isoeugenol對人類結腸癌上皮細胞群落生長之抑制效果 26
3-3 Isoeugenol對人類結腸癌上皮細胞之細胞週期蛋白的影響 27
3-4 Isoeugenol對人類結腸癌上皮細胞生長訊息蛋白表現量的影響 27
3-5 Isoeugenol對人類結腸癌上皮細胞爬行能力之抑制效果 28
3-6 Isoeugenol對人類結腸癌上皮細胞侵襲能力之抑制效果 29
3-7 Isoeugenol對人類結腸癌上皮細胞上皮間質轉化(EMT)訊息蛋白質的表現量的影響 29
3-8 Isoeugenol對人類結腸癌上皮細胞MMP-2和MMP-9活性之影響 30
3-9 Isoeugenol透過AMPK對人類結腸癌上皮細胞的生長及存活率的影響 30
3-10 Isoeugenol透過AMPK對人類結腸癌上皮細胞之細胞週期蛋白的影響 31
3-11 Isoeugenol透過AMPK對人類結腸癌上皮細胞生長訊息蛋白表現量的影響 35
3-12 Isoeugenol透過AMPK對人類結腸癌上皮細胞上爬行和侵襲的影響 40
3-13 Isoeugenol透過AMPK對人類結腸癌上皮細胞上皮間質轉化(EMT)訊息蛋白質的表現量的影響 41
3-14 Isoeugenol透過AMPK對人類結腸癌上皮細胞上MMP-2和MMP-9活性之影響 43
3-15 Isoeugenol透過ERK對人類結腸癌上皮細胞的生長及存活率的影響 43
3-15 Isoeugenol透過ERK對人類結腸癌上皮細胞之細胞週期蛋白的影響 44
3-16 Isoeugenol透過ERK對人類結腸癌上皮細胞生長訊息蛋白表現量的影響 47
3-17 Isoeugenol透過ERK對人類結腸癌上皮細胞爬行和侵襲的影響 53
3-18 Isoeugenol透過ERK對人類結腸癌上皮細胞上皮間質轉化(EMT)訊息蛋白質的表現量的影響 53
3-19 Isoeugenol透過ERK對人類結腸癌上皮細胞MMP-2和MMP-9活性的影響 55
3-20 Isoeugenol透過JNK對人類結腸癌上皮細胞的生長及存活率的影響 56
3-21 Isoeugenol透過JNK對人類結腸癌上皮細胞之細胞週期蛋白的影響 57
3-22 Isoeugenol透過JNK對人類結腸癌上皮細胞生長訊息蛋白表現量的影響 60
3-23 Isoeugenol透過JNK對人類結腸癌上皮細胞爬行和侵襲的影響 65
3-24 Isoeugenol透過JNK對人類結腸癌上皮細胞上皮間質轉化(EMT)訊息蛋白質的表現量的影響 66
3-25 Isoeugenol透過JNK對人類結腸癌上皮細胞MMP-2和MMP-9活性的影響 68
3-26 Isoeugenol透過p38 MAPK對人類結腸癌上皮細胞的生長及存活率的影響 68
3-27 Isoeugenol透過p38 MAPK對人類結腸癌上皮細胞之細胞週期蛋白的影響 69
3-28 Isoeugenol透過p38 MAPK對人類結腸癌上皮細胞生長訊息蛋白表現量的影響 72
3-29 Isoeugenol透過p38 MAPK對人類結腸癌上皮細胞爬行和侵襲的影響 78
3-30 Isoeugenol透過p38 MAPK對人類結腸癌上皮細胞上皮間質轉化(EMT)訊息蛋白質的表現量的影響 79
3-31 Isoeugenol透過p38 MAPK對人類結腸癌上皮細胞MMP-2和MMP-9活性的影響 80
肆、討論 82
伍、結論 95
陸、參考文獻 97
柒、附錄 182

參考文獻 陸、參考文獻
[1] H. Sung等, 作者, 「Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries」, CA A Cancer J Clin, 卷 71, 期 3, 頁 209–249, 5月 2021, doi: 10.3322/caac.21660.
[2] 統計處, 作者, 「109年國人死因統計結果」, 統計處, 2021年6月18日. https://www.mohw.gov.tw/cp-5017-61533-1.html (引見於 2022年7月23日).
[3] S. BW及W. CP, 作者, World Cancer Report 2014. 引見於: 2022年7月24日. [線上]. 載於: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014
[4] 「Colorectal Cancer Prevention (PDQ®)–Health Professional Version - NCI」. https://www.cancer.gov/types/colorectal/hp/colorectal-prevention-pdq#section/all (引見於 2022年7月24日).
[5] E. Theodoratou, M. Timofeeva, X. Li, X. Meng及J. P. A. Ioannidis, 作者, 「Nature, Nurture, and Cancer Risks: Genetic and Nutritional Contributions to Cancer」, Annu. Rev. Nutr., 卷 37, 期 1, 頁 293–320, 8月 2017, doi: 10.1146/annurev-nutr-071715-051004.
[6] K. C. G. Berg等, 作者, 「Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies」, Mol Cancer, 卷 16, 頁 116, 7月 2017, doi: 10.1186/s12943-017-0691-y.
[7] K. Souček等, 作者, 「Fetal colon cell line FHC exhibits tumorigenic phenotype, complex karyotype, and TP53 gene mutation」, Cancer Genetics and Cytogenetics, 卷 197, 期 2, 頁 107–116, 3月 2010, doi: 10.1016/j.cancergencyto.2009.11.009.
[8] R. E. Hewitt等, 作者, 「Validation of a model of colon cancer progression」, The Journal of Pathology, 卷 192, 期 4, 頁 446–454, 2000, doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH775>3.0.CO;2-K.
[9] A. Olejniczak, M. Szaryńska及Z. Kmieć, 作者, 「In vitro characterization of spheres derived from colorectal cancer cell lines」, International Journal of Oncology, 卷 52, 期 2, 頁 599–612, 2月 2018, doi: 10.3892/ijo.2017.4206.
[10] M. G. Brattain等, 作者, 「Initiation and characterization of cultures of human colonic carcinoma with different biological characteristics utilizing feeder layers of confluent fibroblasts」, Oncodev Biol Med, 卷 2, 期 5, 頁 355–366, 1981.
[11] M. Sreepadmanabh及B. J. Toley, 作者, 「Investigations into the cancer stem cell niche using in-vitro 3-D tumor models and microfluidics」, Biotechnology Advances, 卷 36, 期 4, 頁 1094–1110, 7月 2018, doi: 10.1016/j.biotechadv.2018.03.009.
[12] 「Cancer statistics, 2019 - Siegel - 2019 - CA: A Cancer Journal for Clinicians - Wiley Online Library」. https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21551 (引見於 2022年7月25日).
[13] T.-Y. Yang, M.-L. Wu, C.-I. Chang, C.-I. Liu, T.-C. Cheng及Y.-J. Wu, 作者, 「Bornyl cis-4-Hydroxycinnamate Suppresses Cell Metastasis of Melanoma through FAK/PI3K/Akt/mTOR and MAPK Signaling Pathways and Inhibition of the Epithelial-to-Mesenchymal Transition」, IJMS, 卷 19, 期 8, 頁 2152, 7月 2018, doi: 10.3390/ijms19082152.
[14] D. Choudhary及R. K. Kale, 作者, 「Antioxidant and non-toxic properties ofPiper betle leaf extract:in vitro andin vivo studies」, Phytother. Res., 卷 16, 期 5, 頁 461–466, 8月 2002, doi: 10.1002/ptr.1015.
[15] D. Banerjee及B. Shah, 作者, 「ANTIPROLIFERATIVE ACTIVITY OF PIPER BETEL LEAF EXTRACTS ON HUMAN LUNG CANCER CELL LINE (A549)」, 卷 6, 期 1, 頁 4.
[16] P. L. Ng等, 作者, 「Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells」, J Zhejiang Univ Sci B, 卷 15, 期 8, 頁 692–700, 8月 2014, doi: 10.1631/jzus.B1300303.
[17] 「Evaluation of antioxidant and anticancer effects of Piper betle L (Piperaceae) leaf extract on MCF-7 cells, and preparation of transdermal patches of the extract | Tropical Journal of Pharmaceutical Research」. https://www.ajol.info/index.php/tjpr/article/view/207720 (引見於 2022年9月25日).
[18] 「Simultaneous determination of active compounds in Piper betle Linn. leaf extract and effect of extracting solvents on bioactivity - Nguyen - 2020 - Engineering Reports - Wiley Online Library」. https://onlinelibrary.wiley.com/doi/full/10.1002/eng2.12246 (引見於 2022年9月25日).
[19] 「Piper betle leaf extracts induced human hepatocellular carcinoma Hep3B cell death via MAPKs regulating the p73 pathway in vitro and in vivo - PubMed」. https://pubmed.ncbi.nlm.nih.gov/25371988/ (引見於 2022年9月25日).
[20] 「Effect of orally administered betel leaf (Piper betle Linn.) on digestive enzymes of pancreas and intestinal mucosa and on bile production in rats - PubMed」. https://pubmed.ncbi.nlm.nih.gov/8575807/ (引見於 2022年9月25日).
[21] 「(PDF) Antioxidant and anti-inflammatory activities of extracts of betel leaves (Piper betle) from solvents with different polarities」. https://www.researchgate.net/publication/279756389_Antioxidant_and_anti-inflammatory_activities_of_extracts_of_betel_leaves_Piper_betle_from_solvents_with_different_polarities (引見於 2022年9月25日).
[22] M. H. Cang, P. T. B. Nhi及N. T. C. Linh, 作者, 「Betel (Piper betle L.) leaf essential oil extraction using steam distillation」, IJAERS, 卷 7, 期 6, 頁 166–169, 2020, doi: 10.22161/ijaers.76.20.
[23] P. Guha及S. Nandi, 作者, 「Essential Oil of Betel Leaf (Piper betle L.): A Novel Addition to the World Food Sector」, 收入 Essential Oil Research, S. Malik, 編輯 Cham: Springer International Publishing, 2019, 頁 149–196. doi: 10.1007/978-3-030-16546-8_5.
[24] 「(PDF) Cytotoxic activity of essential oil and extracts of Ocimum Basilicum against human carcinoma cells. Molecular docking study of isoeugenol as a potent cox and lox inhibitor」. https://www.researchgate.net/publication/263587011_Cytotoxic_activity_of_essential_oil_and_extracts_of_Ocimum_Basilicum_against_human_carcinoma_cells_Molecular_docking_study_of_isoeugenol_as_a_potent_cox_and_lox_inhibitor (引見於 2022年9月25日).
[25] 「A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions - PubMed」. https://pubmed.ncbi.nlm.nih.gov/15964168/ (引見於 2022年9月25日).
[26] X. Yuxian, T. Feng, L. Ren及L. Zhengcai, 作者, 「Tanshinone II-A inhibits invasion and metastasis of human hepatocellular carcinoma cells in vitro and in vivo」, Tumori, 卷 95, 期 6, 頁 789–795, 12月 2009, doi: 10.1177/030089160909500623.
[27] C.-C. SU, 作者, 「Tanshinone IIA potentiates the efficacy of 5-FU in Colo205 colon cancer cells in vivo through downregulation of P-gp and LC3-II」, Exp Ther Med, 卷 3, 期 3, 頁 555–559, 3月 2012, doi: 10.3892/etm.2011.441.
[28] Y. Bai, L. Zhang, X. Fang及Y. Yang, 作者, 「Tanshinone IIA enhances chemosensitivity of colon cancer cells by suppressing nuclear factor-κB」, Experimental and Therapeutic Medicine, 卷 11, 期 3, 頁 1085–1089, 3月 2016, doi: 10.3892/etm.2016.2984.
[29] 「Research on the inhibiting effect of tanshinone IIA on colon cancer cell growth via COX-2-Wnt/β-catenin signaling pathway」. https://www.researchgate.net/publication/327801531_Research_on_the_inhibiting_effect_of_tanshinone_IIA_on_colon_cancer_cell_growth_via_COX-2-Wntb-catenin_signaling_pathway (引見於 2022年11月12日).
[30] 「Effects and Mechanism of Tanshinone II A in Proliferation, Apoptosis, and Migration of Human Colon Cancer Cells - PMC」. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612241/ (引見於 2022年11月12日).
[31] Y. Zhang等, 作者, 「Tanshinone IIA Reverses Oxaliplatin Resistance In Human Colorectal Cancer Via Inhibition Of ERK/Akt Signaling Pathway」, Onco Targets Ther, 卷 12, 頁 9725–9734, 11月 2019, doi: 10.2147/OTT.S217914.
[32] 「Tanshinone IIA reduces secretion of pro-angiogenic factors and inhibits angiogenesis in human colorectal cancer - PMC」. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057926/ (引見於 2022年11月12日).
[33] L.-H. Zhou等, 作者, 「Tanshinone II--a inhibits angiogenesis through down regulation of COX-2 in human colorectal cancer」, Asian Pac J Cancer Prev, 卷 13, 期 9, 頁 4453–4458, 2012, doi: 10.7314/apjcp.2012.13.9.4453.
[34] M. Hollander, C. Maier, E. Hobbs, A. Ashmore, R. Linnoila及P. Dennis, 作者, 「Akt1 deletion prevents lung tumorigenesis by mutant K-ras」, Oncogene, 卷 30, 期 15, 頁 1812–1821, 4月 2011, doi: 10.1038/onc.2010.556.
[35] S. H. Sahlberg等, 作者, 「Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells」, Int J Oncol, 卷 50, 期 1, 頁 5–14, 11月 2016, doi: 10.3892/ijo.2016.3771.
[36] S. A. Danielsen, P. W. Eide, A. Nesbakken, T. Guren, E. Leithe及R. A. Lothe, 作者, 「Portrait of the PI3K/AKT pathway in colorectal cancer」, Biochim Biophys Acta, 卷 1855, 期 1, 頁 104–121, 1月 2015, doi: 10.1016/j.bbcan.2014.09.008.
[37] C. Porta, C. Paglino及A. Mosca, 作者, 「Targeting PI3K/Akt/mTOR Signaling in Cancer」, Frontiers in Oncology, 卷 4, 2014, 引見於: 2022年9月25日. [線上]. 載於: https://www.frontiersin.org/articles/10.3389/fonc.2014.00064
[38] D. G. Hardie, 作者, 「AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy」, Nat Rev Mol Cell Biol, 卷 8, 期 10, Art. 期 10, 10月 2007, doi: 10.1038/nrm2249.
[39] S.-M. Jeon及N. Hay, 作者, 「The double-edged sword of AMPK signaling in cancer and its therapeutic implications」, Arch Pharm Res, 卷 38, 期 3, 頁 346–357, 3月 2015, doi: 10.1007/s12272-015-0549-z.
[40] S.-C. Lin及D. G. Hardie, 作者, 「AMPK: Sensing Glucose as well as Cellular Energy Status」, Cell Metabolism, 卷 27, 期 2, 頁 299–313, 2月 2018, doi: 10.1016/j.cmet.2017.10.009.
[41] S. Herzig及R. J. Shaw, 作者, 「AMPK: guardian of metabolism and mitochondrial homeostasis」, Nat Rev Mol Cell Biol, 卷 19, 期 2, 頁 121–135, 2月 2018, doi: 10.1038/nrm.2017.95.
[42] D. G. Hardie, F. A. Ross及S. A. Hawley, 作者, 「AMPK - a nutrient and energy sensor that maintains energy homeostasis」, Nat Rev Mol Cell Biol, 卷 13, 期 4, 頁 251–262, 3月 2012, doi: 10.1038/nrm3311.
[43] 「TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival: Cell」. https://www.cell.com/cell/fulltext/S0092-8674(03)00929-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867403009292%3Fshowall%3Dtrue (引見於 2022年9月26日).
[44] D. M. Gwinn等, 作者, 「AMPK phosphorylation of raptor mediates a metabolic checkpoint」, Mol Cell, 卷 30, 期 2, 頁 214–226, 4月 2008, doi: 10.1016/j.molcel.2008.03.003.
[45] K. Imamura, T. Ogura, A. Kishimoto, M. Kaminishi及H. Esumi, 作者, 「Cell cycle regulation via p53 phosphorylation by a 5’-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line」, Biochem Biophys Res Commun, 卷 287, 期 2, 頁 562–567, 9月 2001, doi: 10.1006/bbrc.2001.5627.
[46] R. G. Jones等, 作者, 「AMP-activated protein kinase induces a p53-dependent metabolic checkpoint」, Mol Cell, 卷 18, 期 3, 頁 283–293, 4月 2005, doi: 10.1016/j.molcel.2005.03.027.
[47] M. L. Slattery, L. E. Mullany, L. C. Sakoda, R. K. Wolff, W. S. Samowitz及J. S. Herrick, 作者, 「The MAPK-Signaling Pathway in Colorectal Cancer: Dysregulated Genes and Their Association With MicroRNAs」, Cancer Inform, 卷 17, 頁 1176935118766522, 3月 2018, doi: 10.1177/1176935118766522.
[48] J. Y. Fang及B. C. Richardson, 作者, 「The MAPK signalling pathways and colorectal cancer」, Lancet Oncol, 卷 6, 期 5, 頁 322–327, 5月 2005, doi: 10.1016/S1470-2045(05)70168-6.
[49] G. Pearson等, 作者, 「Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions」, Endocr Rev, 卷 22, 期 2, 頁 153–183, 4月 2001, doi: 10.1210/edrv.22.2.0428.
[50] M. Imajo, Y. Tsuchiya及E. Nishida, 作者, 「Regulatory mechanisms and functions of MAP kinase signaling pathways」, IUBMB Life, 卷 58, 期 5–6, 頁 312–317, 2006, doi: 10.1080/15216540600746393.
[51] 「Ras target proteins in eukaryotic cells - Marshall - 1995 - The FASEB Journal - Wiley Online Library」. https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.9.13.7557021 (引見於 2022年8月5日).
[52] T. R. Kress, T. Raabe及S. M. Feller, 作者, 「High Erk activity suppresses expression of the cell cycle inhibitor p27Kip1 in colorectal cancer cells」, Cell Commun Signal, 卷 8, 頁 1, 2月 2010, doi: 10.1186/1478-811X-8-1.
[53] V. Waetzig及T. Herdegen, 作者, 「Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage」, Trends in Pharmacological Sciences, 卷 26, 期 9, 頁 455–461, 9月 2005, doi: 10.1016/j.tips.2005.07.006.
[54] A. M. Bode及Z. Dong, 作者, 「The Functional Contrariety of JNK」, Mol Carcinog, 卷 46, 期 8, 頁 591–598, 8月 2007, doi: 10.1002/mc.20348.
[55] G.-Y. Gao, J. Ma, P. Lu, X. Jiang及C. Chang, 作者, 「Ophiopogonin B induces the autophagy and apoptosis of colon cancer cells by activating JNK/c-Jun signaling pathway」, Biomedicine & Pharmacotherapy, 卷 108, 頁 1208–1215, 12月 2018, doi: 10.1016/j.biopha.2018.06.172.
[56] C. Huang, K. Jacobson及M. D. Schaller, 作者, 「MAP kinases and cell migration」, Journal of Cell Science, 卷 117, 期 20, 頁 4619–4628, 9月 2004, doi: 10.1242/jcs.01481.
[57] 「JNK Signaling in the Control of the Tumor-Initiating Capacity Associated with Cancer Stem Cells - Chifumi Kitanaka, Atsushi Sato, Masashi Okada, 2013」. https://journals.sagepub.com/doi/full/10.1177/1947601912474892 (引見於 2022年8月7日).
[58] 「Signal transduction by the c-Jun N-terminal kinase (JNK) — from inflammation to development - ScienceDirect」. https://www.sciencedirect.com/science/article/abs/pii/S0955067498801439?via%3Dihub (引見於 2022年8月7日).
[59] Q. Wu, W. Wu, V. Jacevic, T. C. C. Franca, X. Wang及K. Kuca, 作者, 「Selective inhibitors for JNK signalling: a potential targeted therapy in cancer」, J Enzyme Inhib Med Chem, 卷 35, 期 1, 頁 574–583, doi: 10.1080/14756366.2020.1720013.
[60] A. Pranteda, V. Piastra, L. Stramucci, D. Fratantonio及G. Bossi, 作者, 「The p38 MAPK Signaling Activation in Colorectal Cancer upon Therapeutic Treatments」, Int J Mol Sci, 卷 21, 期 8, 頁 2773, 4月 2020, doi: 10.3390/ijms21082773.
[61] 「MAP kinase pathways | Journal of Cell Science | The Company of Biologists」. https://journals.biologists.com/jcs/article/118/16/3569/28405/MAP-kinase-pathways (引見於 2022年8月5日).
[62] A. Cuenda及S. Rousseau, 作者, 「p38 MAP-Kinases pathway regulation, function and role in human diseases」, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 卷 1773, 期 8, 頁 1358–1375, 8月 2007, doi: 10.1016/j.bbamcr.2007.03.010.
[63] A. Cuadrado及A. R. Nebreda, 作者, 「Mechanisms and functions of p38 MAPK signalling」, Biochemical Journal, 卷 429, 期 3, 頁 403–417, 7月 2010, doi: 10.1042/BJ20100323.
[64] 「Dual Function of p38α MAPK in Colon Cancer: Suppression of Colitis-Associated Tumor Initiation but Requirement for Cancer Cell Survival: Cancer Cell」. https://www.cell.com/cancer-cell/fulltext/S1535-6108(14)00083-X (引見於 2022年8月7日).
[65] V. Grossi, A. Peserico, T. Tezil及C. Simone, 作者, 「p38α MAPK pathway: A key factor in colorectal cancer therapy and chemoresistance」, World J Gastroenterol, 卷 20, 期 29, 頁 9744–9758, 8月 2014, doi: 10.3748/wjg.v20.i29.9744.
[66] D. Hanahan及R. A. Weinberg, 作者, 「Hallmarks of Cancer: The Next Generation」, Cell, 卷 144, 期 5, 頁 646–674, 3月 2011, doi: 10.1016/j.cell.2011.02.013.
[67] A. Brozovic及M. Osmak, 作者, 「Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance」, Cancer Letters, 卷 251, 期 1, 頁 1–16, 6月 2007, doi: 10.1016/j.canlet.2006.10.007.
[68] L. D. Wood等, 作者, 「The Genomic Landscapes of Human Breast and Colorectal Cancers」, Science, 卷 318, 期 5853, 頁 1108–1113, 11月 2007, doi: 10.1126/science.1145720.
[69] 「Immunohistochemical Detection of Activating Transcription Factor 3, a Hub of the Cellular Adaptive–Response Network - PMC」. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675787/ (引見於 2022年11月6日).
[70] Y. Tanaka等, 作者, 「Systems Analysis of ATF3 in Stress Response and Cancer Reveals Opposing Effects on Pro-Apoptotic Genes in p53 Pathway」, PLoS One, 卷 6, 期 10, 頁 e26848, 10月 2011, doi: 10.1371/journal.pone.0026848.
[71] K. Ameri等, 作者, 「Induction of activating transcription factor 3 by anoxia is independent of p53 and the hypoxic HIF signalling pathway」, Oncogene, 卷 26, 期 2, Art. 期 2, 1月 2007, doi: 10.1038/sj.onc.1209781.
[72] J. Gao, Y. Zhu, M. Nilsson及K. Sundfeldt, 作者, 「TGF-β isoforms induce EMT independent migration of ovarian cancer cells」, Cancer Cell Int, 卷 14, 頁 72, 9月 2014, doi: 10.1186/s12935-014-0072-1.
[73] J.-H. Fang等, 作者, 「A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial–mesenchymal transition–independent manner」, Hepatology, 卷 62, 期 2, 頁 452–465, 2015, doi: 10.1002/hep.27760.
[74] M. Edagawa等, 作者, 「Role of Activating Transcription Factor 3 (ATF3) in Endoplasmic Reticulum (ER) Stress-induced Sensitization of p53-deficient Human Colon Cancer Cells to Tumor Necrosis Factor (TNF)-related Apoptosis-inducing Ligand (TRAIL)-mediated Apoptosis through Up-regulation of Death Receptor 5 (DR5) by Zerumbone and Celecoxib」, J Biol Chem, 卷 289, 期 31, 頁 21544–21561, 8月 2014, doi: 10.1074/jbc.M114.558890.
[75] K. Taketani等, 作者, 「Key role of ATF3 in p53-dependent DR5 induction upon DNA damage of human colon cancer cells」, Oncogene, 卷 31, 期 17, Art. 期 17, 4月 2012, doi: 10.1038/onc.2011.397.
[76] H.-C. Ku及C.-F. Cheng, 作者, 「Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer」, Front Endocrinol (Lausanne), 卷 11, 頁 556, 8月 2020, doi: 10.3389/fendo.2020.00556.
[77] X. Jiang, K.-J. Kim, T. Ha及S.-H. Lee, 作者, 「Potential Dual Role of Activating Transcription Factor 3 in Colorectal Cancer」, Anticancer Research, 卷 36, 期 2, 頁 509–516, 2月 2016.
[78] S. Elmore, 作者, 「Apoptosis: A Review of Programmed Cell Death」, Toxicol Pathol, 卷 35, 期 4, 頁 495–516, 2007, doi: 10.1080/01926230701320337.
[79] C. W. Yun及S. H. Lee, 作者, 「The Roles of Autophagy in Cancer」, Int J Mol Sci, 卷 19, 期 11, 頁 3466, 11月 2018, doi: 10.3390/ijms19113466.
[80] 「The BCL-2 Family Reunion: Molecular Cell」. https://www.cell.com/molecular-cell/fulltext/S1097-2765(10)00079-1 (引見於 2022年11月6日).
[81] M. Enari, H. Sakahira, H. Yokoyama, K. Okawa, A. Iwamatsu及S. Nagata, 作者, 「A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD」, Nature, 卷 391, 期 6662, Art. 期 6662, 1月 1998, doi: 10.1038/34112.
[82] 「Inhibitor of Apoptosis Proteins: Translating Basic Knowledge into Clinical Practice | Cancer Research | American Association for Cancer Research」. https://aacrjournals.org/cancerres/article/64/20/7183/511865/Inhibitor-of-Apoptosis-Proteins-Translating-Basic (引見於 2022年11月6日).
[83] A. Ashkenazi及V. M. Dixit, 作者, 「Death Receptors: Signaling and Modulation」, Science, 卷 281, 期 5381, 頁 1305–1308, 8月 1998, doi: 10.1126/science.281.5381.1305.
[84] Y. Chicheportiche等, 作者, 「TWEAK, a New Secreted Ligand in the Tumor Necrosis Factor Family That Weakly Induces Apoptosis*」, Journal of Biological Chemistry, 卷 272, 期 51, 頁 32401–32410, 12月 1997, doi: 10.1074/jbc.272.51.32401.
[85] F. H. Igney及P. H. Krammer, 作者, 「Death and anti-death: tumour resistance to apoptosis」, Nat Rev Cancer, 卷 2, 期 4, Art. 期 4, 4月 2002, doi: 10.1038/nrc776.
[86] 「The TNF and TNF Receptor Superfamilies: Cell」. https://www.cell.com/cell/fulltext/S0092-8674(01)00237-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867401002379%3Fshowall%3Dtrue (引見於 2022年11月6日).
[87] 「Cell cycle regulation and anticancer drug discovery - PMC」. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785171/ (引見於 2022年10月31日).
[88] L. R. Pack, L. H. Daigh, M. Chung及T. Meyer, 作者, 「Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2」, Nat Commun, 卷 12, 期 1, Art. 期 1, 6月 2021, doi: 10.1038/s41467-021-23612-z.
[89] J. W. Harper, G. R. Adami, N. Wei, K. Keyomarsi及S. J. Elledge, 作者, 「The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases」, Cell, 卷 75, 期 4, 頁 805–816, 11月 1993, doi: 10.1016/0092-8674(93)90499-g.
[90] C. J. Sherr及J. M. Roberts, 作者, 「CDK inhibitors: positive and negative regulators of G1-phase progression」, Genes Dev, 卷 13, 期 12, 頁 1501–1512, 6月 1999, doi: 10.1101/gad.13.12.1501.
[91] Z. K. Yu, J. L. Gervais及H. Zhang, 作者, 「Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins」, Proc Natl Acad Sci U S A, 卷 95, 期 19, 頁 11324–11329, 9月 1998, doi: 10.1073/pnas.95.19.11324.
[92] Y. Xiong, H. Zhang及D. Beach, 作者, 「D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA」, Cell, 卷 71, 期 3, 頁 505–514, 10月 1992, doi: 10.1016/0092-8674(92)90518-h.
[93] 「p21 and p27 - PMC」. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678956/#R27 (引見於 2022年10月31日).
[94] T. Vu及P. K. Datta, 作者, 「Regulation of EMT in Colorectal Cancer: A Culprit in Metastasis」, Cancers (Basel), 卷 9, 期 12, 頁 171, 12月 2017, doi: 10.3390/cancers9120171.
[95] 「Epithelial–mesenchymal transition in colorectal cancer metastasis: A system review - ScienceDirect」. https://www.sciencedirect.com/science/article/abs/pii/S0344033815001041?via%3Dihub (引見於 2022年8月1日).
[96] L. Huang, R.-L. Wu及A.-M. Xu, 作者, 「Epithelial-mesenchymal transition in gastric cancer」, Am J Transl Res, 卷 7, 期 11, 頁 2141–2158, 11月 2015.
[97] J. P. Thiery, H. Acloque, R. Y. J. Huang及M. A. Nieto, 作者, 「Epithelial-Mesenchymal Transitions in Development and Disease」, Cell, 卷 139, 期 5, 頁 871–890, 11月 2009, doi: 10.1016/j.cell.2009.11.007.
[98] 「Epithelial Plasticity: A Common Theme in Embryonic and Cancer Cells」. https://www.science.org/doi/10.1126/science.1234850?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (引見於 2022年8月1日).
[99] 「Survival skills ensure that cancer spreads」. https://www.nature.com/articles/d41586-019-02570-z (引見於 2022年8月1日).
[100]Y. Katsuno, S. Lamouille及R. Derynck, 作者, 「TGF-β signaling and epithelial–mesenchymal transition in cancer progression」, Current Opinion in Oncology, 卷 25, 期 1, 頁 76–84, 1月 2013, doi: 10.1097/CCO.0b013e32835b6371.
[101]D. Ribatti, R. Tamma及T. Annese, 作者, 「Epithelial-Mesenchymal Transition in Cancer: A Historical Overview」, Transl Oncol, 卷 13, 期 6, 頁 100773, 6月 2020, doi: 10.1016/j.tranon.2020.100773.
[102]「Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming - PMC」. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423833/ (引見於 2022年10月31日).
[103]「Invadopodia Are Required for Cancer Cell Extravasation and Are a Therapeutic Target for Metastasis: Cell Reports」. https://www.cell.com/cell-reports/fulltext/S2211-1247(14)00634-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124714006342%3Fshowall%3Dtrue (引見於 2022年8月1日).
[104]「Matrix-degrading metalloproteinases in tumor progression. - Abstract - Europe PMC」. https://europepmc.org/article/med/8983072 (引見於 2022年10月31日).
[105]M. Murashige, M. Miyahara, N. Shiraishi, T. Saito, K. Kohno及M. Kobayashi, 作者, 「Enhanced Expression of Tissue Inhibitors of Metalloproteinases in Human Colorectal Tumors」, Japanese Journal of Clinical Oncology, 卷 26, 期 5, 頁 303–309, 10月 1996, doi: 10.1093/oxfordjournals.jjco.a023237.
[106]A. F. Chambers及L. M. Matrisian, 作者, 「Changing Views of the Role of Matrix Metalloproteinases in Metastasis」, JNCI: Journal of the National Cancer Institute, 卷 89, 期 17, 頁 1260–1270, 9月 1997, doi: 10.1093/jnci/89.17.1260.
[107]M. G. Tutton, M. L. George, S. A. Eccles, S. Burton, R. I. Swift及A. M. Abulafi, 作者, 「Use of plasma MMP-2 and MMP-9 levels as a surrogate for tumour expression in colorectal cancer patients」, International Journal of Cancer, 卷 107, 期 4, 頁 541–550, 2003, doi: 10.1002/ijc.11436.
[108]T. S. Kim及Y. B. Kim, 作者, 「Correlation between expression of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) and angiogenesis in colorectal adenocarcinoma」, J Korean Med Sci, 卷 14, 期 3, 頁 263–270, 6月 2009, doi: 10.3346/jkms.1999.14.3.263.
[109]P. Ring, K. Johansson, M. Höyhtyä, K. Rubin及G. Lindmark, 作者, 「Expression of tissue inhibitor of metalloproteinases TIMP-2 in human colorectal cancer--a predictor of tumour stage」, Br J Cancer, 卷 76, 期 6, 頁 805–811, 1997, doi: 10.1038/bjc.1997.466.
[110]Z. S. Zeng及J. G. Guillem, 作者, 「Colocalisation of matrix metalloproteinase-9-mRNA and protein in human colorectal cancer stromal cells」, Br J Cancer, 卷 74, 期 8, 頁 1161–1167, 10月 1996, doi: 10.1038/bjc.1996.511.
[111]N. B. Liabakk, I. Talbot, R. A. Smith, K. Wilkinson及F. Balkwill, 作者, 「Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer」, Cancer Res, 卷 56, 期 1, 頁 190–196, 1月 1996.
[112]S. Zucker等, 作者, 「Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications」, Ann N Y Acad Sci, 卷 878, 頁 212–227, 6月 1999, doi: 10.1111/j.1749-6632.1999.tb07687.x.
[113]M. Lein等, 作者, 「Metalloproteinases and tissue inhibitors of matrix-metalloproteinases in plasma of patients with prostate cancer and in prostate cancer tissue」, Ann N Y Acad Sci, 卷 878, 頁 544–546, 6月 1999, doi: 10.1111/j.1749-6632.1999.tb07722.x.
[114]T. Iizasa等, 作者, 「Elevated levels of circulating plasma matrix metalloproteinase 9 in non-small cell lung cancer patients」, Clin Cancer Res, 卷 5, 期 1, 頁 149–153, 1月 1999.
[115]K. Endo等, 作者, 「Elevated levels of serum and plasma metalloproteinases in patients with gastric cancer」, Anticancer Res, 卷 17, 期 3C, 頁 2253–2258, 6月 1997.
[116]K. Gohji等, 作者, 「Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension」, Int J Cancer, 卷 79, 期 1, 頁 96–101, 2月 1998, doi: 10.1002/(sici)1097-0215(19980220)79:1<96::aid-ijc18>3.0.co;2-f.
[117]K. Gohji, N. Fujimoto, A. Fujii, T. Komiyama, J. Okawa及M. Nakajima, 作者, 「Prognostic significance of circulating matrix metalloproteinase-2 to tissue inhibitor of metalloproteinases-2 ratio in recurrence of urothelial cancer after complete resection」, Cancer Res, 卷 56, 期 14, 頁 3196–3198, 7月 1996.
[118]Kapoor, 作者, 「Seesaw of matrix metalloproteinases (MMPs)」. https://www.cancerjournal.net/article.asp?issn=0973-1482;year=2016;volume=12;issue=1;spage=28;epage=35;aulast=Kapoor (引見於 2022年10月31日).
[119]S. Borowicz等, 作者, 「The Soft Agar Colony Formation Assay」, J Vis Exp, 期 92, 頁 51998, 10月 2014, doi: 10.3791/51998.
[120]L.-J. Shih等, 作者, 「Betel Nut Arecoline Induces Different Phases of Growth Arrest between Normal and Cancerous Prostate Cells through the Reactive Oxygen Species Pathway」, Int J Mol Sci, 卷 21, 期 23, 頁 9219, 12月 2020, doi: 10.3390/ijms21239219.
[121]S. A. Danielsen, P. W. Eide, A. Nesbakken, T. Guren, E. Leithe及R. A. Lothe, 作者, 「Portrait of the PI3K/AKT pathway in colorectal cancer」, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 卷 1855, 期 1, 頁 104–121, 1月 2015, doi: 10.1016/j.bbcan.2014.09.008.
[122]D. Sun等, 作者, 「Trifolirhizin induces autophagy-dependent apoptosis in colon cancer via AMPK/mTOR signaling」, Sig Transduct Target Ther, 卷 5, 期 1, Art. 期 1, 8月 2020, doi: 10.1038/s41392-020-00281-w.
[123]R. Mathew, V. Karantza-Wadsworth及E. White, 作者, 「Role of autophagy in cancer」, Nature reviews. Cancer, 卷 7, 期 12, 頁 961, 12月 2007, doi: 10.1038/nrc2254.
[124]D. Gentile, M. Esposito及P. Grumati, 作者, 「Metabolic adaption of cancer cells toward autophagy: Is there a role for ER-phagy?」, Frontiers in Molecular Biosciences, 卷 9, 2022, 引見於: 2022年9月26日. [線上]. 載於: https://www.frontiersin.org/articles/10.3389/fmolb.2022.930223
[125]Z. Xu等, 作者, 「Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy」, Appl Microbiol Biotechnol, 卷 104, 期 2, 頁 575–587, 1月 2020, doi: 10.1007/s00253-019-10257-8.
[126]Y. Guo, W. Pan, S. Liu, Z. Shen, Y. Xu及L. Hu, 作者, 「ERK/MAPK signalling pathway and tumorigenesis (Review)」, Exp Ther Med, 1月 2020, doi: 10.3892/etm.2020.8454.
[127]R. Kumari, S. Chouhan, S. Singh, R. R. Chhipa, A. K. Ajay及M. K. Bhat, 作者, 「Constitutively activated ERK sensitizes cancer cells to doxorubicin: Involvement of p53-EGFR-ERK pathway」, J Biosci, 卷 42, 期 1, 頁 31–41, 3月 2017, doi: 10.1007/s12038-017-9667-8.
[128]K.-I. Lee等, 作者, 「Etoposide induces pancreatic β-cells cytotoxicity via the JNK/ERK/GSK-3 signaling-mediated mitochondria-dependent apoptosis pathway」, Toxicol In Vitro, 卷 36, 頁 142–152, 10月 2016, doi: 10.1016/j.tiv.2016.07.018.
[129]W. Woessmann, X. Chen及A. Borkhardt, 作者, 「Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines」, Cancer Chemother Pharmacol, 卷 50, 期 5, 頁 397–404, 11月 2002, doi: 10.1007/s00280-002-0502-y.
[130]S. Cagnol及J.-C. Chambard, 作者, 「ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence」, FEBS J, 卷 277, 期 1, 頁 2–21, 1月 2010, doi: 10.1111/j.1742-4658.2009.07366.x.
[131]P. Martin及P. Pognonec, 作者, 「ERK and cell death: cadmium toxicity, sustained ERK activation and cell death」, FEBS J, 卷 277, 期 1, 頁 39–46, 1月 2010, doi: 10.1111/j.1742-4658.2009.07369.x.
[132]J.-S. Tong等, 作者, 「Icaritin causes sustained ERK1/2 activation and induces apoptosis in human endometrial cancer cells」, PLoS One, 卷 6, 期 3, 頁 e16781, 3月 2011, doi: 10.1371/journal.pone.0016781.
[133]S.-K. Hong, P.-K. Wu及J.-I. Park, 作者, 「A cellular threshold for active ERK1/2 levels determines Raf/MEK/ERK-mediated growth arrest versus death responses」, Cell Signal, 卷 42, 頁 11–20, 1月 2018, doi: 10.1016/j.cellsig.2017.10.001.
[134]D. Sinha, S. Bannergee, J. H. Schwartz, W. Lieberthal及J. S. Levine, 作者, 「Inhibition of ligand-independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis」, J Biol Chem, 卷 279, 期 12, 頁 10962–10972, 3月 2004, doi: 10.1074/jbc.M312048200.
[135]S. N. Rai等, 作者, 「The Role of PI3K/Akt and ERK in Neurodegenerative Disorders」, Neurotox Res, 卷 35, 期 3, 頁 775–795, 4月 2019, doi: 10.1007/s12640-019-0003-y.
[136]「Cotargeting survival signaling pathways in cancer - PubMed」. https://pubmed.ncbi.nlm.nih.gov/18725993/ (引見於 2022年9月25日).
[137]C. P. R. Xavier, C. F. Lima, D. F. N. Pedro, J. M. Wilson, K. Kristiansen及C. Pereira-Wilson, 作者, 「Ursolic acid induces cell death and modulates autophagy through JNK pathway in apoptosis-resistant colorectal cancer cells」, The Journal of Nutritional Biochemistry, 卷 24, 期 4, 頁 706–712, 4月 2013, doi: 10.1016/j.jnutbio.2012.04.004.
[138]S. Y. Tam及H. K.-W. Law, 作者, 「JNK in Tumor Microenvironment: Present Findings and Challenges in Clinical Translation」, Cancers (Basel), 卷 13, 期 9, 頁 2196, 5月 2021, doi: 10.3390/cancers13092196.
[139]A. Pranteda, V. Piastra, L. Stramucci, D. Fratantonio及G. Bossi, 作者, 「The p38 MAPK Signaling Activation in Colorectal Cancer upon Therapeutic Treatments」, IJMS, 卷 21, 期 8, 頁 2773, 4月 2020, doi: 10.3390/ijms21082773.
[140]L. Stramucci等, 作者, 「MKK3 sustains cell proliferation and survival through p38DELTA MAPK activation in colorectal cancer」, Cell Death Dis, 卷 10, 期 11, 頁 842, 11月 2019, doi: 10.1038/s41419-019-2083-2.
[141]S. Nakagomi, Y. Suzuki, K. Namikawa, S. Kiryu-Seo及H. Kiyama, 作者, 「Expression of the Activating Transcription Factor 3 Prevents c-Jun N-Terminal Kinase-Induced Neuronal Death by Promoting Heat Shock Protein 27 Expression and Akt Activation」, J Neurosci, 卷 23, 期 12, 頁 5187–5196, 6月 2003, doi: 10.1523/JNEUROSCI.23-12-05187.2003.
[142]X. Yin, J. W. Dewille及T. Hai, 作者, 「A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development」, Oncogene, 卷 27, 期 15, 頁 2118–2127, 4月 2008, doi: 10.1038/sj.onc.1210861.
[143]D. Lu, C. D. Wolfgang及T. Hai, 作者, 「Activating Transcription Factor 3, a Stress-inducible Gene, Suppresses Ras-stimulated Tumorigenesis*」, Journal of Biological Chemistry, 卷 281, 期 15, 頁 10473–10481, 4月 2006, doi: 10.1074/jbc.M509278200.
[144]「The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3) | Molecular Cancer Therapeutics | American Association for Cancer Research」. https://aacrjournals.org/mct/article/4/5/693/234662/The-anti-invasive-activity-of-cyclooxygenase (引見於 2022年11月7日).
[145]T. Ishiguro, H. Nagawa, M. Naito及T. Tsuruo, 作者, 「Inhibitory Effect of ATF3 Antisense Oligonucleotide on Ectopic Growth of HT29 Human Colon Cancer Cells」, Japanese Journal of Cancer Research, 卷 91, 期 8, 頁 833–836, 2000, doi: 10.1111/j.1349-7006.2000.tb01021.x.
[146]「The Tumor Metastasis Suppressor Gene Drg-1 Down-regulates the Expression of Activating Transcription Factor 3 in Prostate Cancer | Cancer Research | American Association for Cancer Research」. https://aacrjournals.org/cancerres/article/66/24/11983/526537/The-Tumor-Metastasis-Suppressor-Gene-Drg-1-Down (引見於 2022年11月7日).
[147]T. A. Martin, L. Ye, A. J. Sanders, J. Lane及W. G. Jiang, 作者, Cancer Invasion and Metastasis: Molecular and Cellular Perspective. Landes Bioscience, 2013. 引見於: 2022年11月7日. [線上]. 載於: https://www.ncbi.nlm.nih.gov/books/NBK164700/
[148]「Mechanisms of Metastasis in Colorectal Cancer and Metastatic Organotropism: Hematogenous versus Peritoneal Spread - PMC」. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770301/ (引見於 2022年11月7日).
[149]「The Role of Extracellular Matrix in Tissue Regeneration | IntechOpen」. https://www.intechopen.com/chapters/60312 (引見於 2022年11月7日).
[150]「High expression of matrix metalloproteinases: MMP-2 and MMP-9 predicts poor survival outcome in colorectal carcinoma | Future Oncology」. https://www.futuremedicine.com/doi/10.2217/fon.15.325?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed (引見於 2022年11月7日).
[151]S. R. Morini, M. V. Denadai, J. Waisberg, G. de J. Lopes, D. Matos及S. S. Saad, 作者, 「Metalloproteinases and colorectal cancer. Correlation of gene expression and clinical-pathological parameters 1」, Acta Cir Bras, 卷 35, 期 7, 頁 e202000707, doi: 10.1590/s0102-865020200070000007.
[152]X. Yan, R. Zhou及Z. Ma, 作者, 「Autophagy-Cell Survival and Death」, Adv Exp Med Biol, 卷 1206, 頁 667–696, 2019, doi: 10.1007/978-981-15-0602-4_29.
[153] T. Hai, C. D. Wolfgang, D. K. Marsee, A. E. Allen及U. Sivaprasad, 作者, 「ATF3 and Stress Responses」, Gene Expr, 卷 7, 期 4-5–6, 頁 321–335, 9月 2018.
[154]「Programmed Cell Death, from a Cancer Perspective: An Overview | SpringerLink」. https://link.springer.com/article/10.1007/s40291-018-0329-9 (引見於 2022年11月8日).
[155]A. M. Schläfli等, 作者, 「ALK inhibition activates LC3B-independent, protective autophagy in EML4-ALK positive lung cancer cells」, Sci Rep, 卷 11, 頁 9011, 4月 2021, doi: 10.1038/s41598-021-87966-6.
[156]H. Alsamri, A. Alneyadi, K. Muhammad, M. A. Ayoub, A. Eid及R. Iratni, 作者, 「Carnosol Induces p38-Mediated ER Stress Response and Autophagy in Human Breast Cancer Cells」, Frontiers in Oncology, 卷 12, 2022, 引見於: 2022年11月8日. [線上]. 載於: https://www.frontiersin.org/articles/10.3389/fonc.2022.911615
[157]D. Patacsil等, 作者, 「Gamma-Tocotrienol induced Apoptosis is Associated with Unfolded Protein Response in Human Breast Cancer Cells」, J Nutr Biochem, 卷 23, 期 1, 頁 93–100, 1月 2012, doi: 10.1016/j.jnutbio.2010.11.012.
[158]R. V. Tiwari, P. Parajuli及P. W. Sylvester, 作者, 「γ-Tocotrienol-induced endoplasmic reticulum stress and autophagy act concurrently to promote breast cancer cell death」, Biochem Cell Biol, 卷 93, 期 4, 頁 306–320, 8月 2015, doi: 10.1139/bcb-2014-0123.
[159]A. Cuadrado及A. R. Nebreda, 作者, 「Mechanisms and functions of p38 MAPK signalling」, Biochemical Journal, 卷 429, 期 3, 頁 403–417, 7月 2010, doi: 10.1042/BJ20100323.
[160]H. K. Koul, M. Pal及S. Koul, 作者, 「Role of p38 MAP Kinase Signal Transduction in Solid Tumors」, Genes & Cancer, 卷 4, 期 9–10, 頁 342–359, 9月 2013, doi: 10.1177/1947601913507951.
[161]「Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions* | Endocrine Reviews | Oxford Academic」. https://academic.oup.com/edrv/article/22/2/153/2423864 (引見於 2022年11月8日).
[162]D. Tang等, 作者, 「ERK Activation Mediates Cell Cycle Arrest and Apoptosis after DNA Damage Independently of p53 ∗」, Journal of Biological Chemistry, 卷 277, 期 15, 頁 12710–12717, 4月 2002, doi: 10.1074/jbc.M111598200.
[163]J. Dong, S. Ramachandiran, K. Tikoo, Z. Jia, S. S. Lau及T. J. Monks, 作者, 「EGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death」, American Journal of Physiology-Renal Physiology, 卷 287, 期 5, 頁 F1049–F1058, 11月 2004, doi: 10.1152/ajprenal.00132.2004.
[164]M. Gugnoni等, 作者, 「Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy」, Oncogene, 卷 36, 期 5, 頁 667–677, 2月 2017, doi: 10.1038/onc.2016.237.
[165]Q. Lv等, 作者, 「DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial-mesenchymal transition in human breast cancer」, Cancer Res, 卷 72, 期 13, 頁 3238–3250, 7月 2012, doi: 10.1158/0008-5472.CAN-11-3832.
[166]G. Li等, 作者, 「Enhanced Epithelial-to-Mesenchymal Transition Associated with Lysosome Dysfunction in Podocytes: Role of p62/Sequestosome 1 as a Signaling Hub」, Cell Physiol Biochem, 卷 35, 期 5, 頁 1773–1786, 2015, doi: 10.1159/000373989.
[167]L. Qiang等, 作者, 「Regulation of cell proliferation and migration by p62 through stabilization of Twist1」, Proc Natl Acad Sci U S A, 卷 111, 期 25, 頁 9241–9246, 6月 2014, doi: 10.1073/pnas.1322913111.
[168]M. Gugnoni, V. Sancisi, G. Manzotti, G. Gandolfi及A. Ciarrocchi, 作者, 「Autophagy and epithelial–mesenchymal transition: an intricate interplay in cancer」, Cell Death Dis, 卷 7, 期 12, 頁 e2520, 12月 2016, doi: 10.1038/cddis.2016.415.
[169]「Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation - PMC」. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650445/ (引見於 2022年11月8日).
[170]H.-T. Chen等, 作者, 「Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy」, Molecular Cancer, 卷 18, 期 1, 頁 101, 5月 2019, doi: 10.1186/s12943-019-1030-2.

指導教授 高永旭(Yung-Hsi Kao) 審核日期 2023-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明