博碩士論文 111328602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.222.182.231
姓名 格維克(Victor Nicolas LE GLANIC)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 利用改質石墨烯修飾電極以提高電池在高電壓 下的性能和穩定性
(Modification of the current collector with graphene to enhance the performance and stability of batteries at high voltage)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 真空壓印於二維材料轉印製程之研究
★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討★ 氟化石墨烯複合材料塗層於多功能披覆之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-21以後開放)
摘要(中) 鋰離子電池如今在能量存儲方面得到了廣泛的投資,無論是用於嵌入式設備
還是固定應用。這些電池在零售市場上擁有最佳的電氣性能。從製造出來的那一刻起,
日曆和循環老化都會影響鋰離子電池的性能。老化過程的一個重要部分是電流收集器
的腐蝕,特別是在正極的鋁基底的情況下尤為明顯。一般來說,鋁由於形成了不透水
的原生氧化鋁膜而能夠抵抗腐蝕。然而,在某些電化學條件下,腐蝕會影響電流收集
器的界面。這在高壓鋰離子電池的情況下尤為明顯,這些電池更容易受到腐蝕的影響。
許多防腐策略已被提出。
以往關於通過電化學剝離法製備的氟化石墨烯(FG)的研究表明,這種氟化
電化學剝離石墨烯(F-ECG)似乎是一種有希望的疏水材料,可以解決腐蝕問題,同時
通過石墨烯的獨特性能提高鋁電池電流收集器的電氣性能。本研究展示了應用基於石
墨烯的材料於能量存儲設備的調查,重點關注負極鋁電池電流收集器。
其結果展示了石墨烯基材料應用於儲能裝置的研究,重點關注負極鋁電池集
流體。通過 EPD 在織構鋁箔上逐層塗覆不同結構的保護膜,然後分析其形貌、厚度、
元素組成以及 LSV 電化學和半電池表徵。結果表明,雙層 F-ECG 500s 和 F-ECG 700s
EPD 持續時間的特定條件允許達到 1.63V 的電位極限,這表明與其他無塗層鋁蝕刻樣
品相比,腐蝕保護得到了改善。單層 F-ECG 的半電池測試表明,該結果表明,所提出
的 Al 上的 FECG 改性劑有助於提高循環穩定性,這為未來高性能 LIB 鋪平了道路.
摘要(英) Lithium-ion batteries are nowadays widely invested in term of energy storage whether
for embedded devices or stationary applications. Those batteries have the best electrical
properties available on the retail market. The unstable cycle stability affects the performance
of the lithium-ion batteries from the moment they are manufactured. An important process
that occurs as a part of the ageing is corrosion of the current collectors, especially prominent
in the case of the aluminum substrate for the positive electrode. Generally, aluminum resists
corrosion due to the formation of a non-permeable film of native aluminum oxide.
Nevertheless, at certain electrochemical conditions corrosion affects the interface of the
current collector. This is especially the case for high-voltage lithium-ion batteries which are
more affected by the corrosion affect.
Many strategies of anti-corrosion have been proposed. Previous works on fluorinated
graphene (FG) obtained by fluorination of the electrochemically exfoliated graphene (F-ECG)
seems to be a promising hydrophobic material to solve corrosion issue while increasing the
electrical properties of aluminum batteries current collector thank to graphene unique
properties.
This work shows the investigation of graphene-based material applied to energy
storage devices focusing on the negative aluminum battery current collector. The different iii
structures of protective film were layer-by-layer coated on the textured Al foil by EPD, then
we analysis the morphology, thickness, elemental composition and the LSV electrochemical
as well as the half-cell characterization. Result show that the specific condition of dual layer
F-ECG 500s and F-ECG 700s EPD duration allows to achieve a potential limit of 1.63V,
suggesting the improved corrosion protection compared to other non-coated aluminum etched
sample. The half-cell testing with single layer F-ECG shows that this result shows that the
proposed FECG modifier on the Al can help to increase the cycling stability, which pay a way
toward performant LIB in the future.
關鍵字(中) ★ 儲能
★ 鋰離子電池
★ 石墨烯
★ 防腐
★ 奈米材料
關鍵字(英) ★ energy storage
★ Li-ion batteries
★ graphene
★ anti-corrosion
★ nanomaterial
論文目次 Abstract ..................................................................................................................................... ii
Table of contents ...................................................................................................................... iv
List of figures ........................................................................................................................... vi
List of tables ............................................................................................................................vii
1. INTRODUCTION ......................................................................................................... 1
1.1 Graphene/ polymeric nanocomposite as an anticorrosion material on aluminum ....... 3
2. MOTIVATION .............................................................................................................. 5
3. METHODOLOGY ........................................................................................................ 8
3.1 Experimental flow chart .............................................................................................. 8
3.2 Synthesis of electrochemically exfoliated graphene (ECG) ........................................ 8
3.3 Synthesis of Fluorinated electrochemically exfoliated graphene (F-ECG) [23] ............ 9
3.4 Coating the nanocomposite on a metallic substrate [23] ............................................. 10
3.5 Material characterizations .......................................................................................... 11
3.6 Electrochemical characterization ............................................................................... 12
4. RESULTS AND DISCUSSION .................................................................................. 13
4.1 Morphology ............................................................................................................... 13
4.1.1 Cold Field Emission Scanning Electron Microscope (CEF-SEM) images ........ 13
4.1.2 Thickness measurements and roughness of F-ECG coated aluminum foil ........ 16
4.2 Hydrophobicity .......................................................................................................... 19
4.2.1 Contact angle measurements. ............................................................................. 19
4.3 Electrochemical properties......................................................................................... 20
4.3.1 Sheet resistance measurements ........................................................................... 20
4.3.2 XPS analysis - Confirmed presence of FAl3 among F-ECG/Al ........................ 22
4.3.3 Linear sweep voltammetry ................................................................................. 254.3.4 Cyclability .......................................................................................................... 27
4.4 Other discussions ....................................................................................................... 31
4.4.1 Reducing the oxygen side reaction with NH3 annealing doping. ....................... 31
4.4.2 Results on dual-layer coating (F-ECG + ECG) .................................................. 31
4.4.3 Controlling the EPD uniformity over large area ................................................ 34
4.4.4 Improving the Adhesion of ECG Coating on Aluminum Surface ..................... 37
5. CONCLUSION ............................................................................................................ 39
6. REFERENCES ............................................................................................................ 40
參考文獻 [1]. Hannan, M. A., Wali, S. B., Ker, P. J., Rahman, M. S. A., Mansor, M.,
Ramachandaramurthy, V. K., Muttaqi, K. M., Mahlia, T. M. I., & Dong, Z. Y. (2021). Battery
energy-storage system: A review of technologies, optimization objectives, constraints,
approaches, and outstanding issues. In Journal of Energy Storage (Vol. 42, p. 103023).
Elsevier BV. https://doi.org/10.1016/j.est.2021.103023
[2]. Desing, H., & Widmer, R. (2022). How Much Energy Storage can We Afford? On the
Need for a Sunflower Society, Aligning Demand with Renewable Supply. In Biophysical
Economics and Sustainability (Vol. 7, Issue 2). Springer Science and Business Media LLC.
https://doi.org/10.1007/s41247-022-00097-y
[3]. Mitali, J., Dhinakaran, S., & Mohamad, A. A. (2022). Energy storage systems: a
review. In Energy Storage and Saving (Vol. 1, Issue 3, pp. 166–216). Elsevier BV.
https://doi.org/10.1016/j.enss.2022.07.002
[4]. Grandjean, T. R. B., Groenewald, J., McGordon, A., & Marco, J. (2019). Cycle life of
lithium ion batteries after flash cryogenic freezing. In Journal of Energy Storage (Vol. 24, p.
100804). Elsevier BV. https://doi.org/10.1016/j.est.2019.100804
[5]. Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A
review on lithium-ion battery ageing mechanisms and estimations for automotive applications.
In Journal of Power Sources (Vol. 241, pp. 680–689). Elsevier BV.
https://doi.org/10.1016/j.jpowsour.2013.05.040
[6]. SONG, S., RICHARDSON, T., ZHUANG, G., DEVINE, T., & EVANS, J. (2004).
Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using
the EQCM. In Electrochimica Acta (Vol. 49, Issues 9–10, pp. 1483–1490). Elsevier BV.
https://doi.org/10.1016/s0013-4686(03)00930-7
[7]. Mussa, A. S., Liivat, A., Marzano, F., Klett, M., Philippe, B., Tengstedt, C.,
Lindbergh, G., Edström, K., Lindström, R. W., & Svens, P. (2019). Fast-charging effects on
ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-
ion cells. In Journal of Power Sources (Vol. 422, pp. 175–184). Elsevier BV.
https://doi.org/10.1016/j.jpowsour.2019.02.095
[8] Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E.,
Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M.,
Marinescu, M., Offer, G., & Wu, B. (2019). Lithium-ion battery fast charging: A review. In
eTransportation (Vol. 1, p. 100011). Elsevier BV. https://doi.org/10.1016/j.etran.2019.100011
[9]. Gabryelczyk, A., Ivanov, S., Bund, A., & Lota, G. (2021). Corrosion of aluminium
current collector in lithium-ion batteries: A review. In Journal of Energy Storage (Vol. 43, p.
103226). Elsevier BV. https://doi.org/10.1016/j.est.2021.103226
[10]. Wang, M., Tang, M., Chen, S., Ci, H., Wang, K., Shi, L., Lin, L., Ren, H., Shan, J.,
Gao, P., Liu, Z., & Peng, H. (2017). Graphene-Armored Aluminum Foil with Enhanced
Anticorrosion Performance as Current Collectors for Lithium-Ion Battery. In Advanced
Materials (Vol. 29, Issue 47, p. 1703882). Wiley. https://doi.org/10.1002/adma.201703882
[11]. Meister, P., Qi, X., Kloepsch, R., Krämer, E., Streipert, B., Winter, M., & Placke, T.
(2017). Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes:
Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness. In
ChemSusChem (Vol. 10, Issue 4, pp. 804–814). Wiley.
https://doi.org/10.1002/cssc.201601636
[12]. Perreault, F., Fonseca de Faria, A., & Elimelech, M. (2015). Environmental
applications of graphene-based nanomaterials. In Chemical Society Reviews (Vol. 44, Issue
16, pp. 5861–5896). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c5cs00021a
[13]. Sin, Y.-Y., Huang, C.-C., Lin, C.-N., Chih, J.-K., Hsieh, Y.-L., Tsao, I.-Y., Li, J., &
Su, C.-Y. (2020). Ultrastrong adhesion of fluorinated graphene on a substrate: In situ
electrochemical conversion to ionic-covalent bonding at the interface. In Carbon (Vol. 169, pp.
248–257). Elsevier BV. https://doi.org/10.1016/j.carbon.2020.07.067
[14]. Guo, Y., Liu, C., Yin, Q., Wei, C., Lin, S., Hoffman, T. B., Zhao, Y., Edgar, J. H.,
Chen, Q., Lau, S. P., Dai, J., Yao, H., Wong, H.-S. P., & Chai, Y. (2016). Distinctive in-Plane
Cleavage Behaviors of Two-Dimensional Layered Materials. In ACS Nano (Vol. 10, Issue 9,
pp. 8980–8988). American Chemical Society (ACS).
https://doi.org/10.1021/acsnano.6b05063
[15]. Deng, Y., Bai, W., Chen, J., Zhang, X., Wang, S., Lin, J., & Xu, Y. (2017). Bio-
inspired electrochemical corrosion coatings derived from graphene/natural lacquer composites.
In RSC Advances (Vol. 7, Issue 71, pp. 45034–45044). Royal Society of Chemistry (RSC).
https://doi.org/10.1039/c7ra08536b
[16]. Sun, W., Wang, L., Wu, T., Wang, M., Yang, Z., Pan, Y., & Liu, G. (2015).
Inhibiting the Corrosion-Promotion Activity of Graphene. In Chemistry of Materials (Vol. 27,
Issue 7, pp. 2367–2373). American Chemical Society (ACS).
https://doi.org/10.1021/cm5043099
[17]. Zhou, F., Li, Z., Shenoy, G. J., Li, L., & Liu, H. (2013). Enhanced Room-
Temperature Corrosion of Copper in the Presence of Graphene. In ACS Nano (Vol. 7, Issue 8,
pp. 6939–6947). American Chemical Society (ACS). https://doi.org/10.1021/nn402150t
[18]. Dutta, D., Ganda, A. N. F., Chih, J.-K., Huang, C.-C., Tseng, C.-J., & Su, C.-Y.
(2018). Revisiting graphene–polymer nanocomposite for enhancing anticorrosion
performance: a new insight into interface chemistry and diffusion model. In Nanoscale (Vol.
10, Issue 26, pp. 12612–12624). Royal Society of Chemistry (RSC).
https://doi.org/10.1039/c8nr03261k
[19]. Jamaluddin, A., Sin, Y.-Y., Adhitama, E., Prayogi, A., Wu, Y.-T., Chang, J.-K., &
Su, C.-Y. (2022). Fluorinated graphene as a dual-functional anode to achieve dendrite-free
and high-performance lithium metal batteries. In Carbon (Vol. 197, pp. 141–151). Elsevier
BV. https://doi.org/10.1016/j.carbon.2022.06.023
[20]. Kim, S. Y., Song, Y. I., Wee, J.-H., Kim, C. H., Ahn, B. W., Lee, J. W., Shu, S. J.,
Terrones, M., Kim, Y. A., & Yang, C.-M. (2019). Few-layer graphene coated current
collectors for safe and powerful lithium ion batteries. In Carbon (Vol. 153, pp. 495–503).
Elsevier BV. https://doi.org/10.1016/j.carbon.2019.07.032
43
[21]. Su CY, Lu AY, Xu Y, Chen FR, Khlobystov AN, Li LJ. High-quality thin graphene
films from fast electrochemical exfoliation. ACS Nano. 2011 Mar 22;5(3):2332-9. doi:
10.1021/nn200025p. Epub 2011 Feb 10. PMID: 21309565.
[22]. Chen, C.-H., Yang, S.-W., Chuang, M.-C., Woon, W.-Y., & Su, C.-Y. (2015).
Towards the continuous production of high crystallinity graphene via electrochemical
exfoliation with molecular in situ encapsulation. In Nanoscale (Vol. 7, Issue 37, pp. 15362–
15373). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c5nr03669
[23]. Arshad, M. U., Dutta, D., Sin, Y. Y., Hsiao, S. W., Wu, C. Y., Chang, B. K., Dai, L.,
& Su, C. Y. (2022). Multi-functionalized fluorinated graphene composite coating for
achieving durable electronics: Ultralow corrosion rate and high electrical insulating
passivation. In Carbon (Vol. 195, pp. 141–153). Elsevier BV.
https://doi.org/10.1016/j.carbon.2022.04.004
[24]. Song, C., Yu, B., Wang, M., & Qian, L. (2015). Rapid and maskless nanopatterning
of aluminosilicate glass surface via friction-induced selective etching in HF solution. In RSC
Advances (Vol. 5, Issue 97, pp. 79964–79968). Royal Society of Chemistry (RSC).
https://doi.org/10.1039/c5ra13049b
[25]. Ogoreltceva, N., Fedorova, E., Puzanov, I., Zavadyak, A., Nagibin, G., & Kirillova, I.
(2020). Method of protection of cathode blocks of aluminium electrolysis cells. In Procedia
Structural Integrity (Vol. 28, pp. 1340–1346). Elsevier BV.
https://doi.org/10.1016/j.prostr.2020.10.105
[26]. Asakura, K., Shimomura, M., & Shodai, T. (2003). Study of life evaluation methods
for Li-ion batteries for backup applications. In Journal of Power Sources (Vols. 119–121, pp.
902–905). Elsevier BV. https://doi.org/10.1016/s0378-7753(03)00208-8
[27]. Li, X., Deng, S., Banis, M. N., Doyle-Davis, K., Zhang, D., Zhang, T., Yang, J.,
Divigalpitiya, R., Brandys, F., Li, R., & Sun, X. (2019). Suppressing Corrosion of Aluminum
Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-
Based Batteries. In ACS Applied Materials & Interfaces (Vol. 11, Issue 36, pp. 32826–
32832). American Chemical Society (ACS). https://doi.org/10.1021/acsami.9b06442
44
[28]. Lee, Young-Gi, Kim, Kwang Man, Cho, Won Il, & Ko, Jang Myoun. (2013).
Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based
Electrolytes by the Addition of Fumed Silica. Bulletin of the Korean Chemical Society, 34(6),
1795–1799. https://doi.org/10.5012/BKCS.2013.34.6.1795
[29]. Gromadskyi, D. G., Fateev, Y. F., & Maletin, Y. A. (2013). The impact of aluminum
electrode anodic polarization in tetraethylammonium tetrafluoborate acetonitrile solution on
the process of film formation. In Corrosion Science (Vol. 69, pp. 191–196). Elsevier BV.
https://doi.org/10.1016/j.corsci.2012.12.002
[30]. Wang, K., Wang, C., Yang, H., Wang, X., Cao, F., Wu, Q., & Peng, H. (2020).
Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion
batteries. In Nano Research (Vol. 13, Issue 7, pp. 1948–1954). Springer Science and Business
Media LLC. https://doi.org/10.1007/s12274-020-2780-2
指導教授 蘇清源(SU Ching-Yuan) 審核日期 2023-9-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明